• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-arm-linux-2.6.36-uclibc-4.5.3/arm-brcm-linux-uclibcgnueabi/include/c++/4.5.3/ext/
1// Bitmap Allocator. -*- C++ -*-
2
3// Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 3, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
20
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24// <http://www.gnu.org/licenses/>.
25
26/** @file ext/bitmap_allocator.h
27 *  This file is a GNU extension to the Standard C++ Library.
28 */
29
30#ifndef _BITMAP_ALLOCATOR_H
31#define _BITMAP_ALLOCATOR_H 1
32
33#include <cstddef> // For std::size_t, and ptrdiff_t.
34#include <bits/functexcept.h> // For __throw_bad_alloc().
35#include <utility> // For std::pair.
36#include <functional> // For greater_equal, and less_equal.
37#include <new> // For operator new.
38#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
39#include <ext/concurrence.h>
40#include <bits/move.h>
41
42/** @brief The constant in the expression below is the alignment
43 * required in bytes.
44 */
45#define _BALLOC_ALIGN_BYTES 8
46
47_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
48
49  using std::size_t;
50  using std::ptrdiff_t;
51
52  namespace __detail
53  {
54    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
55     *
56     *  @brief  __mini_vector<> is a stripped down version of the
57     *  full-fledged std::vector<>.
58     *
59     *  It is to be used only for built-in types or PODs. Notable
60     *  differences are:
61     *
62     *  @detail
63     *  1. Not all accessor functions are present.
64     *  2. Used ONLY for PODs.
65     *  3. No Allocator template argument. Uses ::operator new() to get
66     *  memory, and ::operator delete() to free it.
67     *  Caveat: The dtor does NOT free the memory allocated, so this a
68     *  memory-leaking vector!
69     */
70    template<typename _Tp>
71      class __mini_vector
72      {
73	__mini_vector(const __mini_vector&);
74	__mini_vector& operator=(const __mini_vector&);
75
76      public:
77	typedef _Tp value_type;
78	typedef _Tp* pointer;
79	typedef _Tp& reference;
80	typedef const _Tp& const_reference;
81	typedef size_t size_type;
82	typedef ptrdiff_t difference_type;
83	typedef pointer iterator;
84
85      private:
86	pointer _M_start;
87	pointer _M_finish;
88	pointer _M_end_of_storage;
89
90	size_type
91	_M_space_left() const throw()
92	{ return _M_end_of_storage - _M_finish; }
93
94	pointer
95	allocate(size_type __n)
96	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
97
98	void
99	deallocate(pointer __p, size_type)
100	{ ::operator delete(__p); }
101
102      public:
103	// Members used: size(), push_back(), pop_back(),
104	// insert(iterator, const_reference), erase(iterator),
105	// begin(), end(), back(), operator[].
106
107	__mini_vector()
108        : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
109
110	size_type
111	size() const throw()
112	{ return _M_finish - _M_start; }
113
114	iterator
115	begin() const throw()
116	{ return this->_M_start; }
117
118	iterator
119	end() const throw()
120	{ return this->_M_finish; }
121
122	reference
123	back() const throw()
124	{ return *(this->end() - 1); }
125
126	reference
127	operator[](const size_type __pos) const throw()
128	{ return this->_M_start[__pos]; }
129
130	void
131	insert(iterator __pos, const_reference __x);
132
133	void
134	push_back(const_reference __x)
135	{
136	  if (this->_M_space_left())
137	    {
138	      *this->end() = __x;
139	      ++this->_M_finish;
140	    }
141	  else
142	    this->insert(this->end(), __x);
143	}
144
145	void
146	pop_back() throw()
147	{ --this->_M_finish; }
148
149	void
150	erase(iterator __pos) throw();
151
152	void
153	clear() throw()
154	{ this->_M_finish = this->_M_start; }
155      };
156
157    // Out of line function definitions.
