• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-arm-linux-2.6.36-uclibc-4.5.3/arm-brcm-linux-uclibcgnueabi/include/c++/4.5.3/bits/
1// -*- C++ -*- header.
2
3// Copyright (C) 2008, 2009
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 3, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
20
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24// <http://www.gnu.org/licenses/>.
25
26/** @file bits/atomic_2.h
27 *  This is an internal header file, included by other library headers.
28 *  You should not attempt to use it directly.
29 */
30
31#ifndef _GLIBCXX_ATOMIC_2_H
32#define _GLIBCXX_ATOMIC_2_H 1
33
34#pragma GCC system_header
35
36// _GLIBCXX_BEGIN_NAMESPACE(std)
37
38// 2 == __atomic2 == Always lock-free
39// Assumed:
40// _GLIBCXX_ATOMIC_BUILTINS_1
41// _GLIBCXX_ATOMIC_BUILTINS_2
42// _GLIBCXX_ATOMIC_BUILTINS_4
43// _GLIBCXX_ATOMIC_BUILTINS_8
44namespace __atomic2
45{
46  /// atomic_flag
47  struct atomic_flag : public __atomic_flag_base
48  {
49    atomic_flag() = default;
50    ~atomic_flag() = default;
51    atomic_flag(const atomic_flag&) = delete;
52    atomic_flag& operator=(const atomic_flag&) volatile = delete;
53
54    // Conversion to ATOMIC_FLAG_INIT.
55    atomic_flag(bool __i): __atomic_flag_base({ __i }) { }
56
57    bool
58    test_and_set(memory_order __m = memory_order_seq_cst)
59    {
60      // Redundant synchronize if built-in for lock is a full barrier.
61      if (__m != memory_order_acquire && __m != memory_order_acq_rel)
62	__sync_synchronize();
63      return __sync_lock_test_and_set(&_M_i, 1);
64    }
65
66    void
67    clear(memory_order __m = memory_order_seq_cst)
68    {
69      __glibcxx_assert(__m != memory_order_consume);
70      __glibcxx_assert(__m != memory_order_acquire);
71      __glibcxx_assert(__m != memory_order_acq_rel);
72
73      __sync_lock_release(&_M_i);
74      if (__m != memory_order_acquire && __m != memory_order_acq_rel)
75	__sync_synchronize();
76    }
77  };
78
79
80  /// 29.4.2, address types
81  struct atomic_address
82  {
83  private:
84    void* _M_i;
85
86  public:
87    atomic_address() = default;
88    ~atomic_address() = default;
89    atomic_address(const atomic_address&) = delete;
90    atomic_address& operator=(const atomic_address&) volatile = delete;
91
92    atomic_address(void* __v) { _M_i = __v; }
93
94    bool
95    is_lock_free() const
96    { return true; }
97
98    void
99    store(void* __v, memory_order __m = memory_order_seq_cst)
100    {
101      __glibcxx_assert(__m != memory_order_acquire);
102      __glibcxx_assert(__m != memory_order_acq_rel);
103      __glibcxx_assert(__m != memory_order_consume);
104
105      if (__m == memory_order_relaxed)
106	_M_i = __v;
107      else
108	{
109	  // write_mem_barrier();
110	  _M_i = __v;
111	  if (__m == memory_order_seq_cst)
112	    __sync_synchronize();
113	}
114    }
115
116    void*
117    load(memory_order __m = memory_order_seq_cst) const
118    {
119      __glibcxx_assert(__m != memory_order_release);
120      __glibcxx_assert(__m != memory_order_acq_rel);
121
122      __sync_synchronize();
123      void* __ret = _M_i;
124      __sync_synchronize();
125      return __ret;
126    }
127
128    void*
129    exchange(void* __v, memory_order __m = memory_order_seq_cst)
130    {
131      // XXX built-in assumes memory_order_acquire.
132      return __sync_lock_test_and_set(&_M_i, __v);
133    }
134
135    bool
136    compare_exchange_weak(void*& __v1, void* __v2, memory_order __m1,
137			  memory_order __m2)
138    { return compare_exchange_strong(__v1, __v2, __m1, __m2); }
139
140    bool
141    compare_exchange_weak(void*& __v1, void* __v2,
142			  memory_order __m = memory_order_seq_cst)
143    {
144      return compare_exchange_weak(__v1, __v2, __m,
145				   __calculate_memory_order(__m));
146    }
147
148    bool
149    compare_exchange_strong(void*& __v1, void* __v2, memory_order __m1,
150			    memory_order __m2)
151    {
152      __glibcxx_assert(__m2 != memory_order_release);
153      __glibcxx_assert(__m2 != memory_order_acq_rel);
154      __glibcxx_assert(__m2 <= __m1);
155
156      void* __v1o = __v1;
157      void* __v1n = __sync_val_compare_and_swap(&_M_i, __v1o, __v2);
158
159      // Assume extra stores (of same value) allowed in true case.
