1/* Generic symbol file reading for the GNU debugger, GDB.
2
3   Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5   Free Software Foundation, Inc.
6
7   Contributed by Cygnus Support, using pieces from other GDB modules.
8
9   This file is part of GDB.
10
11   This program is free software; you can redistribute it and/or modify
12   it under the terms of the GNU General Public License as published by
13   the Free Software Foundation; either version 3 of the License, or
14   (at your option) any later version.
15
16   This program is distributed in the hope that it will be useful,
17   but WITHOUT ANY WARRANTY; without even the implied warranty of
18   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19   GNU General Public License for more details.
20
21   You should have received a copy of the GNU General Public License
22   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
23
24#include "defs.h"
25#include "bfdlink.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "source.h"
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
40#include "inferior.h"		/* for write_pc */
41#include "filenames.h"		/* for DOSish file names */
42#include "gdb-stabs.h"
43#include "gdb_obstack.h"
44#include "completer.h"
45#include "bcache.h"
46#include "hashtab.h"
47#include "readline/readline.h"
48#include "gdb_assert.h"
49#include "block.h"
50#include "observer.h"
51#include "exec.h"
52#include "parser-defs.h"
53#include "varobj.h"
54#include "elf-bfd.h"
55
56#include <sys/types.h>
57#include <fcntl.h>
58#include "gdb_string.h"
59#include "gdb_stat.h"
60#include <ctype.h>
61#include <time.h>
62#include <sys/time.h>
63
64
65int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66void (*deprecated_show_load_progress) (const char *section,
67			    unsigned long section_sent,
68			    unsigned long section_size,
69			    unsigned long total_sent,
70			    unsigned long total_size);
71void (*deprecated_pre_add_symbol_hook) (const char *);
72void (*deprecated_post_add_symbol_hook) (void);
73
74static void clear_symtab_users_cleanup (void *ignore);
75
76/* Global variables owned by this file */
77int readnow_symbol_files;	/* Read full symbols immediately */
78
79/* External variables and functions referenced. */
80
81extern void report_transfer_performance (unsigned long, time_t, time_t);
82
83/* Functions this file defines */
84
85#if 0
86static int simple_read_overlay_region_table (void);
87static void simple_free_overlay_region_table (void);
88#endif
89
90static void set_initial_language (void);
91
92static void load_command (char *, int);
93
94static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96static void add_symbol_file_command (char *, int);
97
98static void add_shared_symbol_files_command (char *, int);
99
100static void reread_separate_symbols (struct objfile *objfile);
101
102static void cashier_psymtab (struct partial_symtab *);
103
104bfd *symfile_bfd_open (char *);
105
106int get_section_index (struct objfile *, char *);
107
108static struct sym_fns *find_sym_fns (bfd *);
109
110static void decrement_reading_symtab (void *);
111
112static void overlay_invalidate_all (void);
113
114static int overlay_is_mapped (struct obj_section *);
115
116void list_overlays_command (char *, int);
117
118void map_overlay_command (char *, int);
119
120void unmap_overlay_command (char *, int);
121
122static void overlay_auto_command (char *, int);
123
124static void overlay_manual_command (char *, int);
125
126static void overlay_off_command (char *, int);
127
128static void overlay_load_command (char *, int);
129
130static void overlay_command (char *, int);
131
132static void simple_free_overlay_table (void);
133
134static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135
136static int simple_read_overlay_table (void);
137
138static int simple_overlay_update_1 (struct obj_section *);
139
140static void add_filename_language (char *ext, enum language lang);
141
142static void info_ext_lang_command (char *args, int from_tty);
143
144static char *find_separate_debug_file (struct objfile *objfile);
145
146static void init_filename_language_table (void);
147
148static void symfile_find_segment_sections (struct objfile *objfile);
149
150void _initialize_symfile (void);
151
152/* List of all available sym_fns.  On gdb startup, each object file reader
153   calls add_symtab_fns() to register information on each format it is
154   prepared to read. */
155
156static struct sym_fns *symtab_fns = NULL;
157
158/* Flag for whether user will be reloading symbols multiple times.
159   Defaults to ON for VxWorks, otherwise OFF.  */
160
161#ifdef SYMBOL_RELOADING_DEFAULT
162int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163#else
164int symbol_reloading = 0;
165#endif
166static void
167show_symbol_reloading (struct ui_file *file, int from_tty,
168		       struct cmd_list_element *c, const char *value)
169{
170  fprintf_filtered (file, _("\
171Dynamic symbol table reloading multiple times in one run is %s.\n"),
172		    value);
173}
174
175
176/* If non-zero, shared library symbols will be added automatically
177   when the inferior is created, new libraries are loaded, or when
178   attaching to the inferior.  This is almost always what users will
179   want to have happen; but for very large programs, the startup time
180   will be excessive, and so if this is a problem, the user can clear
181   this flag and then add the shared library symbols as needed.  Note
182   that there is a potential for confusion, since if the shared
183   library symbols are not loaded, commands like "info fun" will *not*
184   report all the functions that are actually present. */
185
186int auto_solib_add = 1;
187
188/* For systems that support it, a threshold size in megabytes.  If
189   automatically adding a new library's symbol table to those already
190   known to the debugger would cause the total shared library symbol
191   size to exceed this threshhold, then the shlib's symbols are not
192   added.  The threshold is ignored if the user explicitly asks for a
193   shlib to be added, such as when using the "sharedlibrary"
194   command. */
195
196int auto_solib_limit;
197
198
199/* This compares two partial symbols by names, using strcmp_iw_ordered
200   for the comparison.  */
201
202static int
203compare_psymbols (const void *s1p, const void *s2p)
204{
205  struct partial_symbol *const *s1 = s1p;
206  struct partial_symbol *const *s2 = s2p;
207
208  return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209			    SYMBOL_SEARCH_NAME (*s2));
210}
211
212void
213sort_pst_symbols (struct partial_symtab *pst)
214{
215  /* Sort the global list; don't sort the static list */
216
217  qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218	 pst->n_global_syms, sizeof (struct partial_symbol *),
219	 compare_psymbols);
220}
221
222/* Make a null terminated copy of the string at PTR with SIZE characters in
223   the obstack pointed to by OBSTACKP .  Returns the address of the copy.
224   Note that the string at PTR does not have to be null terminated, I.E. it
225   may be part of a larger string and we are only saving a substring. */
226
227char *
228obsavestring (const char *ptr, int size, struct obstack *obstackp)
229{
230  char *p = (char *) obstack_alloc (obstackp, size + 1);
231  /* Open-coded memcpy--saves function call time.  These strings are usually
232     short.  FIXME: Is this really still true with a compiler that can
233     inline memcpy? */
234  {
235    const char *p1 = ptr;
236    char *p2 = p;
237    const char *end = ptr + size;
238    while (p1 != end)
239      *p2++ = *p1++;
240  }
241  p[size] = 0;
242  return p;
243}
244
245/* Concatenate strings S1, S2 and S3; return the new string.  Space is found
246   in the obstack pointed to by OBSTACKP.  */
247
248char *
249obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250	  const char *s3)
251{
252  int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253  char *val = (char *) obstack_alloc (obstackp, len);
254  strcpy (val, s1);
255  strcat (val, s2);
256  strcat (val, s3);
257  return val;
258}
259
260/* True if we are nested inside psymtab_to_symtab. */
261
262int currently_reading_symtab = 0;
263
264static void
265decrement_reading_symtab (void *dummy)
266{
267  currently_reading_symtab--;
268}
269
270/* Get the symbol table that corresponds to a partial_symtab.
271   This is fast after the first time you do it.  In fact, there
272   is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273   case inline.  */
274
275struct symtab *
276psymtab_to_symtab (struct partial_symtab *pst)
277{
278  /* If it's been looked up before, return it. */
279  if (pst->symtab)
280    return pst->symtab;
281
282  /* If it has not yet been read in, read it.  */
283  if (!pst->readin)
284    {
285      struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286      currently_reading_symtab++;
287      (*pst->read_symtab) (pst);
288      do_cleanups (back_to);
289    }
290
291  return pst->symtab;
292}
293
294/* Remember the lowest-addressed loadable section we've seen.
295   This function is called via bfd_map_over_sections.
296
297   In case of equal vmas, the section with the largest size becomes the
298   lowest-addressed loadable section.
299
300   If the vmas and sizes are equal, the last section is considered the
301   lowest-addressed loadable section.  */
302
303void
304find_lowest_section (bfd *abfd, asection *sect, void *obj)
305{
306  asection **lowest = (asection **) obj;
307
308  if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309    return;
310  if (!*lowest)
311    *lowest = sect;		/* First loadable section */
312  else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313    *lowest = sect;		/* A lower loadable section */
314  else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315	   && (bfd_section_size (abfd, (*lowest))
316	       <= bfd_section_size (abfd, sect)))
317    *lowest = sect;
318}
319
320/* Create a new section_addr_info, with room for NUM_SECTIONS.  */
321
322struct section_addr_info *
323alloc_section_addr_info (size_t num_sections)
324{
325  struct section_addr_info *sap;
326  size_t size;
327
328  size = (sizeof (struct section_addr_info)
329	  +  sizeof (struct other_sections) * (num_sections - 1));
330  sap = (struct section_addr_info *) xmalloc (size);
331  memset (sap, 0, size);
332  sap->num_sections = num_sections;
333
334  return sap;
335}
336
337
338/* Return a freshly allocated copy of ADDRS.  The section names, if
339   any, are also freshly allocated copies of those in ADDRS.  */
340struct section_addr_info *
341copy_section_addr_info (struct section_addr_info *addrs)
342{
343  struct section_addr_info *copy
344    = alloc_section_addr_info (addrs->num_sections);
345  int i;
346
347  copy->num_sections = addrs->num_sections;
348  for (i = 0; i < addrs->num_sections; i++)
349    {
350      copy->other[i].addr = addrs->other[i].addr;
351      if (addrs->other[i].name)
352        copy->other[i].name = xstrdup (addrs->other[i].name);
353      else
354        copy->other[i].name = NULL;
355      copy->other[i].sectindex = addrs->other[i].sectindex;
356    }
357
358  return copy;
359}
360
361
362
363/* Build (allocate and populate) a section_addr_info struct from
364   an existing section table. */
365
366extern struct section_addr_info *
367build_section_addr_info_from_section_table (const struct section_table *start,
368                                            const struct section_table *end)
369{
370  struct section_addr_info *sap;
371  const struct section_table *stp;
372  int oidx;
373
374  sap = alloc_section_addr_info (end - start);
375
376  for (stp = start, oidx = 0; stp != end; stp++)
377    {
378      if (bfd_get_section_flags (stp->bfd,
379				 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
380	  && oidx < end - start)
381	{
382	  sap->other[oidx].addr = stp->addr;
383	  sap->other[oidx].name
384	    = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
385	  sap->other[oidx].sectindex = stp->the_bfd_section->index;
386	  oidx++;
387	}
388    }
389
390  return sap;
391}
392
393
394/* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396extern void
397free_section_addr_info (struct section_addr_info *sap)
398{
399  int idx;
400
401  for (idx = 0; idx < sap->num_sections; idx++)
402    if (sap->other[idx].name)
403      xfree (sap->other[idx].name);
404  xfree (sap);
405}
406
407
408/* Initialize OBJFILE's sect_index_* members.  */
409static void
410init_objfile_sect_indices (struct objfile *objfile)
411{
412  asection *sect;
413  int i;
414
415  sect = bfd_get_section_by_name (objfile->obfd, ".text");
416  if (sect)
417    objfile->sect_index_text = sect->index;
418
419  sect = bfd_get_section_by_name (objfile->obfd, ".data");
420  if (sect)
421    objfile->sect_index_data = sect->index;
422
423  sect = bfd_get_section_by_name (objfile->obfd, ".bss");
424  if (sect)
425    objfile->sect_index_bss = sect->index;
426
427  sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
428  if (sect)
429    objfile->sect_index_rodata = sect->index;
430
431  /* This is where things get really weird...  We MUST have valid
432     indices for the various sect_index_* members or gdb will abort.
433     So if for example, there is no ".text" section, we have to
434     accomodate that.  First, check for a file with the standard
435     one or two segments.  */
436
437  symfile_find_segment_sections (objfile);
438
439  /* Except when explicitly adding symbol files at some address,
440     section_offsets contains nothing but zeros, so it doesn't matter
441     which slot in section_offsets the individual sect_index_* members
442     index into.  So if they are all zero, it is safe to just point
443     all the currently uninitialized indices to the first slot.  But
444     beware: if this is the main executable, it may be relocated
445     later, e.g. by the remote qOffsets packet, and then this will
446     be wrong!  That's why we try segments first.  */
447
448  for (i = 0; i < objfile->num_sections; i++)
449    {
450      if (ANOFFSET (objfile->section_offsets, i) != 0)
451	{
452	  break;
453	}
454    }
455  if (i == objfile->num_sections)
456    {
457      if (objfile->sect_index_text == -1)
458	objfile->sect_index_text = 0;
459      if (objfile->sect_index_data == -1)
460	objfile->sect_index_data = 0;
461      if (objfile->sect_index_bss == -1)
462	objfile->sect_index_bss = 0;
463      if (objfile->sect_index_rodata == -1)
464	objfile->sect_index_rodata = 0;
465    }
466}
467
468/* The arguments to place_section.  */
469
470struct place_section_arg
471{
472  struct section_offsets *offsets;
473  CORE_ADDR lowest;
474};
475
476/* Find a unique offset to use for loadable section SECT if
477   the user did not provide an offset.  */
478
479void
480place_section (bfd *abfd, asection *sect, void *obj)
481{
482  struct place_section_arg *arg = obj;
483  CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
484  int done;
485  ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
486
487  /* We are only interested in allocated sections.  */
488  if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
489    return;
490
491  /* If the user specified an offset, honor it.  */
492  if (offsets[sect->index] != 0)
493    return;
494
495  /* Otherwise, let's try to find a place for the section.  */
496  start_addr = (arg->lowest + align - 1) & -align;
497
498  do {
499    asection *cur_sec;
500
501    done = 1;
502
503    for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
504      {
505	int indx = cur_sec->index;
506	CORE_ADDR cur_offset;
507
508	/* We don't need to compare against ourself.  */
509	if (cur_sec == sect)
510	  continue;
511
512	/* We can only conflict with allocated sections.  */
513	if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
514	  continue;
515
516	/* If the section offset is 0, either the section has not been placed
517	   yet, or it was the lowest section placed (in which case LOWEST
518	   will be past its end).  */
519	if (offsets[indx] == 0)
520	  continue;
521
522	/* If this section would overlap us, then we must move up.  */
523	if (start_addr + bfd_get_section_size (sect) > offsets[indx]
524	    && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
525	  {
526	    start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
527	    start_addr = (start_addr + align - 1) & -align;
528	    done = 0;
529	    break;
530	  }
531
532	/* Otherwise, we appear to be OK.  So far.  */
533      }
534    }
535  while (!done);
536
537  offsets[sect->index] = start_addr;
538  arg->lowest = start_addr + bfd_get_section_size (sect);
539
540  exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
541}
542
543/* Parse the user's idea of an offset for dynamic linking, into our idea
544   of how to represent it for fast symbol reading.  This is the default
545   version of the sym_fns.sym_offsets function for symbol readers that
546   don't need to do anything special.  It allocates a section_offsets table
547   for the objectfile OBJFILE and stuffs ADDR into all of the offsets.  */
548
549void
550default_symfile_offsets (struct objfile *objfile,
551			 struct section_addr_info *addrs)
552{
553  int i;
554
555  objfile->num_sections = bfd_count_sections (objfile->obfd);
556  objfile->section_offsets = (struct section_offsets *)
557    obstack_alloc (&objfile->objfile_obstack,
558		   SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
559  memset (objfile->section_offsets, 0,
560	  SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561
562  /* Now calculate offsets for section that were specified by the
563     caller. */
564  for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
565    {
566      struct other_sections *osp ;
567
568      osp = &addrs->other[i] ;
569      if (osp->addr == 0)
570  	continue;
571
572      /* Record all sections in offsets */
573      /* The section_offsets in the objfile are here filled in using
574         the BFD index. */
575      (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
576    }
577
578  /* For relocatable files, all loadable sections will start at zero.
579     The zero is meaningless, so try to pick arbitrary addresses such
580     that no loadable sections overlap.  This algorithm is quadratic,
581     but the number of sections in a single object file is generally
582     small.  */
583  if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
584    {
585      struct place_section_arg arg;
586      bfd *abfd = objfile->obfd;
587      asection *cur_sec;
588      CORE_ADDR lowest = 0;
589
590      for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
591	/* We do not expect this to happen; just skip this step if the
592	   relocatable file has a section with an assigned VMA.  */
593	if (bfd_section_vma (abfd, cur_sec) != 0)
594	  break;
595
596      if (cur_sec == NULL)
597	{
598	  CORE_ADDR *offsets = objfile->section_offsets->offsets;
599
600	  /* Pick non-overlapping offsets for sections the user did not
601	     place explicitly.  */
602	  arg.offsets = objfile->section_offsets;
603	  arg.lowest = 0;
604	  bfd_map_over_sections (objfile->obfd, place_section, &arg);
605
606	  /* Correctly filling in the section offsets is not quite
607	     enough.  Relocatable files have two properties that
608	     (most) shared objects do not:
609
610	     - Their debug information will contain relocations.  Some
611	     shared libraries do also, but many do not, so this can not
612	     be assumed.
