1/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
3   Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4   Free Software Foundation, Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 3 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21#include "defs.h"
22#include "frame.h"
23#include "frame-base.h"
24#include "trad-frame.h"
25#include "frame-unwind.h"
26#include "dwarf2-frame.h"
27#include "gdbtypes.h"
28#include "inferior.h"
29#include "gdb_string.h"
30#include "gdb_assert.h"
31#include "gdbcore.h"
32#include "arch-utils.h"
33#include "regcache.h"
34#include "dis-asm.h"
35#include "osabi.h"
36
37enum
38  {
39    E_R0_REGNUM,
40    E_R1_REGNUM,
41    E_R2_REGNUM,
42    E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
43    E_R4_REGNUM,
44    E_R5_REGNUM,
45    E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
46    E_R7_REGNUM,
47    E_R8_REGNUM,
48    E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
49    E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
50    E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
51    E_R12_REGNUM,
52    E_R13_REGNUM,
53    E_R14_REGNUM,
54    E_R15_REGNUM,
55    E_R16_REGNUM,
56    E_R17_REGNUM,
57    E_R18_REGNUM,
58    E_R19_REGNUM,
59    E_R20_REGNUM,
60    E_R21_REGNUM,
61    E_R22_REGNUM,
62    E_R23_REGNUM,
63    E_R24_REGNUM,
64    E_R25_REGNUM,
65    E_R26_REGNUM,
66    E_R27_REGNUM,
67    E_R28_REGNUM,
68    E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
69    E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
70    E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
71    E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
72    E_R33_REGNUM,
73    E_R34_REGNUM,
74    E_R35_REGNUM,
75    E_R36_REGNUM,
76    E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
77    E_R38_REGNUM,
78    E_R39_REGNUM,
79    E_R40_REGNUM,
80    E_R41_REGNUM,
81    E_R42_REGNUM,
82    E_R43_REGNUM,
83    E_R44_REGNUM,
84    E_R45_REGNUM,
85    E_R46_REGNUM,
86    E_R47_REGNUM,
87    E_R48_REGNUM,
88    E_R49_REGNUM,
89    E_R50_REGNUM,
90    E_R51_REGNUM,
91    E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
92    E_R53_REGNUM,
93    E_R54_REGNUM,
94    E_R55_REGNUM,
95    E_R56_REGNUM,
96    E_R57_REGNUM,
97    E_R58_REGNUM,
98    E_R59_REGNUM,
99    E_R60_REGNUM,
100    E_R61_REGNUM,
101    E_R62_REGNUM,
102    E_R63_REGNUM,
103    E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
104    E_R65_REGNUM,
105    E_NUM_REGS
106  };
107
108enum
109{
110  v850_reg_size = 4
111};
112
113/* Size of return datatype which fits into all return registers.  */
114enum
115{
116  E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
117};
118
119struct v850_frame_cache
120{
121  /* Base address.  */
122  CORE_ADDR base;
123  LONGEST sp_offset;
124  CORE_ADDR pc;
125
126  /* Flag showing that a frame has been created in the prologue code.  */
127  int uses_fp;
128
129  /* Saved registers.  */
130  struct trad_frame_saved_reg *saved_regs;
131};
132
133/* Info gleaned from scanning a function's prologue.  */
134struct pifsr		/* Info about one saved register.  */
135{
136  int offset;		/* Offset from sp or fp.  */
137  int cur_frameoffset;	/* Current frameoffset.  */
138  int reg;		/* Saved register number.  */
139};
140
141static const char *
142v850_register_name (int regnum)
143{
144  static const char *v850_reg_names[] =
145  { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
146    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
147    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
148    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
149    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
150    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
151    "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
152    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
153    "pc", "fp"
154  };
155  if (regnum < 0 || regnum >= E_NUM_REGS)
156    return NULL;
157  return v850_reg_names[regnum];
158}
159
160static const char *
161v850e_register_name (int regnum)
162{
163  static const char *v850e_reg_names[] =
164  {
165    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
166    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