158    template<typename _Tp>
159      void __mini_vector<_Tp>::
160      insert(iterator __pos, const_reference __x)
161      {
162	if (this->_M_space_left())
163	  {
164	    size_type __to_move = this->_M_finish - __pos;
165	    iterator __dest = this->end();
166	    iterator __src = this->end() - 1;
167
168	    ++this->_M_finish;
169	    while (__to_move)
170	      {
171		*__dest = *__src;
172		--__dest; --__src; --__to_move;
173	      }
174	    *__pos = __x;
175	  }
176	else
177	  {
178	    size_type __new_size = this->size() ? this->size() * 2 : 1;
179	    iterator __new_start = this->allocate(__new_size);
180	    iterator __first = this->begin();
181	    iterator __start = __new_start;
182	    while (__first != __pos)
183	      {
184		*__start = *__first;
185		++__start; ++__first;
186	      }
187	    *__start = __x;
188	    ++__start;
189	    while (__first != this->end())
190	      {
191		*__start = *__first;
192		++__start; ++__first;
193	      }
194	    if (this->_M_start)
195	      this->deallocate(this->_M_start, this->size());
196
197	    this->_M_start = __new_start;
198	    this->_M_finish = __start;
199	    this->_M_end_of_storage = this->_M_start + __new_size;
200	  }
201      }
202
203    template<typename _Tp>
204      void __mini_vector<_Tp>::
205      erase(iterator __pos) throw()
206      {
207	while (__pos + 1 != this->end())
208	  {
209	    *__pos = __pos[1];
210	    ++__pos;
211	  }
212	--this->_M_finish;
213      }
214
215
216    template<typename _Tp>
217      struct __mv_iter_traits
218      {
219	typedef typename _Tp::value_type value_type;
220	typedef typename _Tp::difference_type difference_type;
221      };
222
223    template<typename _Tp>
224      struct __mv_iter_traits<_Tp*>
225      {
226	typedef _Tp value_type;
227	typedef ptrdiff_t difference_type;
228      };
229
230    enum
231      {
232	bits_per_byte = 8,
233	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
234      };
235
236    template<typename _ForwardIterator, typename _Tp, typename _Compare>
237      _ForwardIterator
238      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
239		    const _Tp& __val, _Compare __comp)
240      {
241	typedef typename __mv_iter_traits<_ForwardIterator>::value_type
242	  _ValueType;
243	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
244	  _DistanceType;
245
246	_DistanceType __len = __last - __first;
247	_DistanceType __half;
248	_ForwardIterator __middle;
249
250	while (__len > 0)
251	  {
252	    __half = __len >> 1;
253	    __middle = __first;
254	    __middle += __half;
255	    if (__comp(*__middle, __val))
256	      {
257		__first = __middle;
258		++__first;
259		__len = __len - __half - 1;
260	      }
261	    else
262	      __len = __half;
263	  }
264	return __first;
265      }
266
267    /** @brief The number of Blocks pointed to by the address pair
268     *  passed to the function.
269     */
270    template<typename _AddrPair>
271      inline size_t
272      __num_blocks(_AddrPair __ap)
273      { return (__ap.second - __ap.first) + 1; }
274
275    /** @brief The number of Bit-maps pointed to by the address pair
276     *  passed to the function.
277     */
278    template<typename _AddrPair>
279      inline size_t
280      __num_bitmaps(_AddrPair __ap)
281      { return __num_blocks(__ap) / size_t(bits_per_block); }
282
283    // _Tp should be a pointer type.
284    template<typename _Tp>
285      class _Inclusive_between
286      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
287      {
288	typedef _Tp pointer;
289	pointer _M_ptr_value;
290	typedef typename std::pair<_Tp, _Tp> _Block_pair;
291
292      public:
293	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
294	{ }
295
296	bool
297	operator()(_Block_pair __bp) const throw()
298	{
299	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
300	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
301	    return true;
302	  else
303	    return false;
304	}
305      };
306
307    // Used to pass a Functor to functions by reference.