613
614	     - If there are multiple code sections they will be loaded
615	     at different relative addresses in memory than they are
616	     in the objfile, since all sections in the file will start
617	     at address zero.
618
619	     Because GDB has very limited ability to map from an
620	     address in debug info to the correct code section,
621	     it relies on adding SECT_OFF_TEXT to things which might be
622	     code.  If we clear all the section offsets, and set the
623	     section VMAs instead, then symfile_relocate_debug_section
624	     will return meaningful debug information pointing at the
625	     correct sections.
626
627	     GDB has too many different data structures for section
628	     addresses - a bfd, objfile, and so_list all have section
629	     tables, as does exec_ops.  Some of these could probably
630	     be eliminated.  */
631
632	  for (cur_sec = abfd->sections; cur_sec != NULL;
633	       cur_sec = cur_sec->next)
634	    {
635	      if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
636		continue;
637
638	      bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
639	      offsets[cur_sec->index] = 0;
640	    }
641	}
642    }
643
644  /* Remember the bfd indexes for the .text, .data, .bss and
645     .rodata sections. */
646  init_objfile_sect_indices (objfile);
647}
648
649
650/* Divide the file into segments, which are individual relocatable units.
651   This is the default version of the sym_fns.sym_segments function for
652   symbol readers that do not have an explicit representation of segments.
653   It assumes that object files do not have segments, and fully linked
654   files have a single segment.  */
655
656struct symfile_segment_data *
657default_symfile_segments (bfd *abfd)
658{
659  int num_sections, i;
660  asection *sect;
661  struct symfile_segment_data *data;
662  CORE_ADDR low, high;
663
664  /* Relocatable files contain enough information to position each
665     loadable section independently; they should not be relocated
666     in segments.  */
667  if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
668    return NULL;
669
670  /* Make sure there is at least one loadable section in the file.  */
671  for (sect = abfd->sections; sect != NULL; sect = sect->next)
672    {
673      if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
674	continue;
675
676      break;
677    }
678  if (sect == NULL)
679    return NULL;
680
681  low = bfd_get_section_vma (abfd, sect);
682  high = low + bfd_get_section_size (sect);
683
684  data = XZALLOC (struct symfile_segment_data);
685  data->num_segments = 1;
686  data->segment_bases = XCALLOC (1, CORE_ADDR);
687  data->segment_sizes = XCALLOC (1, CORE_ADDR);
688
689  num_sections = bfd_count_sections (abfd);
690  data->segment_info = XCALLOC (num_sections, int);
691
692  for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
693    {
694      CORE_ADDR vma;
695
696      if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
697	continue;
698
699      vma = bfd_get_section_vma (abfd, sect);
700      if (vma < low)
701	low = vma;
702      if (vma + bfd_get_section_size (sect) > high)
703	high = vma + bfd_get_section_size (sect);
704
705      data->segment_info[i] = 1;
706    }
707
708  data->segment_bases[0] = low;
709  data->segment_sizes[0] = high - low;
710
711  return data;
712}
713
714/* Process a symbol file, as either the main file or as a dynamically
715   loaded file.
716
717   OBJFILE is where the symbols are to be read from.
718
719   ADDRS is the list of section load addresses.  If the user has given
720   an 'add-symbol-file' command, then this is the list of offsets and
721   addresses he or she provided as arguments to the command; or, if
722   we're handling a shared library, these are the actual addresses the
723   sections are loaded at, according to the inferior's dynamic linker
724   (as gleaned by GDB's shared library code).  We convert each address
725   into an offset from the section VMA's as it appears in the object
726   file, and then call the file's sym_offsets function to convert this
727   into a format-specific offset table --- a `struct section_offsets'.
728   If ADDRS is non-zero, OFFSETS must be zero.
729
730   OFFSETS is a table of section offsets already in the right
731   format-specific representation.  NUM_OFFSETS is the number of
732   elements present in OFFSETS->offsets.  If OFFSETS is non-zero, we
733   assume this is the proper table the call to sym_offsets described
734   above would produce.  Instead of calling sym_offsets, we just dump
735   it right into objfile->section_offsets.  (When we're re-reading
736   symbols from an objfile, we don't have the original load address
737   list any more; all we have is the section offset table.)  If
738   OFFSETS is non-zero, ADDRS must be zero.
739
740   MAINLINE is nonzero if this is the main symbol file, or zero if
741   it's an extra symbol file such as dynamically loaded code.
742
743   VERBO is nonzero if the caller has printed a verbose message about
744   the symbol reading (and complaints can be more terse about it).  */
745
746void
747syms_from_objfile (struct objfile *objfile,
748                   struct section_addr_info *addrs,
749                   struct section_offsets *offsets,
750                   int num_offsets,
751		   int mainline,
752                   int verbo)
753{
754  struct section_addr_info *local_addr = NULL;
755  struct cleanup *old_chain;
756
757  gdb_assert (! (addrs && offsets));
758
759  init_entry_point_info (objfile);
760  objfile->sf = find_sym_fns (objfile->obfd);
761
762  if (objfile->sf == NULL)
763    return;	/* No symbols. */
764
765  /* Make sure that partially constructed symbol tables will be cleaned up
766     if an error occurs during symbol reading.  */
767  old_chain = make_cleanup_free_objfile (objfile);
768
769  /* If ADDRS and OFFSETS are both NULL, put together a dummy address
770     list.  We now establish the convention that an addr of zero means
771     no load address was specified. */
772  if (! addrs && ! offsets)
773    {
774      local_addr
775	= alloc_section_addr_info (bfd_count_sections (objfile->obfd));
776      make_cleanup (xfree, local_addr);
777      addrs = local_addr;
778    }
779
780  /* Now either addrs or offsets is non-zero.  */
781
782  if (mainline)
783    {
784      /* We will modify the main symbol table, make sure that all its users
785         will be cleaned up if an error occurs during symbol reading.  */
786      make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
787
788      /* Since no error yet, throw away the old symbol table.  */
789
790      if (symfile_objfile != NULL)
791	{
792	  free_objfile (symfile_objfile);
793	  symfile_objfile = NULL;
794	}
795
796      /* Currently we keep symbols from the add-symbol-file command.
797         If the user wants to get rid of them, they should do "symbol-file"
798         without arguments first.  Not sure this is the best behavior
799         (PR 2207).  */
800
801      (*objfile->sf->sym_new_init) (objfile);
802    }
803
804  /* Convert addr into an offset rather than an absolute address.
805     We find the lowest address of a loaded segment in the objfile,
806     and assume that <addr> is where that got loaded.
807
808     We no longer warn if the lowest section is not a text segment (as
809     happens for the PA64 port.  */
810  if (!mainline && addrs && addrs->other[0].name)
811    {
812      asection *lower_sect;
813      asection *sect;
814      CORE_ADDR lower_offset;
815      int i;
816
817      /* Find lowest loadable section to be used as starting point for
818         continguous sections. FIXME!! won't work without call to find
819	 .text first, but this assumes text is lowest section. */
820      lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
821      if (lower_sect == NULL)
822	bfd_map_over_sections (objfile->obfd, find_lowest_section,
823			       &lower_sect);
824      if (lower_sect == NULL)
825	warning (_("no loadable sections found in added symbol-file %s"),
826		 objfile->name);
827      else
828	if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
829	  warning (_("Lowest section in %s is %s at %s"),
830		   objfile->name,
831		   bfd_section_name (objfile->obfd, lower_sect),
832		   paddr (bfd_section_vma (objfile->obfd, lower_sect)));
833      if (lower_sect != NULL)
834 	lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835      else
836 	lower_offset = 0;
837
838      /* Calculate offsets for the loadable sections.
839 	 FIXME! Sections must be in order of increasing loadable section
840 	 so that contiguous sections can use the lower-offset!!!
841
842         Adjust offsets if the segments are not contiguous.
843         If the section is contiguous, its offset should be set to
844 	 the offset of the highest loadable section lower than it
845 	 (the loadable section directly below it in memory).
846 	 this_offset = lower_offset = lower_addr - lower_orig_addr */
847
848        for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
849          {
850            if (addrs->other[i].addr != 0)
851              {
852                sect = bfd_get_section_by_name (objfile->obfd,
853                                                addrs->other[i].name);
854                if (sect)
855                  {
856                    addrs->other[i].addr
857                      -= bfd_section_vma (objfile->obfd, sect);
858                    lower_offset = addrs->other[i].addr;
859                    /* This is the index used by BFD. */
860                    addrs->other[i].sectindex = sect->index ;
861                  }
862                else
863                  {
864                    warning (_("section %s not found in %s"),
865                             addrs->other[i].name,
866                             objfile->name);
867                    addrs->other[i].addr = 0;
868                  }
869              }
870            else
871              addrs->other[i].addr = lower_offset;
872          }
873    }
874
875  /* Initialize symbol reading routines for this objfile, allow complaints to
876     appear for this new file, and record how verbose to be, then do the
877     initial symbol reading for this file. */
878
879  (*objfile->sf->sym_init) (objfile);
880  clear_complaints (&symfile_complaints, 1, verbo);
881
882  if (addrs)
883    (*objfile->sf->sym_offsets) (objfile, addrs);
884  else
885    {
886      size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
887
888      /* Just copy in the offset table directly as given to us.  */
889      objfile->num_sections = num_offsets;
890      objfile->section_offsets
891        = ((struct section_offsets *)
892           obstack_alloc (&objfile->objfile_obstack, size));
893      memcpy (objfile->section_offsets, offsets, size);
894
895      init_objfile_sect_indices (objfile);
896    }
897
898#ifndef DEPRECATED_IBM6000_TARGET
899  /* This is a SVR4/SunOS specific hack, I think.  In any event, it
900     screws RS/6000.  sym_offsets should be doing this sort of thing,
901     because it knows the mapping between bfd sections and
902     section_offsets.  */
903  /* This is a hack.  As far as I can tell, section offsets are not
904     target dependent.  They are all set to addr with a couple of
905     exceptions.  The exceptions are sysvr4 shared libraries, whose
906     offsets are kept in solib structures anyway and rs6000 xcoff
907     which handles shared libraries in a completely unique way.
908
909     Section offsets are built similarly, except that they are built
910     by adding addr in all cases because there is no clear mapping
911     from section_offsets into actual sections.  Note that solib.c
912     has a different algorithm for finding section offsets.
913
914     These should probably all be collapsed into some target
915     independent form of shared library support.  FIXME.  */
916
917  if (addrs)
918    {
919      struct obj_section *s;
920
921 	/* Map section offsets in "addr" back to the object's
922 	   sections by comparing the section names with bfd's
923 	   section names.  Then adjust the section address by
924 	   the offset. */ /* for gdb/13815 */
925
926      ALL_OBJFILE_OSECTIONS (objfile, s)
927	{
928	  CORE_ADDR s_addr = 0;
929	  int i;
930
931 	    for (i = 0;
932	         !s_addr && i < addrs->num_sections && addrs->other[i].name;
933		 i++)
934 	      if (strcmp (bfd_section_name (s->objfile->obfd,
935					    s->the_bfd_section),
936			  addrs->other[i].name) == 0)
937 	        s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
938
939	  s->addr -= s->offset;
940	  s->addr += s_addr;
941	  s->endaddr -= s->offset;
942	  s->endaddr += s_addr;
943	  s->offset += s_addr;
944	}
945    }
946#endif /* not DEPRECATED_IBM6000_TARGET */
947
948  (*objfile->sf->sym_read) (objfile, mainline);
949
950  /* Don't allow char * to have a typename (else would get caddr_t).
951     Ditto void *.  FIXME: Check whether this is now done by all the
952     symbol readers themselves (many of them now do), and if so remove
953     it from here.  */
954
955  TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
956  TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
957
958  /* Mark the objfile has having had initial symbol read attempted.  Note
959     that this does not mean we found any symbols... */
960
961  objfile->flags |= OBJF_SYMS;
962
963  /* Discard cleanups as symbol reading was successful.  */
964
965  discard_cleanups (old_chain);
966}
967
968/* Perform required actions after either reading in the initial
969   symbols for a new objfile, or mapping in the symbols from a reusable
970   objfile. */
971
972void
973new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
974{
975
976  /* If this is the main symbol file we have to clean up all users of the
977     old main symbol file. Otherwise it is sufficient to fixup all the
978     breakpoints that may have been redefined by this symbol file.  */
979  if (mainline)
980    {
981      /* OK, make it the "real" symbol file.  */
982      symfile_objfile = objfile;
983
984      clear_symtab_users ();
985    }
986  else
987    {
988      breakpoint_re_set ();
989    }
990
991  /* We're done reading the symbol file; finish off complaints.  */
992  clear_complaints (&symfile_complaints, 0, verbo);
993}
994
995/* Process a symbol file, as either the main file or as a dynamically
996   loaded file.
997
998   ABFD is a BFD already open on the file, as from symfile_bfd_open.
999   This BFD will be closed on error, and is always consumed by this function.
1000
1001   FROM_TTY says how verbose to be.
1002
1003   MAINLINE specifies whether this is the main symbol file, or whether
1004   it's an extra symbol file such as dynamically loaded code.
1005
1006   ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1007   syms_from_objfile, above.  ADDRS is ignored when MAINLINE is
1008   non-zero.
1009
1010   Upon success, returns a pointer to the objfile that was added.
1011   Upon failure, jumps back to command level (never returns). */
1012static struct objfile *
1013symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1014                                       struct section_addr_info *addrs,
1015                                       struct section_offsets *offsets,
1016                                       int num_offsets,
1017                                       int mainline, int flags)
1018{
1019  struct objfile *objfile;
1020  struct partial_symtab *psymtab;
1021  char *debugfile = NULL;
1022  struct section_addr_info *orig_addrs = NULL;
1023  struct cleanup *my_cleanups;
1024  const char *name = bfd_get_filename (abfd);
1025
1026  my_cleanups = make_cleanup_bfd_close (abfd);
1027
1028  /* Give user a chance to burp if we'd be
1029     interactively wiping out any existing symbols.  */
1030
1031  if ((have_full_symbols () || have_partial_symbols ())
1032      && mainline
1033      && from_tty
1034      && !query ("Load new symbol table from \"%s\"? ", name))
1035    error (_("Not confirmed."));
1036
1037  objfile = allocate_objfile (abfd, flags);
1038  discard_cleanups (my_cleanups);
1039
1040  if (addrs)
1041    {
1042      orig_addrs = copy_section_addr_info (addrs);
1043      make_cleanup_free_section_addr_info (orig_addrs);
1044    }
1045
1046  /* We either created a new mapped symbol table, mapped an existing
1047     symbol table file which has not had initial symbol reading
1048     performed, or need to read an unmapped symbol table. */
1049  if (from_tty || info_verbose)
1050    {
1051      if (deprecated_pre_add_symbol_hook)
1052	deprecated_pre_add_symbol_hook (name);
1053      else
1054	{
1055	  printf_unfiltered (_("Reading symbols from %s..."), name);
1056	  wrap_here ("");
1057	  gdb_flush (gdb_stdout);
1058	}
1059    }
1060  syms_from_objfile (objfile, addrs, offsets, num_offsets,
1061		     mainline, from_tty);
1062
1063  /* We now have at least a partial symbol table.  Check to see if the
1064     user requested that all symbols be read on initial access via either
1065     the gdb startup command line or on a per symbol file basis.  Expand
1066     all partial symbol tables for this objfile if so. */
1067
1068  if ((flags & OBJF_READNOW) || readnow_symbol_files)
1069    {
1070      if (from_tty || info_verbose)
1071	{
1072	  printf_unfiltered (_("expanding to full symbols..."));
1073	  wrap_here ("");
1074	  gdb_flush (gdb_stdout);
1075	}
1076
1077      for (psymtab = objfile->psymtabs;
1078	   psymtab != NULL;
1079	   psymtab = psymtab->next)
1080	{
1081	  psymtab_to_symtab (psymtab);
1082	}
1083    }
1084
1085  /* If the file has its own symbol tables it has no separate debug info.