167    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
168    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
169    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
170    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
171    "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
172    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
173    "pc", "fp"
174  };
175  if (regnum < 0 || regnum >= E_NUM_REGS)
176    return NULL;
177  return v850e_reg_names[regnum];
178}
179
180/* Returns the default type for register N.  */
181
182static struct type *
183v850_register_type (struct gdbarch *gdbarch, int regnum)
184{
185  if (regnum == E_PC_REGNUM)
186    return builtin_type_void_func_ptr;
187  return builtin_type_int32;
188}
189
190static int
191v850_type_is_scalar (struct type *t)
192{
193  return (TYPE_CODE (t) != TYPE_CODE_STRUCT
194	  && TYPE_CODE (t) != TYPE_CODE_UNION
195	  && TYPE_CODE (t) != TYPE_CODE_ARRAY);
196}
197
198/* Should call_function allocate stack space for a struct return?  */
199static int
200v850_use_struct_convention (struct type *type)
201{
202  int i;
203  struct type *fld_type, *tgt_type;
204
205  /* 1. The value is greater than 8 bytes -> returned by copying.  */
206  if (TYPE_LENGTH (type) > 8)
207    return 1;
208
209  /* 2. The value is a single basic type -> returned in register.  */
210  if (v850_type_is_scalar (type))
211    return 0;
212
213  /* The value is a structure or union with a single element and that
214     element is either a single basic type or an array of a single basic
215     type whose size is greater than or equal to 4 -> returned in register.  */
216  if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
217       || TYPE_CODE (type) == TYPE_CODE_UNION)
218       && TYPE_NFIELDS (type) == 1)
219    {
220      fld_type = TYPE_FIELD_TYPE (type, 0);
221      if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
222	return 0;
223
224      if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
225        {
226	  tgt_type = TYPE_TARGET_TYPE (fld_type);
227	  if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
228	    return 0;
229	}
230    }
231
232  /* The value is a structure whose first element is an integer or a float,
233     and which contains no arrays of more than two elements -> returned in
234     register.  */
235  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
236      && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
237      && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
238    {
239      for (i = 1; i < TYPE_NFIELDS (type); ++i)
240        {
241	  fld_type = TYPE_FIELD_TYPE (type, 0);
242	  if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
243	    {
244	      tgt_type = TYPE_TARGET_TYPE (fld_type);
245	      if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
246		  && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
247		return 1;
248	    }
249	}
250      return 0;
251    }
252
253  /* The value is a union which contains at least one field which would be
254     returned in registers according to these rules -> returned in register.  */
255  if (TYPE_CODE (type) == TYPE_CODE_UNION)
256    {
257      for (i = 0; i < TYPE_NFIELDS (type); ++i)
258        {
259	  fld_type = TYPE_FIELD_TYPE (type, 0);
260	  if (!v850_use_struct_convention (fld_type))
261	    return 0;
262	}
263    }
264
265  return 1;
266}
267
268/* Structure for mapping bits in register lists to register numbers.  */
269struct reg_list
270{
271  long mask;
272  int regno;
273};
274
275/* Helper function for v850_scan_prologue to handle prepare instruction.  */
276
277static void
278v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
279		     struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
280{
281  CORE_ADDR current_pc = *current_pc_ptr;
282  struct pifsr *pifsr = *pifsr_ptr;
283  long next = insn2 & 0xffff;
284  long list12 = ((insn & 1) << 16) + (next & 0xffe0);
285  long offset = (insn & 0x3e) << 1;
286  static struct reg_list reg_table[] =
287  {
288    {0x00800, 20},		/* r20 */
289    {0x00400, 21},		/* r21 */
290    {0x00200, 22},		/* r22 */
291    {0x00100, 23},		/* r23 */
292    {0x08000, 24},		/* r24 */
293    {0x04000, 25},		/* r25 */
294    {0x02000, 26},		/* r26 */