308    template<typename _Functor>
309      class _Functor_Ref
310      : public std::unary_function<typename _Functor::argument_type,
311				   typename _Functor::result_type>
312      {
313	_Functor& _M_fref;
314
315      public:
316	typedef typename _Functor::argument_type argument_type;
317	typedef typename _Functor::result_type result_type;
318
319	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
320	{ }
321
322	result_type
323	operator()(argument_type __arg)
324	{ return _M_fref(__arg); }
325      };
326
327    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
328     *
329     *  @brief  The class which acts as a predicate for applying the
330     *  first-fit memory allocation policy for the bitmap allocator.
331     */
332    // _Tp should be a pointer type, and _Alloc is the Allocator for
333    // the vector.
334    template<typename _Tp>
335      class _Ffit_finder
336      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
337      {
338	typedef typename std::pair<_Tp, _Tp> _Block_pair;
339	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
340	typedef typename _BPVector::difference_type _Counter_type;
341
342	size_t* _M_pbitmap;
343	_Counter_type _M_data_offset;
344
345      public:
346	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
347	{ }
348
349	bool
350	operator()(_Block_pair __bp) throw()
351	{
352	  // Set the _rover to the last physical location bitmap,
353	  // which is the bitmap which belongs to the first free
354	  // block. Thus, the bitmaps are in exact reverse order of
355	  // the actual memory layout. So, we count down the bitmaps,
356	  // which is the same as moving up the memory.
357
358	  // If the used count stored at the start of the Bit Map headers
359	  // is equal to the number of Objects that the current Block can
360	  // store, then there is definitely no space for another single
361	  // object, so just return false.
362	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
363
364	  if (*(reinterpret_cast<size_t*>
365		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
366	    return false;
367
368	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
369
370	  for (_Counter_type __i = 0; __i < __diff; ++__i)
371	    {
372	      _M_data_offset = __i;
373	      if (*__rover)
374		{
375		  _M_pbitmap = __rover;
376		  return true;
377		}
378	      --__rover;
379	    }
380	  return false;
381	}
382
383	size_t*
384	_M_get() const throw()
385	{ return _M_pbitmap; }
386
387	_Counter_type
388	_M_offset() const throw()
389	{ return _M_data_offset * size_t(bits_per_block); }
390      };
391
392    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
393     *
394     *  @brief  The bitmap counter which acts as the bitmap
395     *  manipulator, and manages the bit-manipulation functions and
396     *  the searching and identification functions on the bit-map.
397     */
398    // _Tp should be a pointer type.
399    template<typename _Tp>
400      class _Bitmap_counter
401      {
402	typedef typename
403	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
404	typedef typename _BPVector::size_type _Index_type;
405	typedef _Tp pointer;
406
407	_BPVector& _M_vbp;
408	size_t* _M_curr_bmap;
409	size_t* _M_last_bmap_in_block;
410	_Index_type _M_curr_index;
411
412      public:
413	// Use the 2nd parameter with care. Make sure that such an
414	// entry exists in the vector before passing that particular
415	// index to this ctor.
416	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
417	{ this->_M_reset(__index); }
418
419	void
420	_M_reset(long __index = -1) throw()
421	{
422	  if (__index == -1)
423	    {
424	      _M_curr_bmap = 0;
425	      _M_curr_index = static_cast<_Index_type>(-1);
426	      return;
427	    }
428
429	  _M_curr_index = __index;
430	  _M_curr_bmap = reinterpret_cast<size_t*>
431	    (_M_vbp[_M_curr_index].first) - 1;
432
433	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
434
435	  _M_last_bmap_in_block = _M_curr_bmap
436	    - ((_M_vbp[_M_curr_index].second
437		- _M_vbp[_M_curr_index].first + 1)
438	       / size_t(bits_per_block) - 1);
439	}
440
441	// Dangerous Function! Use with extreme care. Pass to this
442	// function ONLY those values that are known to be correct,
443	// otherwise this will mess up big time.