160      __v1 = __v1n;
161      return __v1o == __v1n;
162    }
163
164    bool
165    compare_exchange_strong(void*& __v1, void* __v2,
166			  memory_order __m = memory_order_seq_cst)
167    {
168      return compare_exchange_strong(__v1, __v2, __m,
169				     __calculate_memory_order(__m));
170    }
171
172    void*
173    fetch_add(ptrdiff_t __d, memory_order __m = memory_order_seq_cst)
174    { return __sync_fetch_and_add(&_M_i, __d); }
175
176    void*
177    fetch_sub(ptrdiff_t __d, memory_order __m = memory_order_seq_cst)
178    { return __sync_fetch_and_sub(&_M_i, __d); }
179
180    operator void*() const
181    { return load(); }
182
183    void*
184    operator=(void* __v)
185    {
186      store(__v);
187      return __v;
188    }
189
190    void*
191    operator+=(ptrdiff_t __d)
192    { return __sync_add_and_fetch(&_M_i, __d); }
193
194    void*
195    operator-=(ptrdiff_t __d)
196    { return __sync_sub_and_fetch(&_M_i, __d); }
197  };
198
199  // 29.3.1 atomic integral types
200  // For each of the integral types, define atomic_[integral type] struct
201  //
202  // atomic_bool     bool
203  // atomic_char     char
204  // atomic_schar    signed char
205  // atomic_uchar    unsigned char
206  // atomic_short    short
207  // atomic_ushort   unsigned short
208  // atomic_int      int
209  // atomic_uint     unsigned int
210  // atomic_long     long
211  // atomic_ulong    unsigned long
212  // atomic_llong    long long
213  // atomic_ullong   unsigned long long
214  // atomic_char16_t char16_t
215  // atomic_char32_t char32_t
216  // atomic_wchar_t  wchar_t
217
218  // Base type.
219  // NB: Assuming _ITp is an integral scalar type that is 1, 2, 4, or 8 bytes,
220  // since that is what GCC built-in functions for atomic memory access work on.
221  template<typename _ITp>
222    struct __atomic_base
223    {
224    private:
225      typedef _ITp 	__integral_type;
226
227      __integral_type 	_M_i;
228
229    public:
230      __atomic_base() = default;
231      ~__atomic_base() = default;
232      __atomic_base(const __atomic_base&) = delete;
233      __atomic_base& operator=(const __atomic_base&) volatile = delete;
234
235      // Requires __integral_type convertible to _M_base._M_i.
236      __atomic_base(__integral_type __i) { _M_i = __i; }
237
238      operator __integral_type() const
239      { return load(); }
240
241      __integral_type
242      operator=(__integral_type __i)
243      {
244	store(__i);
245	return __i;
246      }
247
248      __integral_type
249      operator++(int)
250      { return fetch_add(1); }
251
252      __integral_type
253      operator--(int)
254      { return fetch_sub(1); }
255
256      __integral_type
257      operator++()
258      { return __sync_add_and_fetch(&_M_i, 1); }
259
260      __integral_type
261      operator--()
262      { return __sync_sub_and_fetch(&_M_i, 1); }
263
264      __integral_type
265      operator+=(__integral_type __i)
266      { return __sync_add_and_fetch(&_M_i, __i); }
267
268      __integral_type
269      operator-=(__integral_type __i)
270      { return __sync_sub_and_fetch(&_M_i, __i); }
271
272      __integral_type
273      operator&=(__integral_type __i)
274      { return __sync_and_and_fetch(&_M_i, __i); }
275
276      __integral_type
277      operator|=(__integral_type __i)
278      { return __sync_or_and_fetch(&_M_i, __i); }
279
280      __integral_type
281      operator^=(__integral_type __i)
282      { return __sync_xor_and_fetch(&_M_i, __i); }
283
284      bool
285      is_lock_free() const
286      { return true; }
287
288      void
289      store(__integral_type __i, memory_order __m = memory_order_seq_cst)
290      {
291	__glibcxx_assert(__m != memory_order_acquire);
292	__glibcxx_assert(__m != memory_order_acq_rel);
293	__glibcxx_assert(__m != memory_order_consume);
294
295	if (__m == memory_order_relaxed)
296	  _M_i = __i;
297	else
298	  {
299	    // write_mem_barrier();
300	    _M_i = __i;
301	    if (__m == memory_order_seq_cst)
302	      __sync_synchronize();
303	  }
304      }
305
306      __integral_type
307      load(memory_order __m = memory_order_seq_cst) const
308      {
309	__glibcxx_assert(__m != memory_order_release);
310	__glibcxx_assert(__m != memory_order_acq_rel);
311
312	__sync_synchronize();
313	__integral_type __ret = _M_i;
314	__sync_synchronize();
315	return __ret;
316      }
317
318      __integral_type
319      exchange(__integral_type __i, memory_order __m = memory_order_seq_cst)
320      {
321	// XXX built-in assumes memory_order_acquire.