295    {0x01000, 27},		/* r27 */
296    {0x00080, 28},		/* r28 */
297    {0x00040, 29},		/* r29 */
298    {0x10000, 30},		/* ep */
299    {0x00020, 31},		/* lp */
300    {0, 0}			/* end of table */
301  };
302  int i;
303
304  if ((next & 0x1f) == 0x0b)		/* skip imm16 argument */
305    current_pc += 2;
306  else if ((next & 0x1f) == 0x13)	/* skip imm16 argument */
307    current_pc += 2;
308  else if ((next & 0x1f) == 0x1b)	/* skip imm32 argument */
309    current_pc += 4;
310
311  /* Calculate the total size of the saved registers, and add it to the
312     immediate value used to adjust SP.  */
313  for (i = 0; reg_table[i].mask != 0; i++)
314    if (list12 & reg_table[i].mask)
315      offset += v850_reg_size;
316  pi->sp_offset -= offset;
317
318  /* Calculate the offsets of the registers relative to the value the SP
319     will have after the registers have been pushed and the imm5 value has
320     been subtracted from it.  */
321  if (pifsr)
322    {
323      for (i = 0; reg_table[i].mask != 0; i++)
324	{
325	  if (list12 & reg_table[i].mask)
326	    {
327	      int reg = reg_table[i].regno;
328	      offset -= v850_reg_size;
329	      pifsr->reg = reg;
330	      pifsr->offset = offset;
331	      pifsr->cur_frameoffset = pi->sp_offset;
332	      pifsr++;
333	    }
334	}
335    }
336
337  /* Set result parameters.  */
338  *current_pc_ptr = current_pc;
339  *pifsr_ptr = pifsr;
340}
341
342
343/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
344   The SR bit of the register list is not supported.  gcc does not generate
345   this bit.  */
346
347static void
348v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
349		   struct pifsr **pifsr_ptr)
350{
351  struct pifsr *pifsr = *pifsr_ptr;
352  long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
353  long offset = 0;
354  static struct reg_list pushml_reg_table[] =
355  {
356    {0x80000, E_PS_REGNUM},	/* PSW */
357    {0x40000, 1},		/* r1 */
358    {0x20000, 2},		/* r2 */
359    {0x10000, 3},		/* r3 */
360    {0x00800, 4},		/* r4 */
361    {0x00400, 5},		/* r5 */
362    {0x00200, 6},		/* r6 */
363    {0x00100, 7},		/* r7 */
364    {0x08000, 8},		/* r8 */
365    {0x04000, 9},		/* r9 */
366    {0x02000, 10},		/* r10 */
367    {0x01000, 11},		/* r11 */
368    {0x00080, 12},		/* r12 */
369    {0x00040, 13},		/* r13 */
370    {0x00020, 14},		/* r14 */
371    {0x00010, 15},		/* r15 */
372    {0, 0}			/* end of table */
373  };
374  static struct reg_list pushmh_reg_table[] =
375  {
376    {0x80000, 16},		/* r16 */
377    {0x40000, 17},		/* r17 */
378    {0x20000, 18},		/* r18 */
379    {0x10000, 19},		/* r19 */
380    {0x00800, 20},		/* r20 */
381    {0x00400, 21},		/* r21 */
382    {0x00200, 22},		/* r22 */
383    {0x00100, 23},		/* r23 */
384    {0x08000, 24},		/* r24 */
385    {0x04000, 25},		/* r25 */
386    {0x02000, 26},		/* r26 */
387    {0x01000, 27},		/* r27 */
388    {0x00080, 28},		/* r28 */
389    {0x00040, 29},		/* r29 */
390    {0x00010, 30},		/* r30 */
391    {0x00020, 31},		/* r31 */
392    {0, 0}			/* end of table */
393  };
394  struct reg_list *reg_table;
395  int i;
396
397  /* Is this a pushml or a pushmh?  */
398  if ((insn2 & 7) == 1)
399    reg_table = pushml_reg_table;
400  else
401    reg_table = pushmh_reg_table;
402
403  /* Calculate the total size of the saved registers, and add it it to the
404     immediate value used to adjust SP.  */
405  for (i = 0; reg_table[i].mask != 0; i++)
406    if (list12 & reg_table[i].mask)
407      offset += v850_reg_size;
408  pi->sp_offset -= offset;
409
410  /* Calculate the offsets of the registers relative to the value the SP
411     will have after the registers have been pushed and the imm5 value is
412     subtracted from it.  */
413  if (pifsr)
414    {
415      for (i = 0; reg_table[i].mask != 0; i++)
416	{
417	  if (list12 & reg_table[i].mask)
418	    {
419	      int reg = reg_table[i].regno;
420	      offset -= v850_reg_size;
421	      pifsr->reg = reg;
422	      pifsr->offset = offset;
423	      pifsr->cur_frameoffset = pi->sp_offset;
424	      pifsr++;
425	    }
426	}
427    }
428
429  /* Set result parameters.  */
430  *pifsr_ptr = pifsr;
431}
432
433/* Helper function to evaluate if register is one of the "save" registers.