444	void
445	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
446	{ _M_curr_bmap = __new_internal_marker; }
447
448	bool
449	_M_finished() const throw()
450	{ return(_M_curr_bmap == 0); }
451
452	_Bitmap_counter&
453	operator++() throw()
454	{
455	  if (_M_curr_bmap == _M_last_bmap_in_block)
456	    {
457	      if (++_M_curr_index == _M_vbp.size())
458		_M_curr_bmap = 0;
459	      else
460		this->_M_reset(_M_curr_index);
461	    }
462	  else
463	    --_M_curr_bmap;
464	  return *this;
465	}
466
467	size_t*
468	_M_get() const throw()
469	{ return _M_curr_bmap; }
470
471	pointer
472	_M_base() const throw()
473	{ return _M_vbp[_M_curr_index].first; }
474
475	_Index_type
476	_M_offset() const throw()
477	{
478	  return size_t(bits_per_block)
479	    * ((reinterpret_cast<size_t*>(this->_M_base())
480		- _M_curr_bmap) - 1);
481	}
482
483	_Index_type
484	_M_where() const throw()
485	{ return _M_curr_index; }
486      };
487
488    /** @brief  Mark a memory address as allocated by re-setting the
489     *  corresponding bit in the bit-map.
490     */
491    inline void
492    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
493    {
494      size_t __mask = 1 << __pos;
495      __mask = ~__mask;
496      *__pbmap &= __mask;
497    }
498
499    /** @brief  Mark a memory address as free by setting the
500     *  corresponding bit in the bit-map.
501     */
502    inline void
503    __bit_free(size_t* __pbmap, size_t __pos) throw()
504    {
505      size_t __mask = 1 << __pos;
506      *__pbmap |= __mask;
507    }
508  } // namespace __detail
509
510  /** @brief  Generic Version of the bsf instruction.
511   */
512  inline size_t
513  _Bit_scan_forward(size_t __num)
514  { return static_cast<size_t>(__builtin_ctzl(__num)); }
515
516  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
517   *
518   *  @brief  The free list class for managing chunks of memory to be
519   *  given to and returned by the bitmap_allocator.
520   */
521  class free_list
522  {
523  public:
524    typedef size_t* 				value_type;
525    typedef __detail::__mini_vector<value_type> vector_type;
526    typedef vector_type::iterator 		iterator;
527    typedef __mutex				__mutex_type;
528
529  private:
530    struct _LT_pointer_compare
531    {
532      bool
533      operator()(const size_t* __pui,
534		 const size_t __cui) const throw()
535      { return *__pui < __cui; }
536    };
537
538#if defined __GTHREADS
539    __mutex_type&
540    _M_get_mutex()
541    {
542      static __mutex_type _S_mutex;
543      return _S_mutex;
544    }
545#endif
546
547    vector_type&
548    _M_get_free_list()
549    {
550      static vector_type _S_free_list;
551      return _S_free_list;
552    }
553
554    /** @brief  Performs validation of memory based on their size.
555     *
556     *  @param  __addr The pointer to the memory block to be
557     *  validated.
558     *
559     *  @detail  Validates the memory block passed to this function and
560     *  appropriately performs the action of managing the free list of
561     *  blocks by adding this block to the free list or deleting this
562     *  or larger blocks from the free list.
563     */
564    void
565    _M_validate(size_t* __addr) throw()
566    {
567      vector_type& __free_list = _M_get_free_list();
568      const vector_type::size_type __max_size = 64;
569      if (__free_list.size() >= __max_size)
570	{
571	  // Ok, the threshold value has been reached.  We determine
572	  // which block to remove from the list of free blocks.
573	  if (*__addr >= *__free_list.back())
574	    {
575	      // Ok, the new block is greater than or equal to the
576	      // last block in the list of free blocks. We just free
577	      // the new block.
578	      ::operator delete(static_cast<void*>(__addr));
579	      return;
580	    }
581	  else
582	    {
583	      // Deallocate the last block in the list of free lists,
584	      // and insert the new one in its correct position.