1086     `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1087     `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'.  */
1088  if (objfile->psymtabs == NULL)
1089    debugfile = find_separate_debug_file (objfile);
1090  if (debugfile)
1091    {
1092      if (addrs != NULL)
1093	{
1094	  objfile->separate_debug_objfile
1095            = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1096	}
1097      else
1098	{
1099	  objfile->separate_debug_objfile
1100            = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1101	}
1102      objfile->separate_debug_objfile->separate_debug_objfile_backlink
1103        = objfile;
1104
1105      /* Put the separate debug object before the normal one, this is so that
1106         usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1107      put_objfile_before (objfile->separate_debug_objfile, objfile);
1108
1109      xfree (debugfile);
1110    }
1111
1112  if (!have_partial_symbols () && !have_full_symbols ())
1113    {
1114      wrap_here ("");
1115      printf_filtered (_("(no debugging symbols found)"));
1116      if (from_tty || info_verbose)
1117        printf_filtered ("...");
1118      else
1119        printf_filtered ("\n");
1120      wrap_here ("");
1121    }
1122
1123  if (from_tty || info_verbose)
1124    {
1125      if (deprecated_post_add_symbol_hook)
1126	deprecated_post_add_symbol_hook ();
1127      else
1128	{
1129	  printf_unfiltered (_("done.\n"));
1130	}
1131    }
1132
1133  /* We print some messages regardless of whether 'from_tty ||
1134     info_verbose' is true, so make sure they go out at the right
1135     time.  */
1136  gdb_flush (gdb_stdout);
1137
1138  do_cleanups (my_cleanups);
1139
1140  if (objfile->sf == NULL)
1141    return objfile;	/* No symbols. */
1142
1143  new_symfile_objfile (objfile, mainline, from_tty);
1144
1145  observer_notify_new_objfile (objfile);
1146
1147  bfd_cache_close_all ();
1148  return (objfile);
1149}
1150
1151
1152/* Process the symbol file ABFD, as either the main file or as a
1153   dynamically loaded file.
1154
1155   See symbol_file_add_with_addrs_or_offsets's comments for
1156   details.  */
1157struct objfile *
1158symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1159                          struct section_addr_info *addrs,
1160                          int mainline, int flags)
1161{
1162  return symbol_file_add_with_addrs_or_offsets (abfd,
1163						from_tty, addrs, 0, 0,
1164                                                mainline, flags);
1165}
1166
1167
1168/* Process a symbol file, as either the main file or as a dynamically
1169   loaded file.  See symbol_file_add_with_addrs_or_offsets's comments
1170   for details.  */
1171struct objfile *
1172symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1173		 int mainline, int flags)
1174{
1175  return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1176                                   addrs, mainline, flags);
1177}
1178
1179
1180/* Call symbol_file_add() with default values and update whatever is
1181   affected by the loading of a new main().
1182   Used when the file is supplied in the gdb command line
1183   and by some targets with special loading requirements.
1184   The auxiliary function, symbol_file_add_main_1(), has the flags
1185   argument for the switches that can only be specified in the symbol_file
1186   command itself.  */
1187
1188void
1189symbol_file_add_main (char *args, int from_tty)
1190{
1191  symbol_file_add_main_1 (args, from_tty, 0);
1192}
1193
1194static void
1195symbol_file_add_main_1 (char *args, int from_tty, int flags)
1196{
1197  symbol_file_add (args, from_tty, NULL, 1, flags);
1198
1199  /* Getting new symbols may change our opinion about
1200     what is frameless.  */
1201  reinit_frame_cache ();
1202
1203  set_initial_language ();
1204}
1205
1206void
1207symbol_file_clear (int from_tty)
1208{
1209  if ((have_full_symbols () || have_partial_symbols ())
1210      && from_tty
1211      && (symfile_objfile
1212	  ? !query (_("Discard symbol table from `%s'? "),
1213		    symfile_objfile->name)
1214	  : !query (_("Discard symbol table? "))))
1215    error (_("Not confirmed."));
1216    free_all_objfiles ();
1217
1218    /* solib descriptors may have handles to objfiles.  Since their
1219       storage has just been released, we'd better wipe the solib
1220       descriptors as well.
1221     */
1222#if defined(SOLIB_RESTART)
1223    SOLIB_RESTART ();
1224#endif
1225
1226    symfile_objfile = NULL;
1227    if (from_tty)
1228      printf_unfiltered (_("No symbol file now.\n"));
1229}
1230
1231struct build_id
1232  {
1233    size_t size;
1234    gdb_byte data[1];
1235  };
1236
1237/* Locate NT_GNU_BUILD_ID from ABFD and return its content.  */
1238
1239static struct build_id *
1240build_id_bfd_get (bfd *abfd)
1241{
1242  struct build_id *retval;
1243
1244  if (!bfd_check_format (abfd, bfd_object)
1245      || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1246      || elf_tdata (abfd)->build_id == NULL)
1247    return NULL;
1248
1249  retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1250  retval->size = elf_tdata (abfd)->build_id_size;
1251  memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1252
1253  return retval;
1254}
1255
1256/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value.  */
1257
1258static int
1259build_id_verify (const char *filename, struct build_id *check)
1260{
1261  bfd *abfd;
1262  struct build_id *found = NULL;
1263  int retval = 0;
1264
1265  /* We expect to be silent on the non-existing files.  */
1266  abfd = bfd_openr (filename, gnutarget);
1267  if (abfd == NULL)
1268    return 0;
1269
1270  found = build_id_bfd_get (abfd);
1271
1272  if (found == NULL)
1273    warning (_("File \"%s\" has no build-id, file skipped"), filename);
1274  else if (found->size != check->size
1275           || memcmp (found->data, check->data, found->size) != 0)
1276    warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1277  else
1278    retval = 1;
1279
1280  if (!bfd_close (abfd))
1281    warning (_("cannot close \"%s\": %s"), filename,
1282	     bfd_errmsg (bfd_get_error ()));
1283  return retval;
1284}
1285
1286static char *
1287build_id_to_debug_filename (struct build_id *build_id)
1288{
1289  char *link, *s, *retval = NULL;
1290  gdb_byte *data = build_id->data;
1291  size_t size = build_id->size;
1292
1293  /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1294  link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1295		  + 2 * size + (sizeof ".debug" - 1) + 1);
1296  s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1297  if (size > 0)
1298    {
1299      size--;
1300      s += sprintf (s, "%02x", (unsigned) *data++);
1301    }
1302  if (size > 0)
1303    *s++ = '/';
1304  while (size-- > 0)
1305    s += sprintf (s, "%02x", (unsigned) *data++);
1306  strcpy (s, ".debug");
1307
1308  /* lrealpath() is expensive even for the usually non-existent files.  */
1309  if (access (link, F_OK) == 0)
1310    retval = lrealpath (link);
1311  xfree (link);
1312
1313  if (retval != NULL && !build_id_verify (retval, build_id))
1314    {
1315      xfree (retval);
1316      retval = NULL;
1317    }
1318
1319  return retval;
1320}
1321
1322static char *
1323get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1324{
1325  asection *sect;
1326  bfd_size_type debuglink_size;
1327  unsigned long crc32;
1328  char *contents;
1329  int crc_offset;
1330  unsigned char *p;
1331
1332  sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1333
1334  if (sect == NULL)
1335    return NULL;
1336
1337  debuglink_size = bfd_section_size (objfile->obfd, sect);
1338
1339  contents = xmalloc (debuglink_size);
1340  bfd_get_section_contents (objfile->obfd, sect, contents,
1341			    (file_ptr)0, (bfd_size_type)debuglink_size);
1342
1343  /* Crc value is stored after the filename, aligned up to 4 bytes. */
1344  crc_offset = strlen (contents) + 1;
1345  crc_offset = (crc_offset + 3) & ~3;
1346
1347  crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1348
1349  *crc32_out = crc32;
1350  return contents;
1351}
1352
1353static int
1354separate_debug_file_exists (const char *name, unsigned long crc)
1355{
1356  unsigned long file_crc = 0;
1357  int fd;
1358  gdb_byte buffer[8*1024];
1359  int count;
1360
1361  fd = open (name, O_RDONLY | O_BINARY);
1362  if (fd < 0)
1363    return 0;
1364
1365  while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1366    file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1367
1368  close (fd);
1369
1370  return crc == file_crc;
1371}
1372
1373char *debug_file_directory = NULL;
1374static void
1375show_debug_file_directory (struct ui_file *file, int from_tty,
1376			   struct cmd_list_element *c, const char *value)
1377{
1378  fprintf_filtered (file, _("\
1379The directory where separate debug symbols are searched for is \"%s\".\n"),
1380		    value);
1381}
1382
1383#if ! defined (DEBUG_SUBDIRECTORY)
1384#define DEBUG_SUBDIRECTORY ".debug"
1385#endif
1386
1387static char *
1388find_separate_debug_file (struct objfile *objfile)
1389{
1390  asection *sect;
1391  char *basename;
1392  char *dir;
1393  char *debugfile;
1394  char *name_copy;
1395  char *canon_name;
1396  bfd_size_type debuglink_size;
1397  unsigned long crc32;
1398  int i;
1399  struct build_id *build_id;
1400
1401  build_id = build_id_bfd_get (objfile->obfd);
1402  if (build_id != NULL)
1403    {
1404      char *build_id_name;
1405
1406      build_id_name = build_id_to_debug_filename (build_id);
1407      free (build_id);
1408      /* Prevent looping on a stripped .debug file.  */
1409      if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1410        {
1411	  warning (_("\"%s\": separate debug info file has no debug info"),
1412		   build_id_name);
1413	  xfree (build_id_name);
1414	}
1415      else if (build_id_name != NULL)
1416        return build_id_name;
1417    }
1418
1419  basename = get_debug_link_info (objfile, &crc32);
1420
1421  if (basename == NULL)
1422    return NULL;
1423
1424  dir = xstrdup (objfile->name);
1425
1426  /* Strip off the final filename part, leaving the directory name,
1427     followed by a slash.  Objfile names should always be absolute and
1428     tilde-expanded, so there should always be a slash in there
1429     somewhere.  */
1430  for (i = strlen(dir) - 1; i >= 0; i--)
1431    {
1432      if (IS_DIR_SEPARATOR (dir[i]))
1433	break;
1434    }
1435  gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1436  dir[i+1] = '\0';
1437
1438  debugfile = alloca (strlen (debug_file_directory) + 1
1439                      + strlen (dir)
1440                      + strlen (DEBUG_SUBDIRECTORY)
1441                      + strlen ("/")
1442                      + strlen (basename)
1443                      + 1);
1444
1445  /* First try in the same directory as the original file.  */
1446  strcpy (debugfile, dir);
1447  strcat (debugfile, basename);
1448
1449  if (separate_debug_file_exists (debugfile, crc32))
1450    {
1451      xfree (basename);
1452      xfree (dir);
1453      return xstrdup (debugfile);
1454    }
1455
1456  /* Then try in the subdirectory named DEBUG_SUBDIRECTORY.  */
1457  strcpy (debugfile, dir);
1458  strcat (debugfile, DEBUG_SUBDIRECTORY);
1459  strcat (debugfile, "/");
1460  strcat (debugfile, basename);
1461
1462  if (separate_debug_file_exists (debugfile, crc32))
1463    {
1464      xfree (basename);
1465      xfree (dir);
1466      return xstrdup (debugfile);
1467    }
1468
1469  /* Then try in the global debugfile directory.  */
1470  strcpy (debugfile, debug_file_directory);
1471  strcat (debugfile, "/");
1472  strcat (debugfile, dir);
1473  strcat (debugfile, basename);
1474
1475  if (separate_debug_file_exists (debugfile, crc32))
1476    {
1477      xfree (basename);
1478      xfree (dir);
1479      return xstrdup (debugfile);
1480    }
1481
1482  /* If the file is in the sysroot, try using its base path in the
1483     global debugfile directory.  */
1484  canon_name = lrealpath (dir);
1485  if (canon_name
1486      && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1487      && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1488    {
1489      strcpy (debugfile, debug_file_directory);
1490      strcat (debugfile, canon_name + strlen (gdb_sysroot));
1491      strcat (debugfile, "/");
1492      strcat (debugfile, basename);
1493
1494      if (separate_debug_file_exists (debugfile, crc32))
1495	{
1496	  xfree (canon_name);
1497	  xfree (basename);
1498	  xfree (dir);
1499	  return xstrdup (debugfile);
1500	}
1501    }
1502
1503  if (canon_name)
1504    xfree (canon_name);
1505
1506  xfree (basename);
1507  xfree (dir);
1508  return NULL;
1509}
1510
1511
1512/* This is the symbol-file command.  Read the file, analyze its
1513   symbols, and add a struct symtab to a symtab list.  The syntax of
1514   the command is rather bizarre:
1515
1516   1. The function buildargv implements various quoting conventions
1517   which are undocumented and have little or nothing in common with
1518   the way things are quoted (or not quoted) elsewhere in GDB.
1519
1520   2. Options are used, which are not generally used in GDB (perhaps
1521   "set mapped on", "set readnow on" would be better)
1522
1523   3. The order of options matters, which is contrary to GNU
1524   conventions (because it is confusing and inconvenient).  */
1525
1526void
1527symbol_file_command (char *args, int from_tty)
1528{
1529  dont_repeat ();
1530
1531  if (args == NULL)
1532    {
1533      symbol_file_clear (from_tty);
1534    }
1535  else
1536    {
1537      char **argv = buildargv (args);
1538      int flags = OBJF_USERLOADED;
1539      struct cleanup *cleanups;
1540      char *name = NULL;
1541
1542      if (argv == NULL)
1543	nomem (0);
1544
1545      cleanups = make_cleanup_freeargv (argv);
1546      while (*argv != NULL)
1547	{
1548	  if (strcmp (*argv, "-readnow") == 0)
1549	    flags |= OBJF_READNOW;
1550	  else if (**argv == '-')
1551	    error (_("unknown option `%s'"), *argv);
1552	  else
1553	    {
1554	      symbol_file_add_main_1 (*argv, from_tty, flags);
1555	      name = *argv;
1556	    }
1557
1558	  argv++;
1559	}
1560
1561      if (name == NULL)
1562	error (_("no symbol file name was specified"));
1563
1564      do_cleanups (cleanups);
1565    }
1566}
1567
1568/* Set the initial language.
1569
1570   FIXME: A better solution would be to record the language in the
1571   psymtab when reading partial symbols, and then use it (if known) to
1572   set the language.  This would be a win for formats that encode the
1573   language in an easily discoverable place, such as DWARF.  For
1574   stabs, we can jump through hoops looking for specially named
1575   symbols or try to intuit the language from the specific type of
1576   stabs we find, but we can't do that until later when we read in
1577   full symbols.  */
1578
1579static void
1580set_initial_language (void)
1581{
1582  struct partial_symtab *pst;
1583  enum language lang = language_unknown;
1584
1585  pst = find_main_psymtab ();
1586  if (pst != NULL)
1587    {
1588      if (pst->filename != NULL)
1589	lang = deduce_language_from_filename (pst->filename);
1590
1591      if (lang == language_unknown)
1592	{
1593	  /* Make C the default language */
1594	  lang = language_c;
1595	}
1596
1597      set_language (lang);
1598      expected_language = current_language; /* Don't warn the user.  */
1599    }
1600}
1601
1602/* Open the file specified by NAME and hand it off to BFD for
1603   preliminary analysis.  Return a newly initialized bfd *, which
1604   includes a newly malloc'd` copy of NAME (tilde-expanded and made
1605   absolute).  In case of trouble, error() is called.  */
1606
1607bfd *
1608symfile_bfd_open (char *name)
1609{
1610  bfd *sym_bfd;
1611  int desc;
1612  char *absolute_name;
1613
1614  name = tilde_expand (name);	/* Returns 1st new malloc'd copy.  */
1615
1616  /* Look down path for it, allocate 2nd new malloc'd copy.  */
1617  desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1618		O_RDONLY | O_BINARY, 0, &absolute_name);
1619#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1620  if (desc < 0)
1621    {
1622      char *exename = alloca (strlen (name) + 5);
1623      strcat (strcpy (exename, name), ".exe");
1624      desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1625		    O_RDONLY | O_BINARY, 0, &absolute_name);
1626    }
1627#endif
1628  if (desc < 0)
1629    {
1630      make_cleanup (xfree, name);
1631      perror_with_name (name);
1632    }
1633
1634  /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1635     bfd.  It'll be freed in free_objfile(). */
1636  xfree (name);
1637  name = absolute_name;
1638
1639  sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1640  if (!sym_bfd)
1641    {
1642      close (desc);
1643      make_cleanup (xfree, name);
1644      error (_("\"%s\": can't open to read symbols: %s."), name,
1645	     bfd_errmsg (bfd_get_error ()));
1646    }
1647  bfd_set_cacheable (sym_bfd, 1);
1648
1649  if (!bfd_check_format (sym_bfd, bfd_object))
1650    {
1651      /* FIXME: should be checking for errors from bfd_close (for one
1652         thing, on error it does not free all the storage associated
1653         with the bfd).  */
1654      bfd_close (sym_bfd);	/* This also closes desc.  */
1655      make_cleanup (xfree, name);
1656      error (_("\"%s\": can't read symbols: %s."), name,
1657	     bfd_errmsg (bfd_get_error ()));
1658    }
1659
1660  return sym_bfd;
1661}
1662
1663/* Return the section index for SECTION_NAME on OBJFILE.  Return -1 if
1664   the section was not found.  */
1665
1666int
1667get_section_index (struct objfile *objfile, char *section_name)
1668{
1669  asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1670
1671  if (sect)
1672    return sect->index;
1673  else
1674    return -1;
1675}
1676
1677/* Link SF into the global symtab_fns list.  Called on startup by the
1678   _initialize routine in each object file format reader, to register
1679   information about each format the the reader is prepared to
1680   handle. */
1681
1682void
1683add_symtab_fns (struct sym_fns *sf)
1684{
1685  sf->next = symtab_fns;
1686  symtab_fns = sf;
1687}
1688
1689/* Initialize OBJFILE to read symbols from its associated BFD.  It
1690   either returns or calls error().  The result is an initialized
1691   struct sym_fns in the objfile structure, that contains cached
1692   information about the symbol file.  */
1693
1694static struct sym_fns *
1695find_sym_fns (bfd *abfd)
1696{
1697  struct sym_fns *sf;
1698  enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1699
1700  if (our_flavour == bfd_target_srec_flavour
1701      || our_flavour == bfd_target_ihex_flavour
1702      || our_flavour == bfd_target_tekhex_flavour)
1703    return NULL;	/* No symbols.  */
1704
1705  for (sf = symtab_fns; sf != NULL; sf = sf->next)
1706    if (our_flavour == sf->sym_flavour)
1707      return sf;
1708
1709  error (_("I'm sorry, Dave, I can't do that.  Symbol format `%s' unknown."),
1710	 bfd_get_target (abfd));
1711}
1712
1713
1714/* This function runs the load command of our current target.  */
1715
1716static void
1717load_command (char *arg, int from_tty)
1718{
1719  if (arg == NULL)
1720    {
1721      char *parg;
1722      int count = 0;
1723
1724      parg = arg = get_exec_file (1);
1725
1726      /* Count how many \ " ' tab space there are in the name.  */
1727      while ((parg = strpbrk (parg, "\\\"'\t ")))
1728	{
1729	  parg++;
1730	  count++;
1731	}
1732
1733      if (count)
1734	{
1735	  /* We need to quote this string so buildargv can pull it apart.  */
1736	  char *temp = xmalloc (strlen (arg) + count + 1 );
1737	  char *ptemp = temp;
1738	  char *prev;
1739
1740	  make_cleanup (xfree, temp);
1741
1742	  prev = parg = arg;
1743	  while ((parg = strpbrk (parg, "\\\"'\t ")))
1744	    {
1745	      strncpy (ptemp, prev, parg - prev);
1746	      ptemp += parg - prev;
1747	      prev = parg++;
1748	      *ptemp++ = '\\';
1749	    }
1750	  strcpy (ptemp, prev);
1751
1752	  arg = temp;
1753	}
1754    }
1755
1756  /* The user might be reloading because the binary has changed.  Take
1757     this opportunity to check.  */
1758  reopen_exec_file ();
1759  reread_symbols ();
1760
1761  target_load (arg, from_tty);
1762
1763  /* After re-loading the executable, we don't really know which
1764     overlays are mapped any more.  */
1765  overlay_cache_invalid = 1;
1766}
1767
1768/* This version of "load" should be usable for any target.  Currently
1769   it is just used for remote targets, not inftarg.c or core files,
1770   on the theory that only in that case is it useful.