434   This allows to simplify conditionals in v850_analyze_prologue a lot.  */
435
436static int
437v850_is_save_register (int reg)
438{
439 /* The caller-save registers are R2, R20 - R29 and R31.  All other
440    registers are either special purpose (PC, SP), argument registers,
441    or just considered free for use in the caller. */
442 return reg == E_R2_REGNUM
443	|| (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
444	|| reg == E_R31_REGNUM;
445}
446
447/* Scan the prologue of the function that contains PC, and record what
448   we find in PI.  Returns the pc after the prologue.  Note that the
449   addresses saved in frame->saved_regs are just frame relative (negative
450   offsets from the frame pointer).  This is because we don't know the
451   actual value of the frame pointer yet.  In some circumstances, the
452   frame pointer can't be determined till after we have scanned the
453   prologue.  */
454
455static CORE_ADDR
456v850_analyze_prologue (CORE_ADDR func_addr, CORE_ADDR pc,
457		       struct v850_frame_cache *pi, ULONGEST ctbp)
458{
459  CORE_ADDR prologue_end, current_pc;
460  struct pifsr pifsrs[E_NUM_REGS + 1];
461  struct pifsr *pifsr, *pifsr_tmp;
462  int fp_used;
463  int ep_used;
464  int reg;
465  CORE_ADDR save_pc, save_end;
466  int regsave_func_p;
467  int r12_tmp;
468
469  memset (&pifsrs, 0, sizeof pifsrs);
470  pifsr = &pifsrs[0];
471
472  prologue_end = pc;
473
474  /* Now, search the prologue looking for instructions that setup fp, save
475     rp, adjust sp and such.  We also record the frame offset of any saved
476     registers.  */
477
478  pi->sp_offset = 0;
479  pi->uses_fp = 0;
480  ep_used = 0;
481  regsave_func_p = 0;
482  save_pc = 0;
483  save_end = 0;
484  r12_tmp = 0;
485
486  for (current_pc = func_addr; current_pc < prologue_end;)
487    {
488      int insn;
489      int insn2 = -1; /* dummy value */
490
491      insn = read_memory_integer (current_pc, 2);
492      current_pc += 2;
493      if ((insn & 0x0780) >= 0x0600)	/* Four byte instruction? */
494	{
495	  insn2 = read_memory_integer (current_pc, 2);
496	  current_pc += 2;
497	}
498
499      if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
500	{			/* jarl <func>,10 */
501	  long low_disp = insn2 & ~(long) 1;
502	  long disp = (((((insn & 0x3f) << 16) + low_disp)
503			& ~(long) 1) ^ 0x00200000) - 0x00200000;
504
505	  save_pc = current_pc;
506	  save_end = prologue_end;
507	  regsave_func_p = 1;
508	  current_pc += disp - 4;
509	  prologue_end = (current_pc
510			  + (2 * 3)	/* moves to/from ep */
511			  + 4		/* addi <const>,sp,sp */
512			  + 2		/* jmp [r10] */
513			  + (2 * 12)	/* sst.w to save r2, r20-r29, r31 */
514			  + 20);	/* slop area */
515	}
516      else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
517	{			/* callt <imm6> */
518	  long adr = ctbp + ((insn & 0x3f) << 1);
519
520	  save_pc = current_pc;
521	  save_end = prologue_end;
522	  regsave_func_p = 1;
523	  current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff);
524	  prologue_end = (current_pc
525			  + (2 * 3)	/* prepare list2,imm5,sp/imm */
526			  + 4		/* ctret */
527			  + 20);	/* slop area */
528	  continue;
529	}
530      else if ((insn & 0xffc0) == 0x0780)	/* prepare list2,imm5 */
531	{
532	  v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
533	  continue;
534	}
535      else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
536	{			/* ctret after processing register save.  */
537	  current_pc = save_pc;
538	  prologue_end = save_end;
539	  regsave_func_p = 0;
540	  continue;
541	}
542      else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
543	{			/* pushml, pushmh */
544	  v850_handle_pushm (insn, insn2, pi, &pifsr);
545	  continue;
546	}
547      else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
