1/* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2
3   Copyright (C) 2004, 2006, 2007 Free Software Foundation, Inc.
4
5   This file is part of GDB.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20#include "defs.h"
21#include "gdbcore.h"
22#include "osabi.h"
23#include "target.h"
24#include "objfiles.h"
25#include "solib-svr4.h"
26#include "glibc-tdep.h"
27#include "frame-unwind.h"
28#include "trad-frame.h"
29#include "dwarf2-frame.h"
30#include "value.h"
31#include "regset.h"
32#include "regcache.h"
33#include "hppa-tdep.h"
34
35#include "elf/common.h"
36
37#if 0
38/* Convert DWARF register number REG to the appropriate register
39   number used by GDB.  */
40static int
41hppa_dwarf_reg_to_regnum (int reg)
42{
43  /* registers 0 - 31 are the same in both sets */
44  if (reg < 32)
45    return reg;
46
47  /* dwarf regs 32 to 85 are fpregs 4 - 31 */
48  if (reg >= 32 && reg <= 85)
49    return HPPA_FP4_REGNUM + (reg - 32);
50
51  warning (_("Unmapped DWARF Register #%d encountered."), reg);
52  return -1;
53}
54#endif
55
56static void
57hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
58{
59  /* Probably this should be done by the kernel, but it isn't.  */
60  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
61  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
62}
63
64/* An instruction to match.  */
65struct insn_pattern
66{
67  unsigned int data;            /* See if it matches this....  */
68  unsigned int mask;            /* ... with this mask.  */
69};
70
71static struct insn_pattern hppa_sigtramp[] = {
72  /* ldi 0, %r25 or ldi 1, %r25 */
73  { 0x34190000, 0xfffffffd },
74  /* ldi __NR_rt_sigreturn, %r20 */
75  { 0x3414015a, 0xffffffff },
76  /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
77  { 0xe4008200, 0xffffffff },
78  /* nop */
79  { 0x08000240, 0xffffffff },
80  { 0, 0 }
81};
82
83#define HPPA_MAX_INSN_PATTERN_LEN (4)
84
85/* Return non-zero if the instructions at PC match the series
86   described in PATTERN, or zero otherwise.  PATTERN is an array of
87   'struct insn_pattern' objects, terminated by an entry whose mask is
88   zero.
89
90   When the match is successful, fill INSN[i] with what PATTERN[i]
91   matched.  */
92static int
93insns_match_pattern (CORE_ADDR pc,
94                     struct insn_pattern *pattern,
95                     unsigned int *insn)
96{
97  int i;
98  CORE_ADDR npc = pc;
99
100  for (i = 0; pattern[i].mask; i++)
101    {
102      char buf[4];
103
104      read_memory_nobpt (npc, buf, 4);
105      insn[i] = extract_unsigned_integer (buf, 4);
106      if ((insn[i] & pattern[i].mask) == pattern[i].data)
107        npc += 4;
108      else
109        return 0;
110    }
111  return 1;
112}
113
114/* Signal frames.  */
115
116/* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
117
118   Unfortunately, because of various bugs and changes to the kernel,
119   we have several cases to deal with.
120
121   In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
122   the beginning of the trampoline and struct rt_sigframe.
123
124   In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
125   the 4th word in the trampoline structure.  This is wrong, it should point
126   at the 5th word.  This is fixed in 2.6.5-rc2-pa4.
127
128   To detect these cases, we first take pc, align it to 64-bytes
129   to get the beginning of the signal frame, and then check offsets 0, 4
130   and 5 to see if we found the beginning of the trampoline.  This will
131   tell us how to locate the sigcontext structure.