1771
1772   Avoiding xmodem and the like seems like a win (a) because we don't have
1773   to worry about finding it, and (b) On VMS, fork() is very slow and so
1774   we don't want to run a subprocess.  On the other hand, I'm not sure how
1775   performance compares.  */
1776
1777static int validate_download = 0;
1778
1779/* Callback service function for generic_load (bfd_map_over_sections).  */
1780
1781static void
1782add_section_size_callback (bfd *abfd, asection *asec, void *data)
1783{
1784  bfd_size_type *sum = data;
1785
1786  *sum += bfd_get_section_size (asec);
1787}
1788
1789/* Opaque data for load_section_callback.  */
1790struct load_section_data {
1791  unsigned long load_offset;
1792  struct load_progress_data *progress_data;
1793  VEC(memory_write_request_s) *requests;
1794};
1795
1796/* Opaque data for load_progress.  */
1797struct load_progress_data {
1798  /* Cumulative data.  */
1799  unsigned long write_count;
1800  unsigned long data_count;
1801  bfd_size_type total_size;
1802};
1803
1804/* Opaque data for load_progress for a single section.  */
1805struct load_progress_section_data {
1806  struct load_progress_data *cumulative;
1807
1808  /* Per-section data.  */
1809  const char *section_name;
1810  ULONGEST section_sent;
1811  ULONGEST section_size;
1812  CORE_ADDR lma;
1813  gdb_byte *buffer;
1814};
1815
1816/* Target write callback routine for progress reporting.  */
1817
1818static void
1819load_progress (ULONGEST bytes, void *untyped_arg)
1820{
1821  struct load_progress_section_data *args = untyped_arg;
1822  struct load_progress_data *totals;
1823
1824  if (args == NULL)
1825    /* Writing padding data.  No easy way to get at the cumulative
1826       stats, so just ignore this.  */
1827    return;
1828
1829  totals = args->cumulative;
1830
1831  if (bytes == 0 && args->section_sent == 0)
1832    {
1833      /* The write is just starting.  Let the user know we've started
1834	 this section.  */
1835      ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1836		      args->section_name, paddr_nz (args->section_size),
1837		      paddr_nz (args->lma));
1838      return;
1839    }
1840
1841  if (validate_download)
1842    {
1843      /* Broken memories and broken monitors manifest themselves here
1844	 when bring new computers to life.  This doubles already slow
1845	 downloads.  */
1846      /* NOTE: cagney/1999-10-18: A more efficient implementation
1847	 might add a verify_memory() method to the target vector and
1848	 then use that.  remote.c could implement that method using
1849	 the ``qCRC'' packet.  */
1850      gdb_byte *check = xmalloc (bytes);
1851      struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1852
1853      if (target_read_memory (args->lma, check, bytes) != 0)
1854	error (_("Download verify read failed at 0x%s"),
1855	       paddr (args->lma));
1856      if (memcmp (args->buffer, check, bytes) != 0)
1857	error (_("Download verify compare failed at 0x%s"),
1858	       paddr (args->lma));
1859      do_cleanups (verify_cleanups);
1860    }
1861  totals->data_count += bytes;
1862  args->lma += bytes;
1863  args->buffer += bytes;
1864  totals->write_count += 1;
1865  args->section_sent += bytes;
1866  if (quit_flag
1867      || (deprecated_ui_load_progress_hook != NULL
1868	  && deprecated_ui_load_progress_hook (args->section_name,
1869					       args->section_sent)))
1870    error (_("Canceled the download"));
1871
1872  if (deprecated_show_load_progress != NULL)
1873    deprecated_show_load_progress (args->section_name,
1874				   args->section_sent,
1875				   args->section_size,
1876				   totals->data_count,
1877				   totals->total_size);
1878}
1879
1880/* Callback service function for generic_load (bfd_map_over_sections).  */
1881
1882static void
1883load_section_callback (bfd *abfd, asection *asec, void *data)
1884{
1885  struct memory_write_request *new_request;
1886  struct load_section_data *args = data;
1887  struct load_progress_section_data *section_data;
1888  bfd_size_type size = bfd_get_section_size (asec);
1889  gdb_byte *buffer;
1890  const char *sect_name = bfd_get_section_name (abfd, asec);
1891
1892  if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1893    return;
1894
1895  if (size == 0)
1896    return;
1897
1898  new_request = VEC_safe_push (memory_write_request_s,
1899			       args->requests, NULL);
1900  memset (new_request, 0, sizeof (struct memory_write_request));
1901  section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1902  new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1903  new_request->end = new_request->begin + size; /* FIXME Should size be in instead?  */
1904  new_request->data = xmalloc (size);
1905  new_request->baton = section_data;
1906
1907  buffer = new_request->data;
1908
1909  section_data->cumulative = args->progress_data;
1910  section_data->section_name = sect_name;
1911  section_data->section_size = size;
1912  section_data->lma = new_request->begin;
1913  section_data->buffer = buffer;
1914
1915  bfd_get_section_contents (abfd, asec, buffer, 0, size);
1916}
1917
1918/* Clean up an entire memory request vector, including load
1919   data and progress records.  */
1920
1921static void
1922clear_memory_write_data (void *arg)
1923{
1924  VEC(memory_write_request_s) **vec_p = arg;
1925  VEC(memory_write_request_s) *vec = *vec_p;
1926  int i;
1927  struct memory_write_request *mr;
1928
1929  for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1930    {
1931      xfree (mr->data);
1932      xfree (mr->baton);
1933    }
1934  VEC_free (memory_write_request_s, vec);
1935}
1936
1937void
1938generic_load (char *args, int from_tty)
1939{
1940  bfd *loadfile_bfd;
1941  struct timeval start_time, end_time;
1942  char *filename;
1943  struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1944  struct load_section_data cbdata;
1945  struct load_progress_data total_progress;
1946
1947  CORE_ADDR entry;
1948  char **argv;
1949
1950  memset (&cbdata, 0, sizeof (cbdata));
1951  memset (&total_progress, 0, sizeof (total_progress));
1952  cbdata.progress_data = &total_progress;
1953
1954  make_cleanup (clear_memory_write_data, &cbdata.requests);
1955
1956  argv = buildargv (args);
1957
1958  if (argv == NULL)
1959    nomem(0);
1960
1961  make_cleanup_freeargv (argv);
1962
1963  filename = tilde_expand (argv[0]);
1964  make_cleanup (xfree, filename);
1965
1966  if (argv[1] != NULL)
1967    {
1968      char *endptr;
1969
1970      cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1971
1972      /* If the last word was not a valid number then
1973         treat it as a file name with spaces in.  */
1974      if (argv[1] == endptr)
1975        error (_("Invalid download offset:%s."), argv[1]);
1976
1977      if (argv[2] != NULL)
1978	error (_("Too many parameters."));
1979    }
1980
1981  /* Open the file for loading. */
1982  loadfile_bfd = bfd_openr (filename, gnutarget);
1983  if (loadfile_bfd == NULL)
1984    {
1985      perror_with_name (filename);
1986      return;
1987    }
1988
1989  /* FIXME: should be checking for errors from bfd_close (for one thing,
1990     on error it does not free all the storage associated with the
1991     bfd).  */
1992  make_cleanup_bfd_close (loadfile_bfd);
1993
1994  if (!bfd_check_format (loadfile_bfd, bfd_object))
1995    {
1996      error (_("\"%s\" is not an object file: %s"), filename,
1997	     bfd_errmsg (bfd_get_error ()));
1998    }
1999
2000  bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2001			 (void *) &total_progress.total_size);
2002
2003  bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2004
2005  gettimeofday (&start_time, NULL);
2006
2007  if (target_write_memory_blocks (cbdata.requests, flash_discard,
2008				  load_progress) != 0)
2009    error (_("Load failed"));
2010
2011  gettimeofday (&end_time, NULL);
2012
2013  entry = bfd_get_start_address (loadfile_bfd);
2014  ui_out_text (uiout, "Start address ");
2015  ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2016  ui_out_text (uiout, ", load size ");
2017  ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2018  ui_out_text (uiout, "\n");
2019  /* We were doing this in remote-mips.c, I suspect it is right
2020     for other targets too.  */
2021  write_pc (entry);
2022
2023  /* FIXME: are we supposed to call symbol_file_add or not?  According
2024     to a comment from remote-mips.c (where a call to symbol_file_add
2025     was commented out), making the call confuses GDB if more than one
2026     file is loaded in.  Some targets do (e.g., remote-vx.c) but
2027     others don't (or didn't - perhaps they have all been deleted).  */
2028
2029  print_transfer_performance (gdb_stdout, total_progress.data_count,
2030			      total_progress.write_count,
2031			      &start_time, &end_time);
2032
2033  do_cleanups (old_cleanups);
2034}
2035
2036/* Report how fast the transfer went. */
2037
2038/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2039   replaced by print_transfer_performance (with a very different
2040   function signature). */
2041
2042void
2043report_transfer_performance (unsigned long data_count, time_t start_time,
2044			     time_t end_time)
2045{
2046  struct timeval start, end;
2047
2048  start.tv_sec = start_time;
2049  start.tv_usec = 0;
2050  end.tv_sec = end_time;
2051  end.tv_usec = 0;
2052
2053  print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2054}
2055
2056void
2057print_transfer_performance (struct ui_file *stream,
2058			    unsigned long data_count,
2059			    unsigned long write_count,
2060			    const struct timeval *start_time,
2061			    const struct timeval *end_time)
2062{
2063  ULONGEST time_count;
2064
2065  /* Compute the elapsed time in milliseconds, as a tradeoff between
2066     accuracy and overflow.  */
2067  time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2068  time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2069
2070  ui_out_text (uiout, "Transfer rate: ");
2071  if (time_count > 0)
2072    {
2073      unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2074
2075      if (ui_out_is_mi_like_p (uiout))
2076	{
2077	  ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2078	  ui_out_text (uiout, " bits/sec");
2079	}
2080      else if (rate < 1024)
2081	{
2082	  ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2083	  ui_out_text (uiout, " bytes/sec");
2084	}
2085      else
2086	{
2087	  ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2088	  ui_out_text (uiout, " KB/sec");
2089	}
2090    }
2091  else
2092    {
2093      ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2094      ui_out_text (uiout, " bits in <1 sec");
2095    }
2096  if (write_count > 0)
2097    {
2098      ui_out_text (uiout, ", ");
2099      ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2100      ui_out_text (uiout, " bytes/write");
2101    }
2102  ui_out_text (uiout, ".\n");
2103}
2104
2105/* This function allows the addition of incrementally linked object files.
2106   It does not modify any state in the target, only in the debugger.  */
2107/* Note: ezannoni 2000-04-13 This function/command used to have a
2108   special case syntax for the rombug target (Rombug is the boot
2109   monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2110   rombug case, the user doesn't need to supply a text address,
2111   instead a call to target_link() (in target.c) would supply the
2112   value to use. We are now discontinuing this type of ad hoc syntax. */
2113
2114static void
2115add_symbol_file_command (char *args, int from_tty)
2116{
2117  char *filename = NULL;
2118  int flags = OBJF_USERLOADED;
2119  char *arg;
2120  int expecting_option = 0;
2121  int section_index = 0;
2122  int argcnt = 0;
2123  int sec_num = 0;
2124  int i;
2125  int expecting_sec_name = 0;
2126  int expecting_sec_addr = 0;
2127  char **argv;
2128
2129  struct sect_opt
2130  {
2131    char *name;
2132    char *value;
2133  };
2134
2135  struct section_addr_info *section_addrs;
2136  struct sect_opt *sect_opts = NULL;
2137  size_t num_sect_opts = 0;
2138  struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2139
2140  num_sect_opts = 16;
2141  sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2142					   * sizeof (struct sect_opt));
2143
2144  dont_repeat ();
2145
2146  if (args == NULL)
2147    error (_("add-symbol-file takes a file name and an address"));
2148
2149  argv = buildargv (args);
2150  make_cleanup_freeargv (argv);
2151
2152  if (argv == NULL)
2153    nomem (0);
2154
2155  for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2156    {
2157      /* Process the argument. */
2158      if (argcnt == 0)
2159	{
2160	  /* The first argument is the file name. */
2161	  filename = tilde_expand (arg);
2162	  make_cleanup (xfree, filename);
2163	}
2164      else
2165	if (argcnt == 1)
2166	  {
2167	    /* The second argument is always the text address at which
2168               to load the program. */
2169	    sect_opts[section_index].name = ".text";
2170	    sect_opts[section_index].value = arg;
2171	    if (++section_index >= num_sect_opts)
2172	      {
2173		num_sect_opts *= 2;
2174		sect_opts = ((struct sect_opt *)
2175			     xrealloc (sect_opts,
2176				       num_sect_opts
2177				       * sizeof (struct sect_opt)));
2178	      }
2179	  }
2180	else
2181	  {
2182	    /* It's an option (starting with '-') or it's an argument
2183	       to an option */
2184
2185	    if (*arg == '-')
2186	      {
2187		if (strcmp (arg, "-readnow") == 0)
2188		  flags |= OBJF_READNOW;
2189		else if (strcmp (arg, "-s") == 0)
2190		  {
2191		    expecting_sec_name = 1;
2192		    expecting_sec_addr = 1;
2193		  }
2194	      }
2195	    else
2196	      {
2197		if (expecting_sec_name)
2198		  {
2199		    sect_opts[section_index].name = arg;
2200		    expecting_sec_name = 0;
2201		  }
2202		else
2203		  if (expecting_sec_addr)
2204		    {
2205		      sect_opts[section_index].value = arg;
2206		      expecting_sec_addr = 0;
2207		      if (++section_index >= num_sect_opts)
2208			{
2209			  num_sect_opts *= 2;
2210			  sect_opts = ((struct sect_opt *)
2211				       xrealloc (sect_opts,
2212						 num_sect_opts
2213						 * sizeof (struct sect_opt)));
2214			}
2215		    }
2216		  else
2217		    error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2218	      }
2219	  }
2220    }
2221
2222  /* This command takes at least two arguments.  The first one is a
2223     filename, and the second is the address where this file has been
2224     loaded.  Abort now if this address hasn't been provided by the
2225     user.  */
2226  if (section_index < 1)
2227    error (_("The address where %s has been loaded is missing"), filename);
2228
2229  /* Print the prompt for the query below. And save the arguments into
2230     a sect_addr_info structure to be passed around to other
2231     functions.  We have to split this up into separate print
2232     statements because hex_string returns a local static
2233     string. */
2234
2235  printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2236  section_addrs = alloc_section_addr_info (section_index);
2237  make_cleanup (xfree, section_addrs);
2238  for (i = 0; i < section_index; i++)
2239    {
2240      CORE_ADDR addr;
2241      char *val = sect_opts[i].value;
2242      char *sec = sect_opts[i].name;
2243
2244      addr = parse_and_eval_address (val);
2245
2246      /* Here we store the section offsets in the order they were
2247         entered on the command line. */
2248      section_addrs->other[sec_num].name = sec;
2249      section_addrs->other[sec_num].addr = addr;
2250      printf_unfiltered ("\t%s_addr = %s\n",
2251		       sec, hex_string ((unsigned long)addr));
2252      sec_num++;
2253
2254      /* The object's sections are initialized when a
2255	 call is made to build_objfile_section_table (objfile).