585	      ::operator delete(static_cast<void*>(__free_list.back()));
586	      __free_list.pop_back();
587	    }
588	}
589
590      // Just add the block to the list of free lists unconditionally.
591      iterator __temp = __detail::__lower_bound
592	(__free_list.begin(), __free_list.end(),
593	 *__addr, _LT_pointer_compare());
594
595      // We may insert the new free list before _temp;
596      __free_list.insert(__temp, __addr);
597    }
598
599    /** @brief  Decides whether the wastage of memory is acceptable for
600     *  the current memory request and returns accordingly.
601     *
602     *  @param __block_size The size of the block available in the free
603     *  list.
604     *
605     *  @param __required_size The required size of the memory block.
606     *
607     *  @return true if the wastage incurred is acceptable, else returns
608     *  false.
609     */
610    bool
611    _M_should_i_give(size_t __block_size,
612		     size_t __required_size) throw()
613    {
614      const size_t __max_wastage_percentage = 36;
615      if (__block_size >= __required_size &&
616	  (((__block_size - __required_size) * 100 / __block_size)
617	   < __max_wastage_percentage))
618	return true;
619      else
620	return false;
621    }
622
623  public:
624    /** @brief This function returns the block of memory to the
625     *  internal free list.
626     *
627     *  @param  __addr The pointer to the memory block that was given
628     *  by a call to the _M_get function.
629     */
630    inline void
631    _M_insert(size_t* __addr) throw()
632    {
633#if defined __GTHREADS
634      __scoped_lock __bfl_lock(_M_get_mutex());
635#endif
636      // Call _M_validate to decide what should be done with
637      // this particular free list.
638      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
639      // See discussion as to why this is 1!
640    }
641
642    /** @brief  This function gets a block of memory of the specified
643     *  size from the free list.
644     *
645     *  @param  __sz The size in bytes of the memory required.
646     *
647     *  @return  A pointer to the new memory block of size at least
648     *  equal to that requested.
649     */
650    size_t*
651    _M_get(size_t __sz) throw(std::bad_alloc);
652
653    /** @brief  This function just clears the internal Free List, and
654     *  gives back all the memory to the OS.
655     */
656    void
657    _M_clear();
658  };
659
660
661  // Forward declare the class.
662  template<typename _Tp>
663    class bitmap_allocator;
664
665  // Specialize for void:
666  template<>
667    class bitmap_allocator<void>
668    {
669    public:
670      typedef void*       pointer;
671      typedef const void* const_pointer;
672
673      // Reference-to-void members are impossible.
674      typedef void  value_type;
675      template<typename _Tp1>
676        struct rebind
677	{
678	  typedef bitmap_allocator<_Tp1> other;
679	};
680    };
681
682  /**
683   * @brief Bitmap Allocator, primary template.
684   * @ingroup allocators
685   */
686  template<typename _Tp>
687    class bitmap_allocator : private free_list
688    {
689    public:
690      typedef size_t    		size_type;
691      typedef ptrdiff_t 		difference_type;
692      typedef _Tp*        		pointer;
693      typedef const _Tp*  		const_pointer;
694      typedef _Tp&        		reference;
695      typedef const _Tp&  		const_reference;
696      typedef _Tp         		value_type;
697      typedef free_list::__mutex_type 	__mutex_type;
698
699      template<typename _Tp1>
700        struct rebind
701	{
702	  typedef bitmap_allocator<_Tp1> other;
703	};
704
705    private:
706      template<size_t _BSize, size_t _AlignSize>
707        struct aligned_size
708	{
709	  enum
710	    {
711	      modulus = _BSize % _AlignSize,
712	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
713	    };
714	};
715
716      struct _Alloc_block
717      {
718	char __M_unused[aligned_size<sizeof(value_type),
719			_BALLOC_ALIGN_BYTES>::value];
720      };
721
722
723      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
724
725      typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
726      typedef typename _BPVector::iterator _BPiter;
727
728      template<typename _Predicate>
729        static _BPiter
730        _S_find(_Predicate __p)
731        {
732	  _BPiter __first = _S_mem_blocks.begin();
733	  while (__first != _S_mem_blocks.end() && !__p(*__first))
734	    ++__first;
735	  return __first;
736	}
737
738#if defined _GLIBCXX_DEBUG
739      // Complexity: O(lg(N)). Where, N is the number of block of size
740      // sizeof(value_type).