132
133   Note that with a 2.4 64-bit kernel, the signal context is not properly
134   passed back to userspace so the unwind will not work correctly.  */
135static CORE_ADDR
136hppa_linux_sigtramp_find_sigcontext (CORE_ADDR pc)
137{
138  unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
139  int offs = 0;
140  int try;
141  /* offsets to try to find the trampoline */
142  static int pcoffs[] = { 0, 4*4, 5*4 };
143  /* offsets to the rt_sigframe structure */
144  static int sfoffs[] = { 4*4, 10*4, 10*4 };
145  CORE_ADDR sp;
146
147  /* Most of the time, this will be correct.  The one case when this will
148     fail is if the user defined an alternate stack, in which case the
149     beginning of the stack will not be align_down (pc, 64).  */
150  sp = align_down (pc, 64);
151
152  /* rt_sigreturn trampoline:
153     3419000x ldi 0, %r25 or ldi 1, %r25   (x = 0 or 2)
154     3414015a ldi __NR_rt_sigreturn, %r20
155     e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
156     08000240 nop  */
157
158  for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
159    {
160      if (insns_match_pattern (sp + pcoffs[try], hppa_sigtramp, dummy))
161	{
162          offs = sfoffs[try];
163	  break;
164	}
165    }
166
167  if (offs == 0)
168    {
169      if (insns_match_pattern (pc, hppa_sigtramp, dummy))
170	{
171	  /* sigaltstack case: we have no way of knowing which offset to
172	     use in this case; default to new kernel handling. If this is
173	     wrong the unwinding will fail.  */
174	  try = 2;
175	  sp = pc - pcoffs[try];
176	}
177      else
178      {
179        return 0;
180      }
181    }
182
183  /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
184     a struct siginfo and a struct ucontext.  struct ucontext contains
185     a struct sigcontext. Return an offset to this sigcontext here.  Too
186     bad we cannot include system specific headers :-(.
187     sizeof(struct siginfo) == 128
188     offsetof(struct ucontext, uc_mcontext) == 24.  */
189  return sp + sfoffs[try] + 128 + 24;
190}
191
192struct hppa_linux_sigtramp_unwind_cache
193{
194  CORE_ADDR base;
195  struct trad_frame_saved_reg *saved_regs;
196};
197
198static struct hppa_linux_sigtramp_unwind_cache *
199hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
200					void **this_cache)
201{
202  struct gdbarch *gdbarch = get_frame_arch (next_frame);
203  struct hppa_linux_sigtramp_unwind_cache *info;
204  CORE_ADDR pc, scptr;
205  int i;
206
207  if (*this_cache)
208    return *this_cache;
209
210  info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
211  *this_cache = info;
212  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
213
214  pc = frame_pc_unwind (next_frame);
215  scptr = hppa_linux_sigtramp_find_sigcontext (pc);
216
217  /* structure of struct sigcontext:
218
219     struct sigcontext {
220	unsigned long sc_flags;
221	unsigned long sc_gr[32];
222	unsigned long long sc_fr[32];
223	unsigned long sc_iasq[2];
224	unsigned long sc_iaoq[2];
225	unsigned long sc_sar;           */
226
227  /* Skip sc_flags.  */
228  scptr += 4;
229
230  /* GR[0] is the psw, we don't restore that.  */
231  scptr += 4;
232
233  /* General registers.  */
234  for (i = 1; i < 32; i++)
235    {
236      info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
237      scptr += 4;
238    }
239
240  /* Pad.  */
241  scptr += 4;
242
243  /* FP regs; FP0-3 are not restored.  */
244  scptr += (8 * 4);
245
246  for (i = 4; i < 32; i++)
247    {
248      info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
249      scptr += 4;
250      info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
251      scptr += 4;
252    }
253
254  /* IASQ/IAOQ. */
255  info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
256  scptr += 4;
257  info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
258  scptr += 4;
259
260  info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
261  scptr += 4;
262  info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
263  scptr += 4;
264
265  info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
266
267  return info;
268}
269
270static void
271hppa_linux_sigtramp_frame_this_id (struct frame_info *next_frame,
272				   void **this_prologue_cache,
273				   struct frame_id *this_id)
274{
275  struct hppa_linux_sigtramp_unwind_cache *info
276    = hppa_linux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
277  *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
278}
279
280static void
