1/* Target-dependent code for GNU/Linux i386.
2
3   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007
4   Free Software Foundation, Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 3 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21#include "defs.h"
22#include "gdbcore.h"
23#include "frame.h"
24#include "value.h"
25#include "regcache.h"
26#include "inferior.h"
27#include "osabi.h"
28#include "reggroups.h"
29#include "dwarf2-frame.h"
30#include "gdb_string.h"
31
32#include "i386-tdep.h"
33#include "i386-linux-tdep.h"
34#include "glibc-tdep.h"
35#include "solib-svr4.h"
36#include "symtab.h"
37
38/* Return the name of register REG.  */
39
40static const char *
41i386_linux_register_name (int reg)
42{
43  /* Deal with the extra "orig_eax" pseudo register.  */
44  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
45    return "orig_eax";
46
47  return i386_register_name (reg);
48}
49
50/* Return non-zero, when the register is in the corresponding register
51   group.  Put the LINUX_ORIG_EAX register in the system group.  */
52static int
53i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
54				struct reggroup *group)
55{
56  if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
57    return (group == system_reggroup
58	    || group == save_reggroup
59	    || group == restore_reggroup);
60  return i386_register_reggroup_p (gdbarch, regnum, group);
61}
62
63
64/* Recognizing signal handler frames.  */
65
66/* GNU/Linux has two flavors of signals.  Normal signal handlers, and
67   "realtime" (RT) signals.  The RT signals can provide additional
68   information to the signal handler if the SA_SIGINFO flag is set
69   when establishing a signal handler using `sigaction'.  It is not
70   unlikely that future versions of GNU/Linux will support SA_SIGINFO
71   for normal signals too.  */
72
73/* When the i386 Linux kernel calls a signal handler and the
74   SA_RESTORER flag isn't set, the return address points to a bit of
75   code on the stack.  This function returns whether the PC appears to
76   be within this bit of code.
77
78   The instruction sequence for normal signals is
79       pop    %eax
80       mov    $0x77, %eax
81       int    $0x80
82   or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
83
84   Checking for the code sequence should be somewhat reliable, because
85   the effect is to call the system call sigreturn.  This is unlikely
86   to occur anywhere other than in a signal trampoline.
87
88   It kind of sucks that we have to read memory from the process in
89   order to identify a signal trampoline, but there doesn't seem to be
90   any other way.  Therefore we only do the memory reads if no
91   function name could be identified, which should be the case since
92   the code is on the stack.
93
94   Detection of signal trampolines for handlers that set the
95   SA_RESTORER flag is in general not possible.  Unfortunately this is
96   what the GNU C Library has been doing for quite some time now.
97   However, as of version 2.1.2, the GNU C Library uses signal
98   trampolines (named __restore and __restore_rt) that are identical
99   to the ones used by the kernel.  Therefore, these trampolines are
100   supported too.  */
101
102#define LINUX_SIGTRAMP_INSN0	0x58	/* pop %eax */
103#define LINUX_SIGTRAMP_OFFSET0	0
104#define LINUX_SIGTRAMP_INSN1	0xb8	/* mov $NNNN, %eax */
105#define LINUX_SIGTRAMP_OFFSET1	1
106#define LINUX_SIGTRAMP_INSN2	0xcd	/* int */
107#define LINUX_SIGTRAMP_OFFSET2	6
108
109static const gdb_byte linux_sigtramp_code[] =
110{
111  LINUX_SIGTRAMP_INSN0,					/* pop %eax */
112  LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77, %eax */
113  LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */
114};
115
116#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
117
118/* If NEXT_FRAME unwinds into a sigtramp routine, return the address
119   of the start of the routine.  Otherwise, return 0.  */
120
121static CORE_ADDR
122i386_linux_sigtramp_start (struct frame_info *next_frame)
123{
124  CORE_ADDR pc = frame_pc_unwind (next_frame);
125  gdb_byte buf[LINUX_SIGTRAMP_LEN];
126
127  /* We only recognize a signal trampoline if PC is at the start of
128     one of the three instructions.  We optimize for finding the PC at
129     the start, as will be the case when the trampoline is not the
130     first frame on the stack.  We assume that in the case where the
131     PC is not at the start of the instruction sequence, there will be
132     a few trailing readable bytes on the stack.  */
133
134  if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
135    return 0;
136
137  if (buf[0] != LINUX_SIGTRAMP_INSN0)
138    {
139      int adjust;
140
141      switch (buf[0])
142	{
143	case LINUX_SIGTRAMP_INSN1:
144	  adjust = LINUX_SIGTRAMP_OFFSET1;
145	  break;
146	case LINUX_SIGTRAMP_INSN2:
147	  adjust = LINUX_SIGTRAMP_OFFSET2;
148	  break;
149	default:
150	  return 0;
151	}
152
153      pc -= adjust;
154
155      if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
156	return 0;
157    }
158
159  if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
160    return 0;
161
162  return pc;
163}
164
165/* This function does the same for RT signals.  Here the instruction
166   sequence is
167       mov    $0xad, %eax
168       int    $0x80
169   or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
170
171   The effect is to call the system call rt_sigreturn.  */
172
173#define LINUX_RT_SIGTRAMP_INSN0		0xb8 /* mov $NNNN, %eax */
174#define LINUX_RT_SIGTRAMP_OFFSET0	0