548	{			/* jmp after processing register save.  */
549	  current_pc = save_pc;
550	  prologue_end = save_end;
551	  regsave_func_p = 0;
552	  continue;
553	}
554      else if ((insn & 0x07c0) == 0x0780	/* jarl or jr */
555	       || (insn & 0xffe0) == 0x0060	/* jmp */
556	       || (insn & 0x0780) == 0x0580)	/* branch */
557	{
558	  break;		/* Ran into end of prologue */
559	}
560
561      else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
562        /* add <imm>,sp */
563	pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
564      else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
565        /* addi <imm>,sp,sp */
566	pi->sp_offset += insn2;
567      else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
568        /* mov sp,fp */
569	pi->uses_fp = 1;
570      else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
571        /* movhi hi(const),r0,r12 */
572	r12_tmp = insn2 << 16;
573      else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
574        /* movea lo(const),r12,r12 */
575	r12_tmp += insn2;
576      else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
577        /* add r12,sp */
578	pi->sp_offset += r12_tmp;
579      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
580        /* mov sp,ep */
581	ep_used = 1;
582      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
583        /* mov r1,ep */
584	ep_used = 0;
585      else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
586		|| (pi->uses_fp
587		    && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
588	       && pifsr
589	       && v850_is_save_register (reg = (insn >> 11) & 0x1f))
590	{
591	  /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
592	  pifsr->reg = reg;
593	  pifsr->offset = insn2 & ~1;
594	  pifsr->cur_frameoffset = pi->sp_offset;
595	  pifsr++;
596	}
597      else if (ep_used
598	       && ((insn & 0x0781) == 0x0501)
599	       && pifsr
600	       && v850_is_save_register (reg = (insn >> 11) & 0x1f))
601	{
602	  /* sst.w <reg>,<offset>[ep] */
603	  pifsr->reg = reg;
604	  pifsr->offset = (insn & 0x007e) << 1;
605	  pifsr->cur_frameoffset = pi->sp_offset;
606	  pifsr++;
607	}
608    }
609
610  /* Fix up any offsets to the final offset.  If a frame pointer was created,
611     use it instead of the stack pointer.  */
612  for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
613    {
614      pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
615      pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
616    }
617
618  return current_pc;
619}
620
621/* Return the address of the first code past the prologue of the function.  */
622
623static CORE_ADDR
624v850_skip_prologue (CORE_ADDR pc)
625{
626  CORE_ADDR func_addr, func_end;
627
628  /* See what the symbol table says */
629
630  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
631    {
632      struct symtab_and_line sal;
633
634      sal = find_pc_line (func_addr, 0);
635      if (sal.line != 0 && sal.end < func_end)
636	return sal.end;
637
638      /* Either there's no line info, or the line after the prologue is after
639	 the end of the function.  In this case, there probably isn't a
640	 prologue.  */
641      return pc;
642    }
643
644  /* We can't find the start of this function, so there's nothing we can do.  */
645  return pc;
646}
647
648static CORE_ADDR
649v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
650{
651  return sp & ~3;
652}
653
654/* Setup arguments and LP for a call to the target.  First four args
655   go in R6->R9, subsequent args go into sp + 16 -> sp + ...  Structs
656   are passed by reference.  64 bit quantities (doubles and long longs)
657   may be split between the regs and the stack.  When calling a function
658   that returns a struct, a pointer to the struct is passed in as a secret
659   first argument (always in R6).
