1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4#
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6# Free Software Foundation, Inc.
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
12# the Free Software Foundation; either version 3 of the License, or
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
21# along with this program.  If not, see <http://www.gnu.org/licenses/>.
22
23# Make certain that the script is not running in an internationalized
24# environment.
25LANG=c ; export LANG
26LC_ALL=c ; export LC_ALL
27
28
29compare_new ()
30{
31    file=$1
32    if test ! -r ${file}
33    then
34	echo "${file} missing? cp new-${file} ${file}" 1>&2
35    elif diff -u ${file} new-${file}
36    then
37	echo "${file} unchanged" 1>&2
38    else
39	echo "${file} has changed? cp new-${file} ${file}" 1>&2
40    fi
41}
42
43
44# Format of the input table
45read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47do_read ()
48{
49    comment=""
50    class=""
51    while read line
52    do
53	if test "${line}" = ""
54	then
55	    continue
56	elif test "${line}" = "#" -a "${comment}" = ""
57	then
58	    continue
59	elif expr "${line}" : "#" > /dev/null
60	then
61	    comment="${comment}
62${line}"
63	else
64
65	    # The semantics of IFS varies between different SH's.  Some
66	    # treat ``::' as three fields while some treat it as just too.
67	    # Work around this by eliminating ``::'' ....
68	    line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70	    OFS="${IFS}" ; IFS="[:]"
71	    eval read ${read} <<EOF
72${line}
73EOF
74	    IFS="${OFS}"
75
76	    if test -n "${garbage_at_eol}"
77	    then
78		echo "Garbage at end-of-line in ${line}" 1>&2
79		kill $$
80		exit 1
81	    fi
82
83	    # .... and then going back through each field and strip out those
84	    # that ended up with just that space character.
85	    for r in ${read}
86	    do
87		if eval test \"\${${r}}\" = \"\ \"
88		then
89		    eval ${r}=""
90		fi
91	    done
92
93	    FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
94	    if test "x${macro}" = "x="
95	    then
96	        # Provide a UCASE version of function (for when there isn't MACRO)
97		macro="${FUNCTION}"
98	    elif test "${macro}" = "${FUNCTION}"
99	    then
100		echo "${function}: Specify = for macro field" 1>&2
101		kill $$
102		exit 1
103	    fi
104
105	    # Check that macro definition wasn't supplied for multi-arch
106	    case "${class}" in
107		[mM] )
108                    if test "${macro}" != ""
109		    then
110			echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
111			kill $$
112			exit 1
113		    fi
114	    esac
115	    
116	    case "${class}" in
117		m ) staticdefault="${predefault}" ;;
118		M ) staticdefault="0" ;;
119		* ) test "${staticdefault}" || staticdefault=0 ;;
120	    esac
121
122	    case "${class}" in
123	    F | V | M )
124		case "${invalid_p}" in
125		"" )
126		    if test -n "${predefault}"
127		    then
128			#invalid_p="gdbarch->${function} == ${predefault}"
129			predicate="gdbarch->${function} != ${predefault}"
130		    elif class_is_variable_p
131		    then
132			predicate="gdbarch->${function} != 0"
133		    elif class_is_function_p
134		    then
135			predicate="gdbarch->${function} != NULL"
136		    fi
137		    ;;
138		* )
139		    echo "Predicate function ${function} with invalid_p." 1>&2
140		    kill $$
141		    exit 1
142		    ;;
143		esac
144	    esac
145
146	    # PREDEFAULT is a valid fallback definition of MEMBER when
147	    # multi-arch is not enabled.  This ensures that the
148	    # default value, when multi-arch is the same as the
149	    # default value when not multi-arch.  POSTDEFAULT is
150	    # always a valid definition of MEMBER as this again
151	    # ensures consistency.
152
153	    if [ -n "${postdefault}" ]
154	    then
155		fallbackdefault="${postdefault}"
156	    elif [ -n "${predefault}" ]
157	    then
158		fallbackdefault="${predefault}"
159	    else
160		fallbackdefault="0"
161	    fi
162
163	    #NOT YET: See gdbarch.log for basic verification of
164	    # database
165
166	    break
167	fi
168    done
169    if [ -n "${class}" ]
170    then
171	true
172    else
173	false
174    fi
175}
176
177
178fallback_default_p ()
179{
180    [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
181	|| [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
182}
183
184class_is_variable_p ()
185{
186    case "${class}" in
187	*v* | *V* ) true ;;
188	* ) false ;;
189    esac
190}
191
192class_is_function_p ()
193{
194    case "${class}" in
195	*f* | *F* | *m* | *M* ) true ;;
196	* ) false ;;
197    esac
198}
199
200class_is_multiarch_p ()
201{
202    case "${class}" in
203	*m* | *M* ) true ;;
204	* ) false ;;
205    esac
206}
207
208class_is_predicate_p ()
209{
210    case "${class}" in
211	*F* | *V* | *M* ) true ;;
212	* ) false ;;
213    esac
214}
215
216class_is_info_p ()
217{
218    case "${class}" in
219	*i* ) true ;;
220	* ) false ;;
221    esac
222}
223
224
225# dump out/verify the doco
226for field in ${read}
227do
228  case ${field} in
229
230    class ) : ;;
231
232	# # -> line disable
233	# f -> function
234	#   hiding a function
235	# F -> function + predicate
236	#   hiding a function + predicate to test function validity
237	# v -> variable
238	#   hiding a variable
239	# V -> variable + predicate
240	#   hiding a variable + predicate to test variables validity
241	# i -> set from info
242	#   hiding something from the ``struct info'' object
243	# m -> multi-arch function
244	#   hiding a multi-arch function (parameterised with the architecture)
245        # M -> multi-arch function + predicate
246	#   hiding a multi-arch function + predicate to test function validity
247
248    macro ) : ;;
249
250	# The name of the legacy C macro by which this method can be
251	# accessed.  If empty, no macro is defined.  If "=", a macro
252	# formed from the upper-case function name is used.