741      void
742      _S_check_for_free_blocks() throw()
743      {
744	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
745	_BPiter __bpi = _S_find(_FFF());
746
747	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
748      }
749#endif
750
751      /** @brief  Responsible for exponentially growing the internal
752       *  memory pool.
753       *
754       *  @throw  std::bad_alloc. If memory can not be allocated.
755       *
756       *  @detail  Complexity: O(1), but internally depends upon the
757       *  complexity of the function free_list::_M_get. The part where
758       *  the bitmap headers are written has complexity: O(X),where X
759       *  is the number of blocks of size sizeof(value_type) within
760       *  the newly acquired block. Having a tight bound.
761       */
762      void
763      _S_refill_pool() throw(std::bad_alloc)
764      {
765#if defined _GLIBCXX_DEBUG
766	_S_check_for_free_blocks();
767#endif
768
769	const size_t __num_bitmaps = (_S_block_size
770				      / size_t(__detail::bits_per_block));
771	const size_t __size_to_allocate = sizeof(size_t)
772	  + _S_block_size * sizeof(_Alloc_block)
773	  + __num_bitmaps * sizeof(size_t);
774
775	size_t* __temp =
776	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
777	*__temp = 0;
778	++__temp;
779
780	// The Header information goes at the Beginning of the Block.
781	_Block_pair __bp =
782	  std::make_pair(reinterpret_cast<_Alloc_block*>
783			 (__temp + __num_bitmaps),
784			 reinterpret_cast<_Alloc_block*>
785			 (__temp + __num_bitmaps)
786			 + _S_block_size - 1);
787
788	// Fill the Vector with this information.
789	_S_mem_blocks.push_back(__bp);
790
791	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
792	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
793
794	_S_block_size *= 2;
795      }
796
797      static _BPVector _S_mem_blocks;
798      static size_t _S_block_size;
799      static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
800      static typename _BPVector::size_type _S_last_dealloc_index;
801#if defined __GTHREADS
802      static __mutex_type _S_mut;
803#endif
804
805    public:
806
807      /** @brief  Allocates memory for a single object of size
808       *  sizeof(_Tp).
809       *
810       *  @throw  std::bad_alloc. If memory can not be allocated.
811       *
812       *  @detail  Complexity: Worst case complexity is O(N), but that
813       *  is hardly ever hit. If and when this particular case is
814       *  encountered, the next few cases are guaranteed to have a
815       *  worst case complexity of O(1)!  That's why this function
816       *  performs very well on average. You can consider this
817       *  function to have a complexity referred to commonly as:
818       *  Amortized Constant time.
819       */
820      pointer
821      _M_allocate_single_object() throw(std::bad_alloc)
822      {
823#if defined __GTHREADS
824	__scoped_lock __bit_lock(_S_mut);
825#endif
826
827	// The algorithm is something like this: The last_request
828	// variable points to the last accessed Bit Map. When such a
829	// condition occurs, we try to find a free block in the
830	// current bitmap, or succeeding bitmaps until the last bitmap
831	// is reached. If no free block turns up, we resort to First
832	// Fit method.
833
834	// WARNING: Do not re-order the condition in the while
835	// statement below, because it relies on C++'s short-circuit
836	// evaluation. The return from _S_last_request->_M_get() will
837	// NOT be dereference able if _S_last_request->_M_finished()
838	// returns true. This would inevitably lead to a NULL pointer
839	// dereference if tinkered with.