660
661   Stack space for the args has NOT been allocated: that job is up to us.  */
662
663static CORE_ADDR
664v850_push_dummy_call (struct gdbarch *gdbarch,
665		      struct value *function,
666		      struct regcache *regcache,
667		      CORE_ADDR bp_addr,
668		      int nargs,
669		      struct value **args,
670		      CORE_ADDR sp,
671		      int struct_return,
672		      CORE_ADDR struct_addr)
673{
674  int argreg;
675  int argnum;
676  int len = 0;
677  int stack_offset;
678
679  /* The offset onto the stack at which we will start copying parameters
680     (after the registers are used up) begins at 16 rather than at zero.
681     That's how the ABI is defined, though there's no indication that these
682     16 bytes are used for anything, not even for saving incoming
683     argument registers.  */
684  stack_offset = 16;
685
686  /* Now make space on the stack for the args.  */
687  for (argnum = 0; argnum < nargs; argnum++)
688    len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
689  sp -= len + stack_offset;
690
691  argreg = E_ARG0_REGNUM;
692  /* The struct_return pointer occupies the first parameter register.  */
693  if (struct_return)
694    regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
695
696  /* Now load as many as possible of the first arguments into
697     registers, and push the rest onto the stack.  There are 16 bytes
698     in four registers available.  Loop thru args from first to last.  */
699  for (argnum = 0; argnum < nargs; argnum++)
700    {
701      int len;
702      gdb_byte *val;
703      gdb_byte valbuf[v850_reg_size];
704
705      if (!v850_type_is_scalar (value_type (*args))
706	  && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
707	{
708	  store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (*args));
709	  len = 4;
710	  val = valbuf;
711	}
712      else
713	{
714	  len = TYPE_LENGTH (value_type (*args));
715	  val = (gdb_byte *) value_contents (*args);
716	}
717
718      while (len > 0)
719	if (argreg <= E_ARGLAST_REGNUM)
720	  {
721	    CORE_ADDR regval;
722
723	    regval = extract_unsigned_integer (val, v850_reg_size);
724	    regcache_cooked_write_unsigned (regcache, argreg, regval);
725
726	    len -= v850_reg_size;
727	    val += v850_reg_size;
728	    argreg++;
729	  }
730	else
731	  {
732	    write_memory (sp + stack_offset, val, 4);
733
734	    len -= 4;
735	    val += 4;
736	    stack_offset += 4;
737	  }
738      args++;
739    }
740
741  /* Store return address.  */
742  regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
743
744  /* Update stack pointer.  */
745  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
746
747  return sp;
748}
749
750static void
751v850_extract_return_value (struct type *type, struct regcache *regcache,
752			   gdb_byte *valbuf)
753{
754  int len = TYPE_LENGTH (type);
755
756  if (len <= v850_reg_size)
757    {
758      ULONGEST val;
759
760      regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
761      store_unsigned_integer (valbuf, len, val);
762    }
763  else if (len <= 2 * v850_reg_size)
764    {
765      int i, regnum = E_V0_REGNUM;
766      gdb_byte buf[v850_reg_size];
767      for (i = 0; len > 0; i += 4, len -= 4)
768	{
769	  regcache_raw_read (regcache, regnum++, buf);
770	  memcpy (valbuf + i, buf, len > 4 ? 4 : len);
771	}
772    }
773}
774
775static void
776v850_store_return_value (struct type *type, struct regcache *regcache,
777			 const gdb_byte *valbuf)
778{
779  int len = TYPE_LENGTH (type);
780
781  if (len <= v850_reg_size)
782      regcache_cooked_write_unsigned (regcache, E_V0_REGNUM,
783				      extract_unsigned_integer (valbuf, len));