2256	 This happens in reread_symbols.
2257	 At this point, we don't know what file type this is,
2258	 so we can't determine what section names are valid.  */
2259    }
2260
2261  if (from_tty && (!query ("%s", "")))
2262    error (_("Not confirmed."));
2263
2264  symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2265
2266  /* Getting new symbols may change our opinion about what is
2267     frameless.  */
2268  reinit_frame_cache ();
2269  do_cleanups (my_cleanups);
2270}
2271
2272static void
2273add_shared_symbol_files_command (char *args, int from_tty)
2274{
2275#ifdef ADD_SHARED_SYMBOL_FILES
2276  ADD_SHARED_SYMBOL_FILES (args, from_tty);
2277#else
2278  error (_("This command is not available in this configuration of GDB."));
2279#endif
2280}
2281
2282/* Re-read symbols if a symbol-file has changed.  */
2283void
2284reread_symbols (void)
2285{
2286  struct objfile *objfile;
2287  long new_modtime;
2288  int reread_one = 0;
2289  struct stat new_statbuf;
2290  int res;
2291
2292  /* With the addition of shared libraries, this should be modified,
2293     the load time should be saved in the partial symbol tables, since
2294     different tables may come from different source files.  FIXME.
2295     This routine should then walk down each partial symbol table
2296     and see if the symbol table that it originates from has been changed */
2297
2298  for (objfile = object_files; objfile; objfile = objfile->next)
2299    {
2300      if (objfile->obfd)
2301	{
2302#ifdef DEPRECATED_IBM6000_TARGET
2303	  /* If this object is from a shared library, then you should
2304	     stat on the library name, not member name. */
2305
2306	  if (objfile->obfd->my_archive)
2307	    res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2308	  else
2309#endif
2310	    res = stat (objfile->name, &new_statbuf);
2311	  if (res != 0)
2312	    {
2313	      /* FIXME, should use print_sys_errmsg but it's not filtered. */
2314	      printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2315			       objfile->name);
2316	      continue;
2317	    }
2318	  new_modtime = new_statbuf.st_mtime;
2319	  if (new_modtime != objfile->mtime)
2320	    {
2321	      struct cleanup *old_cleanups;
2322	      struct section_offsets *offsets;
2323	      int num_offsets;
2324	      char *obfd_filename;
2325
2326	      printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2327			       objfile->name);
2328
2329	      /* There are various functions like symbol_file_add,
2330	         symfile_bfd_open, syms_from_objfile, etc., which might
2331	         appear to do what we want.  But they have various other
2332	         effects which we *don't* want.  So we just do stuff
2333	         ourselves.  We don't worry about mapped files (for one thing,
2334	         any mapped file will be out of date).  */
2335
2336	      /* If we get an error, blow away this objfile (not sure if
2337	         that is the correct response for things like shared
2338	         libraries).  */
2339	      old_cleanups = make_cleanup_free_objfile (objfile);
2340	      /* We need to do this whenever any symbols go away.  */
2341	      make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2342
2343	      /* Clean up any state BFD has sitting around.  We don't need
2344	         to close the descriptor but BFD lacks a way of closing the
2345	         BFD without closing the descriptor.  */
2346	      obfd_filename = bfd_get_filename (objfile->obfd);
2347	      if (!bfd_close (objfile->obfd))
2348		error (_("Can't close BFD for %s: %s"), objfile->name,
2349		       bfd_errmsg (bfd_get_error ()));
2350	      objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2351	      if (objfile->obfd == NULL)
2352		error (_("Can't open %s to read symbols."), objfile->name);
2353	      /* bfd_openr sets cacheable to true, which is what we want.  */
2354	      if (!bfd_check_format (objfile->obfd, bfd_object))
2355		error (_("Can't read symbols from %s: %s."), objfile->name,
2356		       bfd_errmsg (bfd_get_error ()));
2357
2358	      /* Save the offsets, we will nuke them with the rest of the
2359	         objfile_obstack.  */
2360	      num_offsets = objfile->num_sections;
2361	      offsets = ((struct section_offsets *)
2362			 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2363	      memcpy (offsets, objfile->section_offsets,
2364		      SIZEOF_N_SECTION_OFFSETS (num_offsets));
2365
2366	      /* Remove any references to this objfile in the global
2367		 value lists.  */
2368	      preserve_values (objfile);
2369
2370	      /* Nuke all the state that we will re-read.  Much of the following
2371	         code which sets things to NULL really is necessary to tell
2372	         other parts of GDB that there is nothing currently there.  */
2373
2374	      /* FIXME: Do we have to free a whole linked list, or is this
2375	         enough?  */
2376	      if (objfile->global_psymbols.list)
2377		xfree (objfile->global_psymbols.list);
2378	      memset (&objfile->global_psymbols, 0,
2379		      sizeof (objfile->global_psymbols));
2380	      if (objfile->static_psymbols.list)
2381		xfree (objfile->static_psymbols.list);
2382	      memset (&objfile->static_psymbols, 0,
2383		      sizeof (objfile->static_psymbols));
2384
2385	      /* Free the obstacks for non-reusable objfiles */
2386	      bcache_xfree (objfile->psymbol_cache);
2387	      objfile->psymbol_cache = bcache_xmalloc ();
2388	      bcache_xfree (objfile->macro_cache);
2389	      objfile->macro_cache = bcache_xmalloc ();
2390	      if (objfile->demangled_names_hash != NULL)
2391		{
2392		  htab_delete (objfile->demangled_names_hash);
2393		  objfile->demangled_names_hash = NULL;
2394		}
2395	      obstack_free (&objfile->objfile_obstack, 0);
2396	      objfile->sections = NULL;
2397	      objfile->symtabs = NULL;
2398	      objfile->psymtabs = NULL;
2399	      objfile->free_psymtabs = NULL;
2400	      objfile->cp_namespace_symtab = NULL;
2401	      objfile->msymbols = NULL;
2402	      objfile->deprecated_sym_private = NULL;
2403	      objfile->minimal_symbol_count = 0;
2404	      memset (&objfile->msymbol_hash, 0,
2405		      sizeof (objfile->msymbol_hash));
2406	      memset (&objfile->msymbol_demangled_hash, 0,
2407		      sizeof (objfile->msymbol_demangled_hash));
2408	      objfile->fundamental_types = NULL;
2409	      clear_objfile_data (objfile);
2410	      if (objfile->sf != NULL)
2411		{
2412		  (*objfile->sf->sym_finish) (objfile);
2413		}
2414
2415	      /* We never make this a mapped file.  */
2416	      objfile->md = NULL;
2417	      objfile->psymbol_cache = bcache_xmalloc ();
2418	      objfile->macro_cache = bcache_xmalloc ();
2419	      /* obstack_init also initializes the obstack so it is
2420	         empty.  We could use obstack_specify_allocation but
2421	         gdb_obstack.h specifies the alloc/dealloc
2422	         functions.  */
2423	      obstack_init (&objfile->objfile_obstack);
2424	      if (build_objfile_section_table (objfile))
2425		{
2426		  error (_("Can't find the file sections in `%s': %s"),
2427			 objfile->name, bfd_errmsg (bfd_get_error ()));
2428		}
2429              terminate_minimal_symbol_table (objfile);
2430
2431	      /* We use the same section offsets as from last time.  I'm not
2432	         sure whether that is always correct for shared libraries.  */
2433	      objfile->section_offsets = (struct section_offsets *)
2434		obstack_alloc (&objfile->objfile_obstack,
2435			       SIZEOF_N_SECTION_OFFSETS (num_offsets));
2436	      memcpy (objfile->section_offsets, offsets,
2437		      SIZEOF_N_SECTION_OFFSETS (num_offsets));
2438	      objfile->num_sections = num_offsets;
2439
2440	      /* What the hell is sym_new_init for, anyway?  The concept of
2441	         distinguishing between the main file and additional files
2442	         in this way seems rather dubious.  */
2443	      if (objfile == symfile_objfile)
2444		{
2445		  (*objfile->sf->sym_new_init) (objfile);
2446		}
2447
2448	      (*objfile->sf->sym_init) (objfile);
2449	      clear_complaints (&symfile_complaints, 1, 1);
2450	      /* The "mainline" parameter is a hideous hack; I think leaving it
2451	         zero is OK since dbxread.c also does what it needs to do if
2452	         objfile->global_psymbols.size is 0.  */
2453	      (*objfile->sf->sym_read) (objfile, 0);
2454	      if (!have_partial_symbols () && !have_full_symbols ())
2455		{
2456		  wrap_here ("");
2457		  printf_unfiltered (_("(no debugging symbols found)\n"));
2458		  wrap_here ("");
2459		}
2460	      objfile->flags |= OBJF_SYMS;
2461
2462	      /* We're done reading the symbol file; finish off complaints.  */
2463	      clear_complaints (&symfile_complaints, 0, 1);
2464
2465	      /* Getting new symbols may change our opinion about what is
2466	         frameless.  */
2467
2468	      reinit_frame_cache ();
2469
2470	      /* Discard cleanups as symbol reading was successful.  */
2471	      discard_cleanups (old_cleanups);
2472
2473	      /* If the mtime has changed between the time we set new_modtime
2474	         and now, we *want* this to be out of date, so don't call stat
2475	         again now.  */
2476	      objfile->mtime = new_modtime;
2477	      reread_one = 1;
2478              reread_separate_symbols (objfile);
2479	    }
2480	}
2481    }
2482
2483  if (reread_one)
2484    {
2485      clear_symtab_users ();
2486      /* At least one objfile has changed, so we can consider that
2487         the executable we're debugging has changed too.  */
2488      observer_notify_executable_changed (NULL);
2489    }
2490
2491}
2492
2493
2494/* Handle separate debug info for OBJFILE, which has just been
2495   re-read:
2496   - If we had separate debug info before, but now we don't, get rid
2497     of the separated objfile.
2498   - If we didn't have separated debug info before, but now we do,
2499     read in the new separated debug info file.
2500   - If the debug link points to a different file, toss the old one
2501     and read the new one.
2502   This function does *not* handle the case where objfile is still
2503   using the same separate debug info file, but that file's timestamp
2504   has changed.  That case should be handled by the loop in
2505   reread_symbols already.  */
2506static void
2507reread_separate_symbols (struct objfile *objfile)
2508{
2509  char *debug_file;
2510  unsigned long crc32;
2511
2512  /* Does the updated objfile's debug info live in a
2513     separate file?  */
2514  debug_file = find_separate_debug_file (objfile);
2515
2516  if (objfile->separate_debug_objfile)
2517    {
2518      /* There are two cases where we need to get rid of
2519         the old separated debug info objfile:
2520         - if the new primary objfile doesn't have
2521         separated debug info, or
2522         - if the new primary objfile has separate debug
2523         info, but it's under a different filename.
2524
2525         If the old and new objfiles both have separate
2526         debug info, under the same filename, then we're
2527         okay --- if the separated file's contents have
2528         changed, we will have caught that when we
2529         visited it in this function's outermost
2530         loop.  */
2531      if (! debug_file
2532          || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2533        free_objfile (objfile->separate_debug_objfile);
2534    }
2535
2536  /* If the new objfile has separate debug info, and we
2537     haven't loaded it already, do so now.  */
2538  if (debug_file
2539      && ! objfile->separate_debug_objfile)
2540    {
2541      /* Use the same section offset table as objfile itself.
2542         Preserve the flags from objfile that make sense.  */
2543      objfile->separate_debug_objfile
2544        = (symbol_file_add_with_addrs_or_offsets
2545           (symfile_bfd_open (debug_file),
2546            info_verbose, /* from_tty: Don't override the default. */
2547            0, /* No addr table.  */
2548            objfile->section_offsets, objfile->num_sections,
2549            0, /* Not mainline.  See comments about this above.  */
2550            objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2551                              | OBJF_USERLOADED)));
2552      objfile->separate_debug_objfile->separate_debug_objfile_backlink
2553        = objfile;
2554    }
2555  if (debug_file)
2556    xfree (debug_file);
2557}
2558
2559
2560
2561
2562
2563typedef struct
2564{
2565  char *ext;
2566  enum language lang;
2567}
2568filename_language;
2569
2570static filename_language *filename_language_table;
2571static int fl_table_size, fl_table_next;
2572
2573static void
2574add_filename_language (char *ext, enum language lang)
2575{
2576  if (fl_table_next >= fl_table_size)
2577    {
2578      fl_table_size += 10;
2579      filename_language_table =
2580	xrealloc (filename_language_table,
2581		  fl_table_size * sizeof (*filename_language_table));
2582    }
2583
2584  filename_language_table[fl_table_next].ext = xstrdup (ext);
2585  filename_language_table[fl_table_next].lang = lang;
2586  fl_table_next++;
2587}
2588
2589static char *ext_args;
2590static void
2591show_ext_args (struct ui_file *file, int from_tty,
2592	       struct cmd_list_element *c, const char *value)
2593{
2594  fprintf_filtered (file, _("\
2595Mapping between filename extension and source language is \"%s\".\n"),
2596		    value);
2597}
2598
2599static void
2600set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2601{
2602  int i;
2603  char *cp = ext_args;
2604  enum language lang;
2605
2606  /* First arg is filename extension, starting with '.' */
2607  if (*cp != '.')
2608    error (_("'%s': Filename extension must begin with '.'"), ext_args);
2609
2610  /* Find end of first arg.  */
2611  while (*cp && !isspace (*cp))
2612    cp++;
2613
2614  if (*cp == '\0')
2615    error (_("'%s': two arguments required -- filename extension and language"),
2616	   ext_args);
2617
2618  /* Null-terminate first arg */
2619  *cp++ = '\0';
2620
2621  /* Find beginning of second arg, which should be a source language.  */
2622  while (*cp && isspace (*cp))
2623    cp++;
2624
2625  if (*cp == '\0')
2626    error (_("'%s': two arguments required -- filename extension and language"),
2627	   ext_args);
2628
2629  /* Lookup the language from among those we know.  */
2630  lang = language_enum (cp);
2631
2632  /* Now lookup the filename extension: do we already know it?  */
2633  for (i = 0; i < fl_table_next; i++)
2634    if (0 == strcmp (ext_args, filename_language_table[i].ext))
2635      break;
2636
2637  if (i >= fl_table_next)
2638    {
2639      /* new file extension */
2640      add_filename_language (ext_args, lang);
2641    }
2642  else
2643    {
2644      /* redefining a previously known filename extension */
2645
2646      /* if (from_tty) */
2647      /*   query ("Really make files of type %s '%s'?", */
2648      /*          ext_args, language_str (lang));           */
2649
2650      xfree (filename_language_table[i].ext);
2651      filename_language_table[i].ext = xstrdup (ext_args);
2652      filename_language_table[i].lang = lang;
2653    }
2654}
2655
2656static void
2657info_ext_lang_command (char *args, int from_tty)
2658{
2659  int i;
2660
2661  printf_filtered (_("Filename extensions and the languages they represent:"));
2662  printf_filtered ("\n\n");
2663  for (i = 0; i < fl_table_next; i++)
2664    printf_filtered ("\t%s\t- %s\n",
2665		     filename_language_table[i].ext,
2666		     language_str (filename_language_table[i].lang));
2667}
2668
2669static void
2670init_filename_language_table (void)
2671{
2672  if (fl_table_size == 0)	/* protect against repetition */
2673    {
2674      fl_table_size = 20;
2675      fl_table_next = 0;
2676      filename_language_table =
2677	xmalloc (fl_table_size * sizeof (*filename_language_table));
2678      add_filename_language (".c", language_c);
2679      add_filename_language (".C", language_cplus);
2680      add_filename_language (".cc", language_cplus);
2681      add_filename_language (".cp", language_cplus);
2682      add_filename_language (".cpp", language_cplus);
2683      add_filename_language (".cxx", language_cplus);
2684      add_filename_language (".c++", language_cplus);
2685      add_filename_language (".java", language_java);
2686      add_filename_language (".class", language_java);
2687      add_filename_language (".m", language_objc);
2688      add_filename_language (".f", language_fortran);
2689      add_filename_language (".F", language_fortran);
2690      add_filename_language (".s", language_asm);
2691      add_filename_language (".S", language_asm);
2692      add_filename_language (".pas", language_pascal);
2693      add_filename_language (".p", language_pascal);
2694      add_filename_language (".pp", language_pascal);
2695      add_filename_language (".adb", language_ada);
2696      add_filename_language (".ads", language_ada);
2697      add_filename_language (".a", language_ada);
2698      add_filename_language (".ada", language_ada);
2699    }
2700}
2701
2702enum language
2703deduce_language_from_filename (char *filename)
2704{
2705  int i;
2706  char *cp;
2707
2708  if (filename != NULL)
2709    if ((cp = strrchr (filename, '.')) != NULL)
2710      for (i = 0; i < fl_table_next; i++)
2711	if (strcmp (cp, filename_language_table[i].ext) == 0)
2712	  return filename_language_table[i].lang;
2713
2714  return language_unknown;
2715}
2716
2717/* allocate_symtab:
2718
2719   Allocate and partly initialize a new symbol table.  Return a pointer
2720   to it.  error() if no space.