840	while (_S_last_request._M_finished() == false
841	       && (*(_S_last_request._M_get()) == 0))
842	  _S_last_request.operator++();
843
844	if (__builtin_expect(_S_last_request._M_finished() == true, false))
845	  {
846	    // Fall Back to First Fit algorithm.
847	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
848	    _FFF __fff;
849	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
850
851	    if (__bpi != _S_mem_blocks.end())
852	      {
853		// Search was successful. Ok, now mark the first bit from
854		// the right as 0, meaning Allocated. This bit is obtained
855		// by calling _M_get() on __fff.
856		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
857		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
858
859		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
860
861		// Now, get the address of the bit we marked as allocated.
862		pointer __ret = reinterpret_cast<pointer>
863		  (__bpi->first + __fff._M_offset() + __nz_bit);
864		size_t* __puse_count =
865		  reinterpret_cast<size_t*>
866		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
867
868		++(*__puse_count);
869		return __ret;
870	      }
871	    else
872	      {
873		// Search was unsuccessful. We Add more memory to the
874		// pool by calling _S_refill_pool().
875		_S_refill_pool();
876
877		// _M_Reset the _S_last_request structure to the first
878		// free block's bit map.
879		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
880
881		// Now, mark that bit as allocated.
882	      }
883	  }
884
885	// _S_last_request holds a pointer to a valid bit map, that
886	// points to a free block in memory.
887	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
888	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
889
890	pointer __ret = reinterpret_cast<pointer>
891	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
892
893	size_t* __puse_count = reinterpret_cast<size_t*>
894	  (_S_mem_blocks[_S_last_request._M_where()].first)
895	  - (__detail::
896	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
897
898	++(*__puse_count);
899	return __ret;
900      }
901
902      /** @brief  Deallocates memory that belongs to a single object of
903       *  size sizeof(_Tp).
904       *
905       *  @detail  Complexity: O(lg(N)), but the worst case is not hit
906       *  often!  This is because containers usually deallocate memory
907       *  close to each other and this case is handled in O(1) time by
908       *  the deallocate function.
909       */
910      void
911      _M_deallocate_single_object(pointer __p) throw()
912      {
913#if defined __GTHREADS
914	__scoped_lock __bit_lock(_S_mut);
915#endif
916	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
917
918	typedef typename _BPVector::iterator _Iterator;
919	typedef typename _BPVector::difference_type _Difference_type;
920
921	_Difference_type __diff;
922	long __displacement;
923
924	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
925
926	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
927	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
928	  {
929	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
930				  <= _S_mem_blocks.size() - 1);
931
932	    // Initial Assumption was correct!
933	    __diff = _S_last_dealloc_index;
934	    __displacement = __real_p - _S_mem_blocks[__diff].first;
935	  }
936	else
937	  {
938	    _Iterator _iter = _S_find(__ibt);
939
940	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
941
942	    __diff = _iter - _S_mem_blocks.begin();
943	    __displacement = __real_p - _S_mem_blocks[__diff].first;
944	    _S_last_dealloc_index = __diff;
945	  }
946
947	// Get the position of the iterator that has been found.
948	const size_t __rotate = (__displacement
949				 % size_t(__detail::bits_per_block));
950	size_t* __bitmapC =
951	  reinterpret_cast<size_t*>
952	  (_S_mem_blocks[__diff].first) - 1;
953	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
954
955	__detail::__bit_free(__bitmapC, __rotate);
956	size_t* __puse_count = reinterpret_cast<size_t*>
957	  (_S_mem_blocks[__diff].first)
958	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
959
960	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
961
962	--(*__puse_count);
963
964	if (__builtin_expect(*__puse_count == 0, false))
965	  {
966	    _S_block_size /= 2;
967
968	    // We can safely remove this block.
969	    // _Block_pair __bp = _S_mem_blocks[__diff];
970	    this->_M_insert(__puse_count);
971	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
972
973	    // Reset the _S_last_request variable to reflect the
974	    // erased block. We do this to protect future requests
975	    // after the last block has been removed from a particular
976	    // memory Chunk, which in turn has been returned to the
977	    // free list, and hence had been erased from the vector,
978	    // so the size of the vector gets reduced by 1.