784  else if (len <= 2 * v850_reg_size)
785    {
786      int i, regnum = E_V0_REGNUM;
787      for (i = 0; i < len; i += 4)
788	regcache_raw_write (regcache, regnum++, valbuf + i);
789    }
790}
791
792static enum return_value_convention
793v850_return_value (struct gdbarch *gdbarch, struct type *type,
794		   struct regcache *regcache,
795		   gdb_byte *readbuf, const gdb_byte *writebuf)
796{
797  if (v850_use_struct_convention (type))
798    return RETURN_VALUE_STRUCT_CONVENTION;
799  if (writebuf)
800    v850_store_return_value (type, regcache, writebuf);
801  else if (readbuf)
802    v850_extract_return_value (type, regcache, readbuf);
803  return RETURN_VALUE_REGISTER_CONVENTION;
804}
805
806const static unsigned char *
807v850_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
808{
809  static unsigned char breakpoint[] = { 0x85, 0x05 };
810  *lenptr = sizeof (breakpoint);
811  return breakpoint;
812}
813
814static struct v850_frame_cache *
815v850_alloc_frame_cache (struct frame_info *next_frame)
816{
817  struct v850_frame_cache *cache;
818  int i;
819
820  cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
821  cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
822
823  /* Base address.  */
824  cache->base = 0;
825  cache->sp_offset = 0;
826  cache->pc = 0;
827
828  /* Frameless until proven otherwise.  */
829  cache->uses_fp = 0;
830
831  return cache;
832}
833
834static struct v850_frame_cache *
835v850_frame_cache (struct frame_info *next_frame, void **this_cache)
836{
837  struct v850_frame_cache *cache;
838  CORE_ADDR current_pc;
839  int i;
840
841  if (*this_cache)
842    return *this_cache;
843
844  cache = v850_alloc_frame_cache (next_frame);
845  *this_cache = cache;
846
847  /* In principle, for normal frames, fp holds the frame pointer,
848     which holds the base address for the current stack frame.
849     However, for functions that don't need it, the frame pointer is
850     optional.  For these "frameless" functions the frame pointer is
851     actually the frame pointer of the calling frame.  */
852  cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
853  if (cache->base == 0)
854    return cache;
855
856  cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
857  current_pc = frame_pc_unwind (next_frame);
858  if (cache->pc != 0)
859    {
860      ULONGEST ctbp;
861      ctbp = frame_unwind_register_unsigned (next_frame, E_CTBP_REGNUM);
862      v850_analyze_prologue (cache->pc, current_pc, cache, ctbp);
863    }
864
865  if (!cache->uses_fp)
866    {
867      /* We didn't find a valid frame, which means that CACHE->base
868         currently holds the frame pointer for our calling frame.  If
869         we're at the start of a function, or somewhere half-way its
870         prologue, the function's frame probably hasn't been fully
871         setup yet.  Try to reconstruct the base address for the stack
872         frame by looking at the stack pointer.  For truly "frameless"
873         functions this might work too.  */
874      cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
875    }
876
877  /* Now that we have the base address for the stack frame we can
878     calculate the value of sp in the calling frame.  */
879  trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
880  			cache->base - cache->sp_offset);
881
882  /* Adjust all the saved registers such that they contain addresses
883     instead of offsets.  */
884  for (i = 0; i < E_NUM_REGS; i++)
885    if (trad_frame_addr_p (cache->saved_regs, i))
886      cache->saved_regs[i].addr += cache->base;
887
888  /* The call instruction moves the caller's PC in the callee's LP.