2721
2722   Caller must set these fields:
2723   LINETABLE(symtab)
2724   symtab->blockvector
2725   symtab->dirname
2726   symtab->free_code
2727   symtab->free_ptr
2728   possibly free_named_symtabs (symtab->filename);
2729 */
2730
2731struct symtab *
2732allocate_symtab (char *filename, struct objfile *objfile)
2733{
2734  struct symtab *symtab;
2735
2736  symtab = (struct symtab *)
2737    obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2738  memset (symtab, 0, sizeof (*symtab));
2739  symtab->filename = obsavestring (filename, strlen (filename),
2740				   &objfile->objfile_obstack);
2741  symtab->fullname = NULL;
2742  symtab->language = deduce_language_from_filename (filename);
2743  symtab->debugformat = obsavestring ("unknown", 7,
2744				      &objfile->objfile_obstack);
2745
2746  /* Hook it to the objfile it comes from */
2747
2748  symtab->objfile = objfile;
2749  symtab->next = objfile->symtabs;
2750  objfile->symtabs = symtab;
2751
2752  return (symtab);
2753}
2754
2755struct partial_symtab *
2756allocate_psymtab (char *filename, struct objfile *objfile)
2757{
2758  struct partial_symtab *psymtab;
2759
2760  if (objfile->free_psymtabs)
2761    {
2762      psymtab = objfile->free_psymtabs;
2763      objfile->free_psymtabs = psymtab->next;
2764    }
2765  else
2766    psymtab = (struct partial_symtab *)
2767      obstack_alloc (&objfile->objfile_obstack,
2768		     sizeof (struct partial_symtab));
2769
2770  memset (psymtab, 0, sizeof (struct partial_symtab));
2771  psymtab->filename = obsavestring (filename, strlen (filename),
2772				    &objfile->objfile_obstack);
2773  psymtab->symtab = NULL;
2774
2775  /* Prepend it to the psymtab list for the objfile it belongs to.
2776     Psymtabs are searched in most recent inserted -> least recent
2777     inserted order. */
2778
2779  psymtab->objfile = objfile;
2780  psymtab->next = objfile->psymtabs;
2781  objfile->psymtabs = psymtab;
2782#if 0
2783  {
2784    struct partial_symtab **prev_pst;
2785    psymtab->objfile = objfile;
2786    psymtab->next = NULL;
2787    prev_pst = &(objfile->psymtabs);
2788    while ((*prev_pst) != NULL)
2789      prev_pst = &((*prev_pst)->next);
2790    (*prev_pst) = psymtab;
2791  }
2792#endif
2793
2794  return (psymtab);
2795}
2796
2797void
2798discard_psymtab (struct partial_symtab *pst)
2799{
2800  struct partial_symtab **prev_pst;
2801
2802  /* From dbxread.c:
2803     Empty psymtabs happen as a result of header files which don't
2804     have any symbols in them.  There can be a lot of them.  But this
2805     check is wrong, in that a psymtab with N_SLINE entries but
2806     nothing else is not empty, but we don't realize that.  Fixing
2807     that without slowing things down might be tricky.  */
2808
2809  /* First, snip it out of the psymtab chain */
2810
2811  prev_pst = &(pst->objfile->psymtabs);
2812  while ((*prev_pst) != pst)
2813    prev_pst = &((*prev_pst)->next);
2814  (*prev_pst) = pst->next;
2815
2816  /* Next, put it on a free list for recycling */
2817
2818  pst->next = pst->objfile->free_psymtabs;
2819  pst->objfile->free_psymtabs = pst;
2820}
2821
2822
2823/* Reset all data structures in gdb which may contain references to symbol
2824   table data.  */
2825
2826void
2827clear_symtab_users (void)
2828{
2829  /* Someday, we should do better than this, by only blowing away
2830     the things that really need to be blown.  */
2831
2832  /* Clear the "current" symtab first, because it is no longer valid.
2833     breakpoint_re_set may try to access the current symtab.  */
2834  clear_current_source_symtab_and_line ();
2835
2836  clear_displays ();
2837  breakpoint_re_set ();
2838  set_default_breakpoint (0, 0, 0, 0);
2839  clear_pc_function_cache ();
2840  observer_notify_new_objfile (NULL);
2841
2842  /* Clear globals which might have pointed into a removed objfile.
2843     FIXME: It's not clear which of these are supposed to persist
2844     between expressions and which ought to be reset each time.  */
2845  expression_context_block = NULL;
2846  innermost_block = NULL;
2847
2848  /* Varobj may refer to old symbols, perform a cleanup.  */
2849  varobj_invalidate ();
2850
2851}
2852
2853static void
2854clear_symtab_users_cleanup (void *ignore)
2855{
2856  clear_symtab_users ();
2857}
2858
2859/* clear_symtab_users_once:
2860
2861   This function is run after symbol reading, or from a cleanup.
2862   If an old symbol table was obsoleted, the old symbol table
2863   has been blown away, but the other GDB data structures that may
2864   reference it have not yet been cleared or re-directed.  (The old
2865   symtab was zapped, and the cleanup queued, in free_named_symtab()
2866   below.)
2867
2868   This function can be queued N times as a cleanup, or called
2869   directly; it will do all the work the first time, and then will be a
2870   no-op until the next time it is queued.  This works by bumping a
2871   counter at queueing time.  Much later when the cleanup is run, or at
2872   the end of symbol processing (in case the cleanup is discarded), if
2873   the queued count is greater than the "done-count", we do the work
2874   and set the done-count to the queued count.  If the queued count is
2875   less than or equal to the done-count, we just ignore the call.  This
2876   is needed because reading a single .o file will often replace many
2877   symtabs (one per .h file, for example), and we don't want to reset
2878   the breakpoints N times in the user's face.
2879
2880   The reason we both queue a cleanup, and call it directly after symbol
2881   reading, is because the cleanup protects us in case of errors, but is
2882   discarded if symbol reading is successful.  */
2883
2884#if 0
2885/* FIXME:  As free_named_symtabs is currently a big noop this function
2886   is no longer needed.  */
2887static void clear_symtab_users_once (void);
2888
2889static int clear_symtab_users_queued;
2890static int clear_symtab_users_done;
2891
2892static void
2893clear_symtab_users_once (void)
2894{
2895  /* Enforce once-per-`do_cleanups'-semantics */
2896  if (clear_symtab_users_queued <= clear_symtab_users_done)
2897    return;
2898  clear_symtab_users_done = clear_symtab_users_queued;
2899
2900  clear_symtab_users ();
2901}
2902#endif
2903
2904/* Delete the specified psymtab, and any others that reference it.  */
2905
2906static void
2907cashier_psymtab (struct partial_symtab *pst)
2908{
2909  struct partial_symtab *ps, *pprev = NULL;
2910  int i;
2911
2912  /* Find its previous psymtab in the chain */
2913  for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2914    {
2915      if (ps == pst)
2916	break;
2917      pprev = ps;
2918    }
2919
2920  if (ps)
2921    {
2922      /* Unhook it from the chain.  */
2923      if (ps == pst->objfile->psymtabs)
2924	pst->objfile->psymtabs = ps->next;
2925      else
2926	pprev->next = ps->next;
2927
2928      /* FIXME, we can't conveniently deallocate the entries in the
2929         partial_symbol lists (global_psymbols/static_psymbols) that
2930         this psymtab points to.  These just take up space until all
2931         the psymtabs are reclaimed.  Ditto the dependencies list and
2932         filename, which are all in the objfile_obstack.  */
2933
2934      /* We need to cashier any psymtab that has this one as a dependency... */
2935    again:
2936      for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2937	{
2938	  for (i = 0; i < ps->number_of_dependencies; i++)
2939	    {
2940	      if (ps->dependencies[i] == pst)
2941		{
2942		  cashier_psymtab (ps);
2943		  goto again;	/* Must restart, chain has been munged. */
2944		}
2945	    }
2946	}
2947    }
2948}
2949
2950/* If a symtab or psymtab for filename NAME is found, free it along
2951   with any dependent breakpoints, displays, etc.
2952   Used when loading new versions of object modules with the "add-file"
2953   command.  This is only called on the top-level symtab or psymtab's name;
2954   it is not called for subsidiary files such as .h files.
2955
2956   Return value is 1 if we blew away the environment, 0 if not.
2957   FIXME.  The return value appears to never be used.
2958
2959   FIXME.  I think this is not the best way to do this.  We should
2960   work on being gentler to the environment while still cleaning up
2961   all stray pointers into the freed symtab.  */
2962
2963int
2964free_named_symtabs (char *name)
2965{
2966#if 0
2967  /* FIXME:  With the new method of each objfile having it's own
2968     psymtab list, this function needs serious rethinking.  In particular,
2969     why was it ever necessary to toss psymtabs with specific compilation
2970     unit filenames, as opposed to all psymtabs from a particular symbol
2971     file?  -- fnf
2972     Well, the answer is that some systems permit reloading of particular
2973     compilation units.  We want to blow away any old info about these
2974     compilation units, regardless of which objfiles they arrived in. --gnu.  */
2975
2976  struct symtab *s;
2977  struct symtab *prev;
2978  struct partial_symtab *ps;
2979  struct blockvector *bv;
2980  int blewit = 0;
2981
2982  /* We only wack things if the symbol-reload switch is set.  */
2983  if (!symbol_reloading)
2984    return 0;
2985
2986  /* Some symbol formats have trouble providing file names... */
2987  if (name == 0 || *name == '\0')
2988    return 0;
2989
2990  /* Look for a psymtab with the specified name.  */
2991
2992again2:
2993  for (ps = partial_symtab_list; ps; ps = ps->next)
2994    {
2995      if (strcmp (name, ps->filename) == 0)
2996	{
2997	  cashier_psymtab (ps);	/* Blow it away...and its little dog, too.  */
2998	  goto again2;		/* Must restart, chain has been munged */
2999	}
3000    }
3001
3002  /* Look for a symtab with the specified name.  */
3003
3004  for (s = symtab_list; s; s = s->next)
3005    {
3006      if (strcmp (name, s->filename) == 0)
3007	break;
3008      prev = s;
3009    }
3010
3011  if (s)
3012    {
3013      if (s == symtab_list)
3014	symtab_list = s->next;
3015      else
3016	prev->next = s->next;
3017
3018      /* For now, queue a delete for all breakpoints, displays, etc., whether
3019         or not they depend on the symtab being freed.  This should be
3020         changed so that only those data structures affected are deleted.  */
3021
3022      /* But don't delete anything if the symtab is empty.
3023         This test is necessary due to a bug in "dbxread.c" that
3024         causes empty symtabs to be created for N_SO symbols that
3025         contain the pathname of the object file.  (This problem
3026         has been fixed in GDB 3.9x).  */
3027
3028      bv = BLOCKVECTOR (s);
3029      if (BLOCKVECTOR_NBLOCKS (bv) > 2
3030	  || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3031	  || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3032	{
3033	  complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3034		     name);
3035	  clear_symtab_users_queued++;
3036	  make_cleanup (clear_symtab_users_once, 0);
3037	  blewit = 1;
3038	}
3039      else
3040	complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3041		   name);
3042
3043      free_symtab (s);
3044    }
3045  else
3046    {
3047      /* It is still possible that some breakpoints will be affected
3048         even though no symtab was found, since the file might have
3049         been compiled without debugging, and hence not be associated
3050         with a symtab.  In order to handle this correctly, we would need
3051         to keep a list of text address ranges for undebuggable files.
3052         For now, we do nothing, since this is a fairly obscure case.  */
3053      ;
3054    }
3055
3056  /* FIXME, what about the minimal symbol table? */
3057  return blewit;
3058#else
3059  return (0);
3060#endif
3061}
3062
3063/* Allocate and partially fill a partial symtab.  It will be
3064   completely filled at the end of the symbol list.
3065
3066   FILENAME is the name of the symbol-file we are reading from. */
3067
3068struct partial_symtab *
3069start_psymtab_common (struct objfile *objfile,
3070		      struct section_offsets *section_offsets, char *filename,
3071		      CORE_ADDR textlow, struct partial_symbol **global_syms,
3072		      struct partial_symbol **static_syms)
3073{
3074  struct partial_symtab *psymtab;
3075
3076  psymtab = allocate_psymtab (filename, objfile);
3077  psymtab->section_offsets = section_offsets;
3078  psymtab->textlow = textlow;
3079  psymtab->texthigh = psymtab->textlow;		/* default */
3080  psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3081  psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3082  return (psymtab);
3083}
3084
3085/* Add a symbol with a long value to a psymtab.
3086   Since one arg is a struct, we pass in a ptr and deref it (sigh).
3087   Return the partial symbol that has been added.  */
3088
3089/* NOTE: carlton/2003-09-11: The reason why we return the partial
3090   symbol is so that callers can get access to the symbol's demangled
3091   name, which they don't have any cheap way to determine otherwise.
3092   (Currenly, dwarf2read.c is the only file who uses that information,
3093   though it's possible that other readers might in the future.)
3094   Elena wasn't thrilled about that, and I don't blame her, but we
3095   couldn't come up with a better way to get that information.  If
3096   it's needed in other situations, we could consider breaking up
3097   SYMBOL_SET_NAMES to provide access to the demangled name lookup
3098   cache.  */
3099
3100const struct partial_symbol *
3101add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3102		     enum address_class class,
3103		     struct psymbol_allocation_list *list, long val,	/* Value as a long */
3104		     CORE_ADDR coreaddr,	/* Value as a CORE_ADDR */
3105		     enum language language, struct objfile *objfile)
3106{
3107  struct partial_symbol *psym;
3108  char *buf = alloca (namelength + 1);
3109  /* psymbol is static so that there will be no uninitialized gaps in the
3110     structure which might contain random data, causing cache misses in
3111     bcache. */
3112  static struct partial_symbol psymbol;
3113
3114  /* Create local copy of the partial symbol */
3115  memcpy (buf, name, namelength);
3116  buf[namelength] = '\0';
3117  /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3118  if (val != 0)
3119    {
3120      SYMBOL_VALUE (&psymbol) = val;
3121    }
3122  else
3123    {
3124      SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3125    }
3126  SYMBOL_SECTION (&psymbol) = 0;
3127  SYMBOL_LANGUAGE (&psymbol) = language;
3128  PSYMBOL_DOMAIN (&psymbol) = domain;
3129  PSYMBOL_CLASS (&psymbol) = class;
3130
3131  SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3132
3133  /* Stash the partial symbol away in the cache */
3134  psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3135			    objfile->psymbol_cache);
3136
3137  /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3138  if (list->next >= list->list + list->size)
3139    {
3140      extend_psymbol_list (list, objfile);
3141    }
3142  *list->next++ = psym;
3143  OBJSTAT (objfile, n_psyms++);
3144
3145  return psym;
3146}
3147
3148/* Initialize storage for partial symbols.  */
3149
3150void
3151init_psymbol_list (struct objfile *objfile, int total_symbols)
3152{
3153  /* Free any previously allocated psymbol lists.  */
3154
3155  if (objfile->global_psymbols.list)
3156    {
3157      xfree (objfile->global_psymbols.list);
3158    }
3159  if (objfile->static_psymbols.list)
3160    {
3161      xfree (objfile->static_psymbols.list);
3162    }
3163
3164  /* Current best guess is that approximately a twentieth
3165     of the total symbols (in a debugging file) are global or static
3166     oriented symbols */
3167
3168  objfile->global_psymbols.size = total_symbols / 10;
3169  objfile->static_psymbols.size = total_symbols / 10;
3170
3171  if (objfile->global_psymbols.size > 0)
3172    {
3173      objfile->global_psymbols.next =
3174	objfile->global_psymbols.list = (struct partial_symbol **)
3175	xmalloc ((objfile->global_psymbols.size
3176		  * sizeof (struct partial_symbol *)));
3177    }
3178  if (objfile->static_psymbols.size > 0)
3179    {
3180      objfile->static_psymbols.next =
3181	objfile->static_psymbols.list = (struct partial_symbol **)
3182	xmalloc ((objfile->static_psymbols.size
3183		  * sizeof (struct partial_symbol *)));
3184    }
3185}
3186
3187/* OVERLAYS:
3188   The following code implements an abstraction for debugging overlay sections.
3189
3190   The target model is as follows:
3191   1) The gnu linker will permit multiple sections to be mapped into the
3192   same VMA, each with its own unique LMA (or load address).