175#define LINUX_RT_SIGTRAMP_INSN1		0xcd /* int */
176#define LINUX_RT_SIGTRAMP_OFFSET1	5
177
178static const gdb_byte linux_rt_sigtramp_code[] =
179{
180  LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad, %eax */
181  LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */
182};
183
184#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
185
186/* If NEXT_FRAME unwinds into an RT sigtramp routine, return the
187   address of the start of the routine.  Otherwise, return 0.  */
188
189static CORE_ADDR
190i386_linux_rt_sigtramp_start (struct frame_info *next_frame)
191{
192  CORE_ADDR pc = frame_pc_unwind (next_frame);
193  gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
194
195  /* We only recognize a signal trampoline if PC is at the start of
196     one of the two instructions.  We optimize for finding the PC at
197     the start, as will be the case when the trampoline is not the
198     first frame on the stack.  We assume that in the case where the
199     PC is not at the start of the instruction sequence, there will be
200     a few trailing readable bytes on the stack.  */
201
202  if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
203    return 0;
204
205  if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
206    {
207      if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
208	return 0;
209
210      pc -= LINUX_RT_SIGTRAMP_OFFSET1;
211
212      if (!safe_frame_unwind_memory (next_frame, pc, buf,
213				     LINUX_RT_SIGTRAMP_LEN))
214	return 0;
215    }
216
217  if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
218    return 0;
219
220  return pc;
221}
222
223/* Return whether the frame preceding NEXT_FRAME corresponds to a
224   GNU/Linux sigtramp routine.  */
225
226static int
227i386_linux_sigtramp_p (struct frame_info *next_frame)
228{
229  CORE_ADDR pc = frame_pc_unwind (next_frame);
230  char *name;
231
232  find_pc_partial_function (pc, &name, NULL, NULL);
233
234  /* If we have NAME, we can optimize the search.  The trampolines are
235     named __restore and __restore_rt.  However, they aren't dynamically
236     exported from the shared C library, so the trampoline may appear to
237     be part of the preceding function.  This should always be sigaction,
238     __sigaction, or __libc_sigaction (all aliases to the same function).  */
239  if (name == NULL || strstr (name, "sigaction") != NULL)
240    return (i386_linux_sigtramp_start (next_frame) != 0
241	    || i386_linux_rt_sigtramp_start (next_frame) != 0);
242
243  return (strcmp ("__restore", name) == 0
244	  || strcmp ("__restore_rt", name) == 0);
245}
246
247/* Return one if the unwound PC from NEXT_FRAME is in a signal trampoline
248   which may have DWARF-2 CFI.  */
249
250static int
251i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
252				 struct frame_info *next_frame)
253{
254  CORE_ADDR pc = frame_pc_unwind (next_frame);
255  char *name;
256
257  find_pc_partial_function (pc, &name, NULL, NULL);
258
259  /* If a vsyscall DSO is in use, the signal trampolines may have these
260     names.  */
261  if (name && (strcmp (name, "__kernel_sigreturn") == 0
262	       || strcmp (name, "__kernel_rt_sigreturn") == 0))
263    return 1;
264
265  return 0;
266}
267
268/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */
269#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
270
271/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
272   routine, return the address of the associated sigcontext structure.  */
273
274static CORE_ADDR
275i386_linux_sigcontext_addr (struct frame_info *next_frame)
276{
277  CORE_ADDR pc;
278  CORE_ADDR sp;
279  gdb_byte buf[4];
280
281  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
282  sp = extract_unsigned_integer (buf, 4);
283
284  pc = i386_linux_sigtramp_start (next_frame);
285  if (pc)
286    {
287      /* The sigcontext structure lives on the stack, right after
288	 the signum argument.  We determine the address of the
289	 sigcontext structure by looking at the frame's stack
290	 pointer.  Keep in mind that the first instruction of the
291	 sigtramp code is "pop %eax".  If the PC is after this
292	 instruction, adjust the returned value accordingly.  */
293      if (pc == frame_pc_unwind (next_frame))
294	return sp + 4;
295      return sp;
296    }
297
298  pc = i386_linux_rt_sigtramp_start (next_frame);
299  if (pc)
300    {
301      CORE_ADDR ucontext_addr;
302
303      /* The sigcontext structure is part of the user context.  A
304	 pointer to the user context is passed as the third argument
305	 to the signal handler.  */
306      read_memory (sp + 8, buf, 4);
307      ucontext_addr = extract_unsigned_integer (buf, 4);
308      return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
309    }
310
311  error (_("Couldn't recognize signal trampoline."));
312  return 0;
313}
314
315/* Set the program counter for process PTID to PC.  */
316
317static void
318i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
319{
320  regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
321
322  /* We must be careful with modifying the program counter.  If we
323     just interrupted a system call, the kernel might try to restart
324     it when we resume the inferior.  On restarting the system call,
325     the kernel will try backing up the program counter even though it
326     no longer points at the system call.  This typically results in a
327     SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the
328     "orig_eax" pseudo-register.