281hppa_linux_sigtramp_frame_prev_register (struct frame_info *next_frame,
282					 void **this_prologue_cache,
283					 int regnum, int *optimizedp,
284					 enum lval_type *lvalp,
285					 CORE_ADDR *addrp,
286					 int *realnump, gdb_byte *valuep)
287{
288  struct hppa_linux_sigtramp_unwind_cache *info
289    = hppa_linux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
290  hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
291		                   optimizedp, lvalp, addrp, realnump, valuep);
292}
293
294static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
295  SIGTRAMP_FRAME,
296  hppa_linux_sigtramp_frame_this_id,
297  hppa_linux_sigtramp_frame_prev_register
298};
299
300/* hppa-linux always uses "new-style" rt-signals.  The signal handler's return
301   address should point to a signal trampoline on the stack.  The signal
302   trampoline is embedded in a rt_sigframe structure that is aligned on
303   the stack.  We take advantage of the fact that sp must be 64-byte aligned,
304   and the trampoline is small, so by rounding down the trampoline address
305   we can find the beginning of the struct rt_sigframe.  */
306static const struct frame_unwind *
307hppa_linux_sigtramp_unwind_sniffer (struct frame_info *next_frame)
308{
309  CORE_ADDR pc = frame_pc_unwind (next_frame);
310
311  if (hppa_linux_sigtramp_find_sigcontext (pc))
312    return &hppa_linux_sigtramp_frame_unwind;
313
314  return NULL;
315}
316
317/* Attempt to find (and return) the global pointer for the given
318   function.
319
320   This is a rather nasty bit of code searchs for the .dynamic section
321   in the objfile corresponding to the pc of the function we're trying
322   to call.  Once it finds the addresses at which the .dynamic section
323   lives in the child process, it scans the Elf32_Dyn entries for a
324   DT_PLTGOT tag.  If it finds one of these, the corresponding
325   d_un.d_ptr value is the global pointer.  */
326
327static CORE_ADDR
328hppa_linux_find_global_pointer (struct value *function)
329{
330  struct obj_section *faddr_sect;
331  CORE_ADDR faddr;
332
333  faddr = value_as_address (function);
334
335  /* Is this a plabel? If so, dereference it to get the gp value.  */
336  if (faddr & 2)
337    {
338      int status;
339      char buf[4];
340
341      faddr &= ~3;
342
343      status = target_read_memory (faddr + 4, buf, sizeof (buf));
344      if (status == 0)
345	return extract_unsigned_integer (buf, sizeof (buf));
346    }
347
348  /* If the address is in the plt section, then the real function hasn't
349     yet been fixed up by the linker so we cannot determine the gp of
350     that function.  */
351  if (in_plt_section (faddr, NULL))
352    return 0;
353
354  faddr_sect = find_pc_section (faddr);
355  if (faddr_sect != NULL)
356    {
357      struct obj_section *osect;
358
359      ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
360	{
361	  if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
362	    break;
363	}
364
365      if (osect < faddr_sect->objfile->sections_end)
366	{
367	  CORE_ADDR addr;
368
369	  addr = osect->addr;
370	  while (addr < osect->endaddr)
371	    {
372	      int status;
373	      LONGEST tag;
374	      char buf[4];
375
376	      status = target_read_memory (addr, buf, sizeof (buf));
377	      if (status != 0)
378		break;
379	      tag = extract_signed_integer (buf, sizeof (buf));
380
381	      if (tag == DT_PLTGOT)
382		{
383		  CORE_ADDR global_pointer;
384
385		  status = target_read_memory (addr + 4, buf, sizeof (buf));
386		  if (status != 0)
387		    break;
388		  global_pointer = extract_unsigned_integer (buf, sizeof (buf));
389
390		  /* The payoff... */
391		  return global_pointer;
392		}
393
394	      if (tag == DT_NULL)
395		break;
396
397	      addr += 8;
398	    }
399	}
400    }
401  return 0;
402}
403
404/*
405 * Registers saved in a coredump:
406 * gr0..gr31
407 * sr0..sr7
408 * iaoq0..iaoq1
409 * iasq0..iasq1
410 * sar, iir, isr, ior, ipsw
411 * cr0, cr24..cr31
412 * cr8,9,12,13
413 * cr10, cr15
414 */
415
416#define GR_REGNUM(_n)	(HPPA_R0_REGNUM+_n)
417#define TR_REGNUM(_n)	(HPPA_TR0_REGNUM+_n)
418static const int greg_map[] =
419  {
420    GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3),
421    GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7),
422    GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11),
423    GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15),
424    GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19),
425    GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23),