889     Since this is an unwind, do the reverse.  Copy the location of LP
890     into PC (the address / regnum) so that a request for PC will be
891     converted into a request for the LP.  */
892
893  cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
894
895  return cache;
896}
897
898
899static void
900v850_frame_prev_register (struct frame_info *next_frame, void **this_cache,
901			  int regnum, int *optimizedp,
902			  enum lval_type *lvalp, CORE_ADDR *addrp,
903			  int *realnump, gdb_byte *valuep)
904{
905  struct v850_frame_cache *cache = v850_frame_cache (next_frame, this_cache);
906
907  gdb_assert (regnum >= 0);
908
909  trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
910				optimizedp, lvalp, addrp, realnump, valuep);
911}
912
913static void
914v850_frame_this_id (struct frame_info *next_frame, void **this_cache,
915		    struct frame_id *this_id)
916{
917  struct v850_frame_cache *cache = v850_frame_cache (next_frame, this_cache);
918
919  /* This marks the outermost frame.  */
920  if (cache->base == 0)
921    return;
922
923  *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
924}
925
926static const struct frame_unwind v850_frame_unwind = {
927  NORMAL_FRAME,
928  v850_frame_this_id,
929  v850_frame_prev_register
930};
931
932static const struct frame_unwind *
933v850_frame_sniffer (struct frame_info *next_frame)
934{
935  return &v850_frame_unwind;
936}
937
938static CORE_ADDR
939v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
940{
941  return frame_unwind_register_unsigned (next_frame,
942					 gdbarch_sp_regnum (current_gdbarch));
943}
944
945static CORE_ADDR
946v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
947{
948  return frame_unwind_register_unsigned (next_frame,
949					 gdbarch_pc_regnum (current_gdbarch));
950}
951
952static struct frame_id
953v850_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
954{
955  return frame_id_build (v850_unwind_sp (gdbarch, next_frame),
956                         frame_pc_unwind (next_frame));
957}
958
959static CORE_ADDR
960v850_frame_base_address (struct frame_info *next_frame, void **this_cache)
961{
962  struct v850_frame_cache *cache = v850_frame_cache (next_frame, this_cache);
963
964  return cache->base;
965}
966
967static const struct frame_base v850_frame_base = {
968  &v850_frame_unwind,
969  v850_frame_base_address,
970  v850_frame_base_address,
971  v850_frame_base_address
972};
973
974static struct gdbarch *
975v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
976{
977  struct gdbarch *gdbarch;
978
979  /* Change the register names based on the current machine type.  */
980  if (info.bfd_arch_info->arch != bfd_arch_v850)
981    return NULL;
982
983  gdbarch = gdbarch_alloc (&info, NULL);
984
985  switch (info.bfd_arch_info->mach)
986    {
987    case bfd_mach_v850:
988      set_gdbarch_register_name (gdbarch, v850_register_name);
989      break;
990    case bfd_mach_v850e:
991    case bfd_mach_v850e1:
992      set_gdbarch_register_name (gdbarch, v850e_register_name);
993      break;
994    }
995
996  set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
997  set_gdbarch_num_pseudo_regs (gdbarch, 0);
998  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
999  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1000  set_gdbarch_fp0_regnum (gdbarch, -1);
1001
1002  set_gdbarch_register_type (gdbarch, v850_register_type);
1003
1004  set_gdbarch_char_signed (gdbarch, 0);
1005  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1006  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1007  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1008  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1009
1010  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1011  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1012  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1013
1014  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1015  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1016
1017  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1018  set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1019
1020  set_gdbarch_return_value (gdbarch, v850_return_value);
1021  set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1022  set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1023
1024  set_gdbarch_print_insn (gdbarch, print_insn_v850);
1025
1026  set_gdbarch_frame_align (gdbarch, v850_frame_align);
1027  set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1028  set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
1029  set_gdbarch_unwind_dummy_id (gdbarch, v850_unwind_dummy_id);
1030  frame_base_set_default (gdbarch, &v850_frame_base);
1031
1032  /* Hook in ABI-specific overrides, if they have been registered.  */
1033  gdbarch_init_osabi (info, gdbarch);
1034
1035  frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1036  frame_unwind_append_sniffer (gdbarch, v850_frame_sniffer);
1037
1038  return gdbarch;
1039}
1040
1041extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1042
1043void
1044_initialize_v850_tdep (void)
1045{
1046  register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1047}
1048