329
330     Note that "orig_eax" is saved when setting up a dummy call frame.
331     This means that it is properly restored when that frame is
332     popped, and that the interrupted system call will be restarted
333     when we resume the inferior on return from a function call from
334     within GDB.  In all other cases the system call will not be
335     restarted.  */
336  regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
337}
338
339
340/* The register sets used in GNU/Linux ELF core-dumps are identical to
341   the register sets in `struct user' that are used for a.out
342   core-dumps.  These are also used by ptrace(2).  The corresponding
343   types are `elf_gregset_t' for the general-purpose registers (with
344   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
345   for the floating-point registers.
346
347   Those types used to be available under the names `gregset_t' and
348   `fpregset_t' too, and GDB used those names in the past.  But those
349   names are now used for the register sets used in the `mcontext_t'
350   type, which have a different size and layout.  */
351
352/* Mapping between the general-purpose registers in `struct user'
353   format and GDB's register cache layout.  */
354
355/* From <sys/reg.h>.  */
356static int i386_linux_gregset_reg_offset[] =
357{
358  6 * 4,			/* %eax */
359  1 * 4,			/* %ecx */
360  2 * 4,			/* %edx */
361  0 * 4,			/* %ebx */
362  15 * 4,			/* %esp */
363  5 * 4,			/* %ebp */
364  3 * 4,			/* %esi */
365  4 * 4,			/* %edi */
366  12 * 4,			/* %eip */
367  14 * 4,			/* %eflags */
368  13 * 4,			/* %cs */
369  16 * 4,			/* %ss */
370  7 * 4,			/* %ds */
371  8 * 4,			/* %es */
372  9 * 4,			/* %fs */
373  10 * 4,			/* %gs */
374  -1, -1, -1, -1, -1, -1, -1, -1,
375  -1, -1, -1, -1, -1, -1, -1, -1,
376  -1, -1, -1, -1, -1, -1, -1, -1,
377  -1,
378  11 * 4			/* "orig_eax" */
379};
380
381/* Mapping between the general-purpose registers in `struct
382   sigcontext' format and GDB's register cache layout.  */
383
384/* From <asm/sigcontext.h>.  */
385static int i386_linux_sc_reg_offset[] =
386{
387  11 * 4,			/* %eax */
388  10 * 4,			/* %ecx */
389  9 * 4,			/* %edx */
390  8 * 4,			/* %ebx */
391  7 * 4,			/* %esp */
392  6 * 4,			/* %ebp */
393  5 * 4,			/* %esi */
394  4 * 4,			/* %edi */
395  14 * 4,			/* %eip */
396  16 * 4,			/* %eflags */
397  15 * 4,			/* %cs */
398  18 * 4,			/* %ss */
399  3 * 4,			/* %ds */
400  2 * 4,			/* %es */
401  1 * 4,			/* %fs */
402  0 * 4				/* %gs */
403};
404
405static void
406i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
407{
408  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410  /* GNU/Linux uses ELF.  */
411  i386_elf_init_abi (info, gdbarch);
412
413  /* Since we have the extra "orig_eax" register on GNU/Linux, we have
414     to adjust a few things.  */
415
416  set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
417  set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
418  set_gdbarch_register_name (gdbarch, i386_linux_register_name);
419  set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
420
421  tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
422  tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
423  tdep->sizeof_gregset = 17 * 4;
424
425  tdep->jb_pc_offset = 20;	/* From <bits/setjmp.h>.  */
426
427  tdep->sigtramp_p = i386_linux_sigtramp_p;
428  tdep->sigcontext_addr = i386_linux_sigcontext_addr;
429  tdep->sc_reg_offset = i386_linux_sc_reg_offset;
430  tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
431
432  /* GNU/Linux uses SVR4-style shared libraries.  */
433  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
434  set_solib_svr4_fetch_link_map_offsets
435    (gdbarch, svr4_ilp32_fetch_link_map_offsets);
436
437  /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
438  set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
439
440  dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
441
442  /* Enable TLS support.  */
443  set_gdbarch_fetch_tls_load_module_address (gdbarch,
444                                             svr4_fetch_objfile_link_map);
445}
446
447/* Provide a prototype to silence -Wmissing-prototypes.  */
448extern void _initialize_i386_linux_tdep (void);
449
450void
451_initialize_i386_linux_tdep (void)
452{
453  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
454			  i386_linux_init_abi);
455}
456