322	return __sync_lock_test_and_set(&_M_i, __i);
323      }
324
325      bool
326      compare_exchange_weak(__integral_type& __i1, __integral_type __i2,
327			    memory_order __m1, memory_order __m2)
328      { return compare_exchange_strong(__i1, __i2, __m1, __m2); }
329
330      bool
331      compare_exchange_weak(__integral_type& __i1, __integral_type __i2,
332			    memory_order __m = memory_order_seq_cst)
333      {
334	return compare_exchange_weak(__i1, __i2, __m,
335				     __calculate_memory_order(__m));
336      }
337
338      bool
339      compare_exchange_strong(__integral_type& __i1, __integral_type __i2,
340			      memory_order __m1, memory_order __m2)
341      {
342	__glibcxx_assert(__m2 != memory_order_release);
343	__glibcxx_assert(__m2 != memory_order_acq_rel);
344	__glibcxx_assert(__m2 <= __m1);
345
346	__integral_type __i1o = __i1;
347	__integral_type __i1n = __sync_val_compare_and_swap(&_M_i, __i1o, __i2);
348
349	// Assume extra stores (of same value) allowed in true case.
350	__i1 = __i1n;
351	return __i1o == __i1n;
352      }
353
354      bool
355      compare_exchange_strong(__integral_type& __i1, __integral_type __i2,
356			      memory_order __m = memory_order_seq_cst)
357      {
358	return compare_exchange_strong(__i1, __i2, __m,
359				       __calculate_memory_order(__m));
360      }
361
362      __integral_type
363      fetch_add(__integral_type __i,
364		memory_order __m = memory_order_seq_cst)
365      { return __sync_fetch_and_add(&_M_i, __i); }
366
367      __integral_type
368      fetch_sub(__integral_type __i,
369		memory_order __m = memory_order_seq_cst)
370      { return __sync_fetch_and_sub(&_M_i, __i); }
371
372      __integral_type
373      fetch_and(__integral_type __i,
374		memory_order __m = memory_order_seq_cst)
375      { return __sync_fetch_and_and(&_M_i, __i); }
376
377      __integral_type
378      fetch_or(__integral_type __i,
379	       memory_order __m = memory_order_seq_cst)
380      { return __sync_fetch_and_or(&_M_i, __i); }
381
382      __integral_type
383      fetch_xor(__integral_type __i,
384		memory_order __m = memory_order_seq_cst)
385      { return __sync_fetch_and_xor(&_M_i, __i); }
386    };
387
388
389  /// atomic_bool
390  // NB: No operators or fetch-operations for this type.
391  struct atomic_bool
392  {
393  private:
394    __atomic_base<bool>	_M_base;
395
396  public:
397    atomic_bool() = default;
398    ~atomic_bool() = default;
399    atomic_bool(const atomic_bool&) = delete;
400    atomic_bool& operator=(const atomic_bool&) volatile = delete;
401
402    atomic_bool(bool __i) : _M_base(__i) { }
403
404    bool
405    operator=(bool __i)
406    { return _M_base.operator=(__i); }
407
408    operator bool() const
409    { return _M_base.load(); }
410
411    bool
412    is_lock_free() const
413    { return _M_base.is_lock_free(); }
414
415    void
416    store(bool __i, memory_order __m = memory_order_seq_cst)
417    { _M_base.store(__i, __m); }
418
419    bool
420    load(memory_order __m = memory_order_seq_cst) const
421    { return _M_base.load(__m); }
422
423    bool
424    exchange(bool __i, memory_order __m = memory_order_seq_cst)
425    { return _M_base.exchange(__i, __m); }
426
427    bool
428    compare_exchange_weak(bool& __i1, bool __i2, memory_order __m1,
429			  memory_order __m2)
430    { return _M_base.compare_exchange_weak(__i1, __i2, __m1, __m2); }
431
432    bool
433    compare_exchange_weak(bool& __i1, bool __i2,
434			  memory_order __m = memory_order_seq_cst)
435    { return _M_base.compare_exchange_weak(__i1, __i2, __m); }
436
437    bool
438    compare_exchange_strong(bool& __i1, bool __i2, memory_order __m1,
439			    memory_order __m2)
440    { return _M_base.compare_exchange_strong(__i1, __i2, __m1, __m2); }
441
442
443    bool
444    compare_exchange_strong(bool& __i1, bool __i2,
445			    memory_order __m = memory_order_seq_cst)
446    { return _M_base.compare_exchange_strong(__i1, __i2, __m); }
447  };
448} // namespace __atomic2
449
450// _GLIBCXX_END_NAMESPACE
451
452#endif
453