979	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
980	      _S_last_request._M_reset(__diff);
981
982	    // If the Index into the vector of the region of memory
983	    // that might hold the next address that will be passed to
984	    // deallocated may have been invalidated due to the above
985	    // erase procedure being called on the vector, hence we
986	    // try to restore this invariant too.
987	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
988	      {
989		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
990		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
991	      }
992	  }
993      }
994
995    public:
996      bitmap_allocator() throw()
997      { }
998
999      bitmap_allocator(const bitmap_allocator&)
1000      { }
1001
1002      template<typename _Tp1>
1003        bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
1004        { }
1005
1006      ~bitmap_allocator() throw()
1007      { }
1008
1009      pointer
1010      allocate(size_type __n)
1011      {
1012	if (__n > this->max_size())
1013	  std::__throw_bad_alloc();
1014
1015	if (__builtin_expect(__n == 1, true))
1016	  return this->_M_allocate_single_object();
1017	else
1018	  {
1019	    const size_type __b = __n * sizeof(value_type);
1020	    return reinterpret_cast<pointer>(::operator new(__b));
1021	  }
1022      }
1023
1024      pointer
1025      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1026      { return allocate(__n); }
1027
1028      void
1029      deallocate(pointer __p, size_type __n) throw()
1030      {
1031	if (__builtin_expect(__p != 0, true))
1032	  {
1033	    if (__builtin_expect(__n == 1, true))
1034	      this->_M_deallocate_single_object(__p);
1035	    else
1036	      ::operator delete(__p);
1037	  }
1038      }
1039
1040      pointer
1041      address(reference __r) const
1042      { return &__r; }
1043
1044      const_pointer
1045      address(const_reference __r) const
1046      { return &__r; }
1047
1048      size_type
1049      max_size() const throw()
1050      { return size_type(-1) / sizeof(value_type); }
1051
1052      void
1053      construct(pointer __p, const_reference __data)
1054      { ::new((void *)__p) value_type(__data); }
1055
1056#ifdef __GXX_EXPERIMENTAL_CXX0X__
1057      template<typename... _Args>
1058        void
1059        construct(pointer __p, _Args&&... __args)
1060	{ ::new((void *)__p) _Tp(std::forward<_Args>(__args)...); }
1061#endif
1062
1063      void
1064      destroy(pointer __p)
1065      { __p->~value_type(); }
1066    };
1067
1068  template<typename _Tp1, typename _Tp2>
1069    bool
1070    operator==(const bitmap_allocator<_Tp1>&,
1071	       const bitmap_allocator<_Tp2>&) throw()
1072    { return true; }
1073
1074  template<typename _Tp1, typename _Tp2>
1075    bool
1076    operator!=(const bitmap_allocator<_Tp1>&,
1077	       const bitmap_allocator<_Tp2>&) throw()
1078  { return false; }
1079
1080  // Static member definitions.
1081  template<typename _Tp>
1082    typename bitmap_allocator<_Tp>::_BPVector
1083    bitmap_allocator<_Tp>::_S_mem_blocks;
1084
1085  template<typename _Tp>
1086    size_t bitmap_allocator<_Tp>::_S_block_size =
1087    2 * size_t(__detail::bits_per_block);
1088
1089  template<typename _Tp>
1090    typename bitmap_allocator<_Tp>::_BPVector::size_type
1091    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1092
1093  template<typename _Tp>
1094    __detail::_Bitmap_counter
1095      <typename bitmap_allocator<_Tp>::_Alloc_block*>
1096    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1097
1098#if defined __GTHREADS
1099  template<typename _Tp>
1100    typename bitmap_allocator<_Tp>::__mutex_type
1101    bitmap_allocator<_Tp>::_S_mut;
1102#endif
1103
1104_GLIBCXX_END_NAMESPACE
1105
1106#endif
1107
1108