426    GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27),
427    GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31),
428
429    HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4,
430    HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7,
431
432    HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM,
433    HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM,
434
435    HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM,
436    HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM,
437
438    TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3),
439    TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7),
440
441    HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM,
442    HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM,
443  };
444
445static void
446hppa_linux_supply_regset (const struct regset *regset,
447			  struct regcache *regcache,
448			  int regnum, const void *regs, size_t len)
449{
450  struct gdbarch *arch = get_regcache_arch (regcache);
451  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
452  const char *buf = regs;
453  int i, offset;
454
455  offset = 0;
456  for (i = 0; i < ARRAY_SIZE (greg_map); i++)
457    {
458      if (regnum == greg_map[i] || regnum == -1)
459        regcache_raw_supply (regcache, greg_map[i], buf + offset);
460
461      offset += tdep->bytes_per_address;
462    }
463}
464
465static void
466hppa_linux_supply_fpregset (const struct regset *regset,
467			    struct regcache *regcache,
468			    int regnum, const void *regs, size_t len)
469{
470  const char *buf = regs;
471  int i, offset;
472
473  offset = 0;
474  for (i = 0; i < 31; i++)
475    {
476      if (regnum == HPPA_FP0_REGNUM + i || regnum == -1)
477        regcache_raw_supply (regcache, HPPA_FP0_REGNUM + i,
478			     buf + offset);
479      offset += 8;
480    }
481}
482
483/* HPPA Linux kernel register set.  */
484static struct regset hppa_linux_regset =
485{
486  NULL,
487  hppa_linux_supply_regset
488};
489
490static struct regset hppa_linux_fpregset =
491{
492  NULL,
493  hppa_linux_supply_fpregset
494};
495
496static const struct regset *
497hppa_linux_regset_from_core_section (struct gdbarch *gdbarch,
498				     const char *sect_name,
499				     size_t sect_size)
500{
501  if (strcmp (sect_name, ".reg") == 0)
502    return &hppa_linux_regset;
503  else if (strcmp (sect_name, ".reg2") == 0)
504    return &hppa_linux_fpregset;
505
506  return NULL;
507}
508
509
510/* Forward declarations.  */
511extern initialize_file_ftype _initialize_hppa_linux_tdep;
512
513static void
514hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
515{
516  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
517
518  /* GNU/Linux is always ELF.  */
519  tdep->is_elf = 1;
520
521  tdep->find_global_pointer = hppa_linux_find_global_pointer;
522
523  set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
524
525  frame_unwind_append_sniffer (gdbarch, hppa_linux_sigtramp_unwind_sniffer);
526
527  /* GNU/Linux uses SVR4-style shared libraries.  */
528  set_solib_svr4_fetch_link_map_offsets
529    (gdbarch, svr4_ilp32_fetch_link_map_offsets);
530
531  tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
532  set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
533
534  /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
535  set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
536
537  /* On hppa-linux, currently, sizeof(long double) == 8.  There has been
538     some discussions to support 128-bit long double, but it requires some
539     more work in gcc and glibc first.  */
540  set_gdbarch_long_double_bit (gdbarch, 64);
541
542  set_gdbarch_regset_from_core_section
543    (gdbarch, hppa_linux_regset_from_core_section);
544
545#if 0
546  /* Dwarf-2 unwinding support.  Not yet working.  */
547  set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
548  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
549  frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
550  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
551#endif
552
553  /* Enable TLS support.  */
554  set_gdbarch_fetch_tls_load_module_address (gdbarch,
555                                             svr4_fetch_objfile_link_map);
556}
557
558void
559_initialize_hppa_linux_tdep (void)
560{
561  gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, hppa_linux_init_abi);
562  gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_LINUX, hppa_linux_init_abi);
563}
564