3193   2) It is assumed that some runtime mechanism exists for mapping the
3194   sections, one by one, from the load address into the VMA address.
3195   3) This code provides a mechanism for gdb to keep track of which
3196   sections should be considered to be mapped from the VMA to the LMA.
3197   This information is used for symbol lookup, and memory read/write.
3198   For instance, if a section has been mapped then its contents
3199   should be read from the VMA, otherwise from the LMA.
3200
3201   Two levels of debugger support for overlays are available.  One is
3202   "manual", in which the debugger relies on the user to tell it which
3203   overlays are currently mapped.  This level of support is
3204   implemented entirely in the core debugger, and the information about
3205   whether a section is mapped is kept in the objfile->obj_section table.
3206
3207   The second level of support is "automatic", and is only available if
3208   the target-specific code provides functionality to read the target's
3209   overlay mapping table, and translate its contents for the debugger
3210   (by updating the mapped state information in the obj_section tables).
3211
3212   The interface is as follows:
3213   User commands:
3214   overlay map <name>   -- tell gdb to consider this section mapped
3215   overlay unmap <name> -- tell gdb to consider this section unmapped
3216   overlay list         -- list the sections that GDB thinks are mapped
3217   overlay read-target  -- get the target's state of what's mapped
3218   overlay off/manual/auto -- set overlay debugging state
3219   Functional interface:
3220   find_pc_mapped_section(pc):    if the pc is in the range of a mapped
3221   section, return that section.
3222   find_pc_overlay(pc):       find any overlay section that contains
3223   the pc, either in its VMA or its LMA
3224   overlay_is_mapped(sect):       true if overlay is marked as mapped
3225   section_is_overlay(sect):      true if section's VMA != LMA
3226   pc_in_mapped_range(pc,sec):    true if pc belongs to section's VMA
3227   pc_in_unmapped_range(...):     true if pc belongs to section's LMA
3228   sections_overlap(sec1, sec2):  true if mapped sec1 and sec2 ranges overlap
3229   overlay_mapped_address(...):   map an address from section's LMA to VMA
3230   overlay_unmapped_address(...): map an address from section's VMA to LMA
3231   symbol_overlayed_address(...): Return a "current" address for symbol:
3232   either in VMA or LMA depending on whether
3233   the symbol's section is currently mapped
3234 */
3235
3236/* Overlay debugging state: */
3237
3238enum overlay_debugging_state overlay_debugging = ovly_off;
3239int overlay_cache_invalid = 0;	/* True if need to refresh mapped state */
3240
3241/* Function: section_is_overlay (SECTION)
3242   Returns true if SECTION has VMA not equal to LMA, ie.
3243   SECTION is loaded at an address different from where it will "run".  */
3244
3245int
3246section_is_overlay (asection *section)
3247{
3248  /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3249
3250  if (overlay_debugging)
3251    if (section && section->lma != 0 &&
3252	section->vma != section->lma)
3253      return 1;
3254
3255  return 0;
3256}
3257
3258/* Function: overlay_invalidate_all (void)
3259   Invalidate the mapped state of all overlay sections (mark it as stale).  */
3260
3261static void
3262overlay_invalidate_all (void)
3263{
3264  struct objfile *objfile;
3265  struct obj_section *sect;
3266
3267  ALL_OBJSECTIONS (objfile, sect)
3268    if (section_is_overlay (sect->the_bfd_section))
3269    sect->ovly_mapped = -1;
3270}
3271
3272/* Function: overlay_is_mapped (SECTION)
3273   Returns true if section is an overlay, and is currently mapped.
3274   Private: public access is thru function section_is_mapped.
3275
3276   Access to the ovly_mapped flag is restricted to this function, so
3277   that we can do automatic update.  If the global flag
3278   OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3279   overlay_invalidate_all.  If the mapped state of the particular
3280   section is stale, then call TARGET_OVERLAY_UPDATE to refresh it.  */
3281
3282static int
3283overlay_is_mapped (struct obj_section *osect)
3284{
3285  if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3286    return 0;
3287
3288  switch (overlay_debugging)
3289    {
3290    default:
3291    case ovly_off:
3292      return 0;			/* overlay debugging off */
3293    case ovly_auto:		/* overlay debugging automatic */
3294      /* Unles there is a gdbarch_overlay_update function,
3295         there's really nothing useful to do here (can't really go auto)  */
3296      if (gdbarch_overlay_update_p (current_gdbarch))
3297	{
3298	  if (overlay_cache_invalid)
3299	    {
3300	      overlay_invalidate_all ();
3301	      overlay_cache_invalid = 0;
3302	    }
3303	  if (osect->ovly_mapped == -1)
3304	    gdbarch_overlay_update (current_gdbarch, osect);
3305	}
3306      /* fall thru to manual case */
3307    case ovly_on:		/* overlay debugging manual */
3308      return osect->ovly_mapped == 1;
3309    }
3310}
3311
3312/* Function: section_is_mapped
3313   Returns true if section is an overlay, and is currently mapped.  */
3314
3315int
3316section_is_mapped (asection *section)
3317{
3318  struct objfile *objfile;
3319  struct obj_section *osect;
3320
3321  if (overlay_debugging)
3322    if (section && section_is_overlay (section))
3323      ALL_OBJSECTIONS (objfile, osect)
3324	if (osect->the_bfd_section == section)
3325	return overlay_is_mapped (osect);
3326
3327  return 0;
3328}
3329
3330/* Function: pc_in_unmapped_range
3331   If PC falls into the lma range of SECTION, return true, else false.  */
3332
3333CORE_ADDR
3334pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3335{
3336  /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3337
3338  int size;
3339
3340  if (overlay_debugging)
3341    if (section && section_is_overlay (section))
3342      {
3343	size = bfd_get_section_size (section);
3344	if (section->lma <= pc && pc < section->lma + size)
3345	  return 1;
3346      }
3347  return 0;
3348}
3349
3350/* Function: pc_in_mapped_range
3351   If PC falls into the vma range of SECTION, return true, else false.  */
3352
3353CORE_ADDR
3354pc_in_mapped_range (CORE_ADDR pc, asection *section)
3355{
3356  /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3357
3358  int size;
3359
3360  if (overlay_debugging)
3361    if (section && section_is_overlay (section))
3362      {
3363	size = bfd_get_section_size (section);
3364	if (section->vma <= pc && pc < section->vma + size)
3365	  return 1;
3366      }
3367  return 0;
3368}
3369
3370
3371/* Return true if the mapped ranges of sections A and B overlap, false
3372   otherwise.  */
3373static int
3374sections_overlap (asection *a, asection *b)
3375{
3376  /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3377
3378  CORE_ADDR a_start = a->vma;
3379  CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3380  CORE_ADDR b_start = b->vma;
3381  CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3382
3383  return (a_start < b_end && b_start < a_end);
3384}
3385
3386/* Function: overlay_unmapped_address (PC, SECTION)
3387   Returns the address corresponding to PC in the unmapped (load) range.
3388   May be the same as PC.  */
3389
3390CORE_ADDR
3391overlay_unmapped_address (CORE_ADDR pc, asection *section)
3392{
3393  /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3394
3395  if (overlay_debugging)
3396    if (section && section_is_overlay (section) &&
3397	pc_in_mapped_range (pc, section))
3398      return pc + section->lma - section->vma;
3399
3400  return pc;
3401}
3402
3403/* Function: overlay_mapped_address (PC, SECTION)
3404   Returns the address corresponding to PC in the mapped (runtime) range.
3405   May be the same as PC.  */
3406
3407CORE_ADDR
3408overlay_mapped_address (CORE_ADDR pc, asection *section)
3409{
3410  /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3411
3412  if (overlay_debugging)
3413    if (section && section_is_overlay (section) &&
3414	pc_in_unmapped_range (pc, section))
3415      return pc + section->vma - section->lma;
3416
3417  return pc;
3418}
3419
3420
3421/* Function: symbol_overlayed_address
3422   Return one of two addresses (relative to the VMA or to the LMA),
3423   depending on whether the section is mapped or not.  */
3424
3425CORE_ADDR
3426symbol_overlayed_address (CORE_ADDR address, asection *section)
3427{
3428  if (overlay_debugging)
3429    {
3430      /* If the symbol has no section, just return its regular address. */
3431      if (section == 0)
3432	return address;
3433      /* If the symbol's section is not an overlay, just return its address */
3434      if (!section_is_overlay (section))
3435	return address;
3436      /* If the symbol's section is mapped, just return its address */
3437      if (section_is_mapped (section))
3438	return address;
3439      /*
3440       * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3441       * then return its LOADED address rather than its vma address!!
3442       */
3443      return overlay_unmapped_address (address, section);
3444    }
3445  return address;
3446}
3447
3448/* Function: find_pc_overlay (PC)
3449   Return the best-match overlay section for PC:
3450   If PC matches a mapped overlay section's VMA, return that section.
3451   Else if PC matches an unmapped section's VMA, return that section.
3452   Else if PC matches an unmapped section's LMA, return that section.  */
3453
3454asection *
3455find_pc_overlay (CORE_ADDR pc)
3456{
3457  struct objfile *objfile;
3458  struct obj_section *osect, *best_match = NULL;
3459
3460  if (overlay_debugging)
3461    ALL_OBJSECTIONS (objfile, osect)
3462      if (section_is_overlay (osect->the_bfd_section))
3463      {
3464	if (pc_in_mapped_range (pc, osect->the_bfd_section))
3465	  {
3466	    if (overlay_is_mapped (osect))
3467	      return osect->the_bfd_section;
3468	    else
3469	      best_match = osect;
3470	  }
3471	else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3472	  best_match = osect;
3473      }
3474  return best_match ? best_match->the_bfd_section : NULL;
3475}
3476
3477/* Function: find_pc_mapped_section (PC)
3478   If PC falls into the VMA address range of an overlay section that is
3479   currently marked as MAPPED, return that section.  Else return NULL.  */
3480
3481asection *
3482find_pc_mapped_section (CORE_ADDR pc)
3483{
3484  struct objfile *objfile;
3485  struct obj_section *osect;
3486
3487  if (overlay_debugging)
3488    ALL_OBJSECTIONS (objfile, osect)
3489      if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3490	  overlay_is_mapped (osect))
3491      return osect->the_bfd_section;
3492
3493  return NULL;
3494}
3495
3496/* Function: list_overlays_command
3497   Print a list of mapped sections and their PC ranges */
3498
3499void
3500list_overlays_command (char *args, int from_tty)
3501{
3502  int nmapped = 0;
3503  struct objfile *objfile;
3504  struct obj_section *osect;
3505
3506  if (overlay_debugging)
3507    ALL_OBJSECTIONS (objfile, osect)
3508      if (overlay_is_mapped (osect))
3509      {
3510	const char *name;
3511	bfd_vma lma, vma;
3512	int size;
3513
3514	vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3515	lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3516	size = bfd_get_section_size (osect->the_bfd_section);
3517	name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3518
3519	printf_filtered ("Section %s, loaded at ", name);
3520	deprecated_print_address_numeric (lma, 1, gdb_stdout);
3521	puts_filtered (" - ");
3522	deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3523	printf_filtered (", mapped at ");
3524	deprecated_print_address_numeric (vma, 1, gdb_stdout);
3525	puts_filtered (" - ");
3526	deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3527	puts_filtered ("\n");
3528
3529	nmapped++;
3530      }
3531  if (nmapped == 0)
3532    printf_filtered (_("No sections are mapped.\n"));
3533}
3534
3535/* Function: map_overlay_command
3536   Mark the named section as mapped (ie. residing at its VMA address).  */
3537
3538void
3539map_overlay_command (char *args, int from_tty)
3540{
3541  struct objfile *objfile, *objfile2;
3542  struct obj_section *sec, *sec2;
3543  asection *bfdsec;
3544
3545  if (!overlay_debugging)
3546    error (_("\
3547Overlay debugging not enabled.  Use either the 'overlay auto' or\n\
3548the 'overlay manual' command."));
3549
3550  if (args == 0 || *args == 0)
3551    error (_("Argument required: name of an overlay section"));
3552
3553  /* First, find a section matching the user supplied argument */
3554  ALL_OBJSECTIONS (objfile, sec)
3555    if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3556    {
3557      /* Now, check to see if the section is an overlay. */
3558      bfdsec = sec->the_bfd_section;
3559      if (!section_is_overlay (bfdsec))
3560	continue;		/* not an overlay section */
3561
3562      /* Mark the overlay as "mapped" */
3563      sec->ovly_mapped = 1;
3564
3565      /* Next, make a pass and unmap any sections that are
3566         overlapped by this new section: */
3567      ALL_OBJSECTIONS (objfile2, sec2)
3568	if (sec2->ovly_mapped
3569            && sec != sec2
3570            && sec->the_bfd_section != sec2->the_bfd_section
3571            && sections_overlap (sec->the_bfd_section,
3572                                 sec2->the_bfd_section))
3573	{
3574	  if (info_verbose)
3575	    printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3576			     bfd_section_name (objfile->obfd,
3577					       sec2->the_bfd_section));
3578	  sec2->ovly_mapped = 0;	/* sec2 overlaps sec: unmap sec2 */
3579	}
3580      return;
3581    }
3582  error (_("No overlay section called %s"), args);
3583}
3584
3585/* Function: unmap_overlay_command
3586   Mark the overlay section as unmapped
3587   (ie. resident in its LMA address range, rather than the VMA range).  */
3588
3589void
3590unmap_overlay_command (char *args, int from_tty)
3591{
3592  struct objfile *objfile;
3593  struct obj_section *sec;
3594
3595  if (!overlay_debugging)
3596    error (_("\
3597Overlay debugging not enabled.  Use either the 'overlay auto' or\n\
3598the 'overlay manual' command."));
3599
3600  if (args == 0 || *args == 0)
3601    error (_("Argument required: name of an overlay section"));
3602
3603  /* First, find a section matching the user supplied argument */
3604  ALL_OBJSECTIONS (objfile, sec)
3605    if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3606    {
3607      if (!sec->ovly_mapped)
3608	error (_("Section %s is not mapped"), args);
3609      sec->ovly_mapped = 0;
3610      return;
3611    }
3612  error (_("No overlay section called %s"), args);
3613}
3614
3615/* Function: overlay_auto_command
3616   A utility command to turn on overlay debugging.
3617   Possibly this should be done via a set/show command. */
3618
3619static void
3620overlay_auto_command (char *args, int from_tty)
3621{
3622  overlay_debugging = ovly_auto;
3623  enable_overlay_breakpoints ();
3624  if (info_verbose)
3625    printf_unfiltered (_("Automatic overlay debugging enabled."));
3626}
3627
3628/* Function: overlay_manual_command
3629   A utility command to turn on overlay debugging.
3630   Possibly this should be done via a set/show command. */
3631
3632static void
3633overlay_manual_command (char *args, int from_tty)
3634{
3635  overlay_debugging = ovly_on;
3636  disable_overlay_breakpoints ();
3637  if (info_verbose)
3638    printf_unfiltered (_("Overlay debugging enabled."));
3639}
3640
3641/* Function: overlay_off_command
3642   A utility command to turn on overlay debugging.
3643   Possibly this should be done via a set/show command. */
3644
3645static void
3646overlay_off_command (char *args, int from_tty)
3647{
3648  overlay_debugging = ovly_off;
3649  disable_overlay_breakpoints ();
3650  if (info_verbose)
3651    printf_unfiltered (_("Overlay debugging disabled."));
3652}
3653
3654static void
3655overlay_load_command (char *args, int from_tty)
3656{
3657  if (gdbarch_overlay_update_p (current_gdbarch))
3658    gdbarch_overlay_update (current_gdbarch, NULL);
3659  else
3660    error (_("This target does not know how to read its overlay state."));
3661}
3662
3663/* Function: overlay_command
3664   A place-holder for a mis-typed command */
3665
3666/* Command list chain containing all defined "overlay" subcommands. */
3667struct cmd_list_element *overlaylist;
3668
3669static void
3670overlay_command (char *args, int from_tty)
3671{
3672  printf_unfiltered
3673    ("\"overlay\" must be followed by the name of an overlay command.\n");
3674  help_list (overlaylist, "overlay ", -1, gdb_stdout);
3675}
3676
3677
3678/* Target Overlays for the "Simplest" overlay manager:
3679
3680   This is GDB's default target overlay layer.  It works with the
3681   minimal overlay manager supplied as an example by Cygnus.  The
3682   entry point is via a function pointer "gdbarch_overlay_update",
3683   so targets that use a different runtime overlay manager can
3684   substitute their own overlay_update function and take over the
3685   function pointer.
3686
3687   The overlay_update function pokes around in the target's data structures
3688   to see what overlays are mapped, and updates GDB's overlay mapping with
3689   this information.
3690
3691   In this simple implementation, the target data structures are as follows:
3692   unsigned _novlys;            /# number of overlay sections #/
3693   unsigned _ovly_table[_novlys][4] = {
3694   {VMA, SIZE, LMA, MAPPED},    /# one entry per overlay section #/
3695   {..., ...,  ..., ...},
3696   }
3697   unsigned _novly_regions;     /# number of overlay regions #/
3698   unsigned _ovly_region_table[_novly_regions][3] = {
3699   {VMA, SIZE, MAPPED_TO_LMA},  /# one entry per overlay region #/
3700   {..., ...,  ...},
3701   }
3702   These functions will attempt to update GDB's mappedness state in the
3703   symbol section table, based on the target's mappedness state.
3704
3705   To do this, we keep a cached copy of the target's _ovly_table, and
3706   attempt to detect when the cached copy is invalidated.  The main
3707   entry point is "simple_overlay_update(SECT), which looks up SECT in
3708   the cached table and re-reads only the entry for that section from
3709   the target (whenever possible).
3710 */
3711
3712/* Cached, dynamically allocated copies of the target data structures: */
3713static unsigned (*cache_ovly_table)[4] = 0;
3714#if 0
3715static unsigned (*cache_ovly_region_table)[3] = 0;
3716#endif
3717static unsigned cache_novlys = 0;
3718#if 0
3719static unsigned cache_novly_regions = 0;
3720#endif
3721static CORE_ADDR cache_ovly_table_base = 0;
3722#if 0
3723static CORE_ADDR cache_ovly_region_table_base = 0;
3724#endif
3725enum ovly_index
3726  {
3727    VMA, SIZE, LMA, MAPPED
3728  };
3729#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3730			    / TARGET_CHAR_BIT)
3731
3732/* Throw away the cached copy of _ovly_table */
3733static void
3734simple_free_overlay_table (void)
3735{
3736  if (cache_ovly_table)
3737    xfree (cache_ovly_table);
3738  cache_novlys = 0;
3739  cache_ovly_table = NULL;
3740  cache_ovly_table_base = 0;
3741}
3742
3743#if 0
3744/* Throw away the cached copy of _ovly_region_table */
3745static void
3746simple_free_overlay_region_table (void)
3747{
3748  if (cache_ovly_region_table)
3749    xfree (cache_ovly_region_table);
3750  cache_novly_regions = 0;
3751  cache_ovly_region_table = NULL;
3752  cache_ovly_region_table_base = 0;
3753}
3754#endif
3755
3756/* Read an array of ints from the target into a local buffer.
3757   Convert to host order.  int LEN is number of ints  */
3758static void
3759read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3760{
3761  /* FIXME (alloca): Not safe if array is very large. */
3762  gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3763  int i;
3764
3765  read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3766  for (i = 0; i < len; i++)
3767    myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3768					  TARGET_LONG_BYTES);
3769}
3770
3771/* Find and grab a copy of the target _ovly_table
3772   (and _novlys, which is needed for the table's size) */
3773static int
3774simple_read_overlay_table (void)
3775{
3776  struct minimal_symbol *novlys_msym, *ovly_table_msym;
3777
3778  simple_free_overlay_table ();
3779  novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3780  if (! novlys_msym)
3781    {
3782      error (_("Error reading inferior's overlay table: "
3783             "couldn't find `_novlys' variable\n"
3784             "in inferior.  Use `overlay manual' mode."));
3785      return 0;
3786    }
3787
3788  ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3789  if (! ovly_table_msym)
3790    {
3791      error (_("Error reading inferior's overlay table: couldn't find "
3792             "`_ovly_table' array\n"
3793             "in inferior.  Use `overlay manual' mode."));
3794      return 0;
3795    }
3796
3797  cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3798  cache_ovly_table
3799    = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3800  cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3801  read_target_long_array (cache_ovly_table_base,
3802                          (unsigned int *) cache_ovly_table,
3803                          cache_novlys * 4);
3804
3805  return 1;			/* SUCCESS */
3806}
3807
3808#if 0
3809/* Find and grab a copy of the target _ovly_region_table
3810   (and _novly_regions, which is needed for the table's size) */
3811static int
3812simple_read_overlay_region_table (void)
3813{
3814  struct minimal_symbol *msym;
3815
3816  simple_free_overlay_region_table ();
3817  msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3818  if (msym != NULL)
3819    cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3820  else
3821    return 0;			/* failure */
3822  cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3823  if (cache_ovly_region_table != NULL)
3824    {
3825      msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3826      if (msym != NULL)
3827	{
3828	  cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3829	  read_target_long_array (cache_ovly_region_table_base,
3830				  (unsigned int *) cache_ovly_region_table,
3831				  cache_novly_regions * 3);
3832	}
3833      else
3834	return 0;		/* failure */
3835    }
3836  else
3837    return 0;			/* failure */
3838  return 1;			/* SUCCESS */
3839}
3840#endif
3841
3842/* Function: simple_overlay_update_1
3843   A helper function for simple_overlay_update.  Assuming a cached copy
3844   of _ovly_table exists, look through it to find an entry whose vma,
3845   lma and size match those of OSECT.  Re-read the entry and make sure
3846   it still matches OSECT (else the table may no longer be valid).
3847   Set OSECT's mapped state to match the entry.  Return: 1 for
3848   success, 0 for failure.  */
3849
3850static int
3851simple_overlay_update_1 (struct obj_section *osect)
3852{
3853  int i, size;
3854  bfd *obfd = osect->objfile->obfd;
3855  asection *bsect = osect->the_bfd_section;
3856
3857  size = bfd_get_section_size (osect->the_bfd_section);
3858  for (i = 0; i < cache_novlys; i++)
3859    if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3860	&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3861	/* && cache_ovly_table[i][SIZE] == size */ )
3862      {
3863	read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3864				(unsigned int *) cache_ovly_table[i], 4);
3865	if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3866	    && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3867	    /* && cache_ovly_table[i][SIZE] == size */ )
3868	  {
3869	    osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3870	    return 1;
3871	  }
3872	else	/* Warning!  Warning!  Target's ovly table has changed! */
3873	  return 0;
3874      }
3875  return 0;
3876}
3877
3878/* Function: simple_overlay_update
3879   If OSECT is NULL, then update all sections' mapped state
3880   (after re-reading the entire target _ovly_table).
3881   If OSECT is non-NULL, then try to find a matching entry in the
3882   cached ovly_table and update only OSECT's mapped state.
3883   If a cached entry can't be found or the cache isn't valid, then
3884   re-read the entire cache, and go ahead and update all sections.  */
3885
3886void
3887simple_overlay_update (struct obj_section *osect)
3888{
3889  struct objfile *objfile;
3890
3891  /* Were we given an osect to look up?  NULL means do all of them. */
3892  if (osect)
3893    /* Have we got a cached copy of the target's overlay table? */
3894    if (cache_ovly_table != NULL)
3895      /* Does its cached location match what's currently in the symtab? */
3896      if (cache_ovly_table_base ==
3897	  SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3898	/* Then go ahead and try to look up this single section in the cache */
3899	if (simple_overlay_update_1 (osect))
3900	  /* Found it!  We're done. */
3901	  return;
3902
3903  /* Cached table no good: need to read the entire table anew.
3904     Or else we want all the sections, in which case it's actually
3905     more efficient to read the whole table in one block anyway.  */
3906
3907  if (! simple_read_overlay_table ())
3908    return;
3909
3910  /* Now may as well update all sections, even if only one was requested. */
3911  ALL_OBJSECTIONS (objfile, osect)
3912    if (section_is_overlay (osect->the_bfd_section))
3913    {
3914      int i, size;
3915      bfd *obfd = osect->objfile->obfd;
3916      asection *bsect = osect->the_bfd_section;
3917
3918      size = bfd_get_section_size (bsect);
3919      for (i = 0; i < cache_novlys; i++)
3920	if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3921	    && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3922	    /* && cache_ovly_table[i][SIZE] == size */ )
3923	  { /* obj_section matches i'th entry in ovly_table */
3924	    osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3925	    break;		/* finished with inner for loop: break out */
3926	  }
3927    }
3928}
3929
3930/* Set the output sections and output offsets for section SECTP in
3931   ABFD.  The relocation code in BFD will read these offsets, so we
3932   need to be sure they're initialized.  We map each section to itself,
3933   with no offset; this means that SECTP->vma will be honored.  */
3934
3935static void
3936symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3937{
3938  sectp->output_section = sectp;
3939  sectp->output_offset = 0;
3940}
3941
3942/* Relocate the contents of a debug section SECTP in ABFD.  The
3943   contents are stored in BUF if it is non-NULL, or returned in a
3944   malloc'd buffer otherwise.
3945
3946   For some platforms and debug info formats, shared libraries contain
3947   relocations against the debug sections (particularly for DWARF-2;
3948   one affected platform is PowerPC GNU/Linux, although it depends on
3949   the version of the linker in use).  Also, ELF object files naturally
3950   have unresolved relocations for their debug sections.  We need to apply
3951   the relocations in order to get the locations of symbols correct.  */
3952
3953bfd_byte *
3954symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3955{
3956  /* We're only interested in debugging sections with relocation
3957     information.  */
3958  if ((sectp->flags & SEC_RELOC) == 0)
3959    return NULL;
3960  if ((sectp->flags & SEC_DEBUGGING) == 0)
3961    return NULL;
3962
3963  /* We will handle section offsets properly elsewhere, so relocate as if
3964     all sections begin at 0.  */
3965  bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3966
3967  return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3968}
3969
3970struct symfile_segment_data *
3971get_symfile_segment_data (bfd *abfd)
3972{
3973  struct sym_fns *sf = find_sym_fns (abfd);
3974
3975  if (sf == NULL)
3976    return NULL;
3977
3978  return sf->sym_segments (abfd);
3979}
3980
3981void
3982free_symfile_segment_data (struct symfile_segment_data *data)
3983{
3984  xfree (data->segment_bases);
3985  xfree (data->segment_sizes);
3986  xfree (data->segment_info);
3987  xfree (data);
3988}
3989
3990
3991/* Given:
3992   - DATA, containing segment addresses from the object file ABFD, and
3993     the mapping from ABFD's sections onto the segments that own them,
3994     and
3995   - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3996     segment addresses reported by the target,
3997   store the appropriate offsets for each section in OFFSETS.
3998
3999   If there are fewer entries in SEGMENT_BASES than there are segments
4000   in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4001
4002   If there are more, then verify that all the excess addresses are
4003   the same as the last legitimate one, and then ignore them.  This
4004   allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
4005   only a single segment.  */
4006int
4007symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4008				 struct section_offsets *offsets,
4009				 int num_segment_bases,
4010				 const CORE_ADDR *segment_bases)
4011{
4012  int i;
4013  asection *sect;
4014
4015  /* It doesn't make sense to call this function unless you have some
4016     segment base addresses.  */
4017  gdb_assert (segment_bases > 0);
4018
4019  /* If we do not have segment mappings for the object file, we
4020     can not relocate it by segments.  */
4021  gdb_assert (data != NULL);
4022  gdb_assert (data->num_segments > 0);
4023
4024  /* Check any extra SEGMENT_BASES entries.  */
4025  if (num_segment_bases > data->num_segments)
4026    for (i = data->num_segments; i < num_segment_bases; i++)
4027      if (segment_bases[i] != segment_bases[data->num_segments - 1])
4028	return 0;
4029
4030  for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4031    {
4032      int which = data->segment_info[i];
4033
4034      gdb_assert (0 <= which && which <= data->num_segments);
4035
4036      /* Don't bother computing offsets for sections that aren't
4037         loaded as part of any segment.  */
4038      if (! which)
4039        continue;
4040
4041      /* Use the last SEGMENT_BASES entry as the address of any extra
4042         segments mentioned in DATA->segment_info.  */
4043      if (which > num_segment_bases)
4044        which = num_segment_bases;
4045
4046      offsets->offsets[i] = (segment_bases[which - 1]
4047                             - data->segment_bases[which - 1]);
4048    }
4049
4050  return 1;
4051}
4052
4053static void
4054symfile_find_segment_sections (struct objfile *objfile)
4055{
4056  bfd *abfd = objfile->obfd;
4057  int i;
4058  asection *sect;
4059  struct symfile_segment_data *data;
4060
4061  data = get_symfile_segment_data (objfile->obfd);
4062  if (data == NULL)
4063    return;
4064
4065  if (data->num_segments != 1 && data->num_segments != 2)
4066    {
4067      free_symfile_segment_data (data);
4068      return;
4069    }
4070
4071  for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4072    {
4073      CORE_ADDR vma;
4074      int which = data->segment_info[i];
4075
4076      if (which == 1)
4077	{
4078	  if (objfile->sect_index_text == -1)
4079	    objfile->sect_index_text = sect->index;
4080
4081	  if (objfile->sect_index_rodata == -1)
4082	    objfile->sect_index_rodata = sect->index;
4083	}
4084      else if (which == 2)
4085	{
4086	  if (objfile->sect_index_data == -1)
4087	    objfile->sect_index_data = sect->index;
4088
4089	  if (objfile->sect_index_bss == -1)
4090	    objfile->sect_index_bss = sect->index;
4091	}
4092    }
4093
4094  free_symfile_segment_data (data);
4095}
4096
4097void
4098_initialize_symfile (void)
4099{
4100  struct cmd_list_element *c;
4101
4102  c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4103Load symbol table from executable file FILE.\n\
4104The `file' command can also load symbol tables, as well as setting the file\n\
4105to execute."), &cmdlist);
4106  set_cmd_completer (c, filename_completer);
4107
4108  c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4109Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4110Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4111ADDR is the starting address of the file's text.\n\
4112The optional arguments are section-name section-address pairs and\n\
4113should be specified if the data and bss segments are not contiguous\n\
4114with the text.  SECT is a section name to be loaded at SECT_ADDR."),
4115	       &cmdlist);
4116  set_cmd_completer (c, filename_completer);
4117
4118  c = add_cmd ("add-shared-symbol-files", class_files,
4119	       add_shared_symbol_files_command, _("\
4120Load the symbols from shared objects in the dynamic linker's link map."),
4121	       &cmdlist);
4122  c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4123		     &cmdlist);
4124
4125  c = add_cmd ("load", class_files, load_command, _("\
4126Dynamically load FILE into the running program, and record its symbols\n\
4127for access from GDB.\n\
4128A load OFFSET may also be given."), &cmdlist);
4129  set_cmd_completer (c, filename_completer);
4130
4131  add_setshow_boolean_cmd ("symbol-reloading", class_support,
4132			   &symbol_reloading, _("\
4133Set dynamic symbol table reloading multiple times in one run."), _("\
4134Show dynamic symbol table reloading multiple times in one run."), NULL,
4135			   NULL,
4136			   show_symbol_reloading,
4137			   &setlist, &showlist);
4138
4139  add_prefix_cmd ("overlay", class_support, overlay_command,
4140		  _("Commands for debugging overlays."), &overlaylist,
4141		  "overlay ", 0, &cmdlist);
4142
4143  add_com_alias ("ovly", "overlay", class_alias, 1);
4144  add_com_alias ("ov", "overlay", class_alias, 1);
4145
4146  add_cmd ("map-overlay", class_support, map_overlay_command,
4147	   _("Assert that an overlay section is mapped."), &overlaylist);
4148
4149  add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4150	   _("Assert that an overlay section is unmapped."), &overlaylist);
4151
4152  add_cmd ("list-overlays", class_support, list_overlays_command,
4153	   _("List mappings of overlay sections."), &overlaylist);
4154
4155  add_cmd ("manual", class_support, overlay_manual_command,
4156	   _("Enable overlay debugging."), &overlaylist);
4157  add_cmd ("off", class_support, overlay_off_command,
4158	   _("Disable overlay debugging."), &overlaylist);
4159  add_cmd ("auto", class_support, overlay_auto_command,
4160	   _("Enable automatic overlay debugging."), &overlaylist);
4161  add_cmd ("load-target", class_support, overlay_load_command,
4162	   _("Read the overlay mapping state from the target."), &overlaylist);
4163
4164  /* Filename extension to source language lookup table: */
4165  init_filename_language_table ();
4166  add_setshow_string_noescape_cmd ("extension-language", class_files,
4167				   &ext_args, _("\
4168Set mapping between filename extension and source language."), _("\
4169Show mapping between filename extension and source language."), _("\
4170Usage: set extension-language .foo bar"),
4171				   set_ext_lang_command,
4172				   show_ext_args,
4173				   &setlist, &showlist);
4174
4175  add_info ("extensions", info_ext_lang_command,
4176	    _("All filename extensions associated with a source language."));
4177
4178  add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4179				     &debug_file_directory, _("\
4180Set the directory where separate debug symbols are searched for."), _("\
4181Show the directory where separate debug symbols are searched for."), _("\
4182Separate debug symbols are first searched for in the same\n\
4183directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4184and lastly at the path of the directory of the binary with\n\
4185the global debug-file directory prepended."),
4186				     NULL,
4187				     show_debug_file_directory,
4188				     &setlist, &showlist);
4189}
4190