253
254    returntype ) : ;;
255
256	# For functions, the return type; for variables, the data type
257
258    function ) : ;;
259
260	# For functions, the member function name; for variables, the
261	# variable name.  Member function names are always prefixed with
262	# ``gdbarch_'' for name-space purity.
263
264    formal ) : ;;
265
266	# The formal argument list.  It is assumed that the formal
267	# argument list includes the actual name of each list element.
268	# A function with no arguments shall have ``void'' as the
269	# formal argument list.
270
271    actual ) : ;;
272
273	# The list of actual arguments.  The arguments specified shall
274	# match the FORMAL list given above.  Functions with out
275	# arguments leave this blank.
276
277    staticdefault ) : ;;
278
279	# To help with the GDB startup a static gdbarch object is
280	# created.  STATICDEFAULT is the value to insert into that
281	# static gdbarch object.  Since this a static object only
282	# simple expressions can be used.
283
284	# If STATICDEFAULT is empty, zero is used.
285
286    predefault ) : ;;
287
288	# An initial value to assign to MEMBER of the freshly
289	# malloc()ed gdbarch object.  After initialization, the
290	# freshly malloc()ed object is passed to the target
291	# architecture code for further updates.
292
293	# If PREDEFAULT is empty, zero is used.
294
295	# A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
296	# INVALID_P are specified, PREDEFAULT will be used as the
297	# default for the non- multi-arch target.
298
299	# A zero PREDEFAULT function will force the fallback to call
300	# internal_error().
301
302	# Variable declarations can refer to ``gdbarch'' which will
303	# contain the current architecture.  Care should be taken.
304
305    postdefault ) : ;;
306
307	# A value to assign to MEMBER of the new gdbarch object should
308	# the target architecture code fail to change the PREDEFAULT
309	# value.
310
311	# If POSTDEFAULT is empty, no post update is performed.
312
313	# If both INVALID_P and POSTDEFAULT are non-empty then
314	# INVALID_P will be used to determine if MEMBER should be
315	# changed to POSTDEFAULT.
316
317	# If a non-empty POSTDEFAULT and a zero INVALID_P are
318	# specified, POSTDEFAULT will be used as the default for the
319	# non- multi-arch target (regardless of the value of
320	# PREDEFAULT).
321
322	# You cannot specify both a zero INVALID_P and a POSTDEFAULT.
323
324	# Variable declarations can refer to ``current_gdbarch'' which
325	# will contain the current architecture.  Care should be
326	# taken.
327
328    invalid_p ) : ;;
329
330	# A predicate equation that validates MEMBER.  Non-zero is
331	# returned if the code creating the new architecture failed to
332	# initialize MEMBER or the initialized the member is invalid.
333	# If POSTDEFAULT is non-empty then MEMBER will be updated to
334	# that value.  If POSTDEFAULT is empty then internal_error()
335	# is called.
336
337	# If INVALID_P is empty, a check that MEMBER is no longer
338	# equal to PREDEFAULT is used.
339
340	# The expression ``0'' disables the INVALID_P check making
341	# PREDEFAULT a legitimate value.
342
343	# See also PREDEFAULT and POSTDEFAULT.
344
345    print ) : ;;
346
347	# An optional expression that convers MEMBER to a value
348	# suitable for formatting using %s.
349
350	# If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
351	# (anything else) is used.
352
353    garbage_at_eol ) : ;;
354
355	# Catches stray fields.
356
357    *)
358	echo "Bad field ${field}"
359	exit 1;;
360  esac
361done
362
363
364function_list ()
365{
366  # See below (DOCO) for description of each field
367  cat <<EOF
368i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
369#
370i::int:byte_order:::BFD_ENDIAN_BIG
371#
372i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
373#
374i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
375# Number of bits in a char or unsigned char for the target machine.
376# Just like CHAR_BIT in <limits.h> but describes the target machine.
377# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378#
379# Number of bits in a short or unsigned short for the target machine.
380v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381# Number of bits in an int or unsigned int for the target machine.
382v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383# Number of bits in a long or unsigned long for the target machine.
384v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385# Number of bits in a long long or unsigned long long for the target
386# machine.
387v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
388
389# The ABI default bit-size and format for "float", "double", and "long
390# double".  These bit/format pairs should eventually be combined into
391# a single object.  For the moment, just initialize them as a pair.
392# Each format describes both the big and little endian layouts (if
393# useful).
394
395v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
396v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
397v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
398v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
399v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
400v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
401
402# For most targets, a pointer on the target and its representation as an
403# address in GDB have the same size and "look the same".  For such a
404# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
405# / addr_bit will be set from it.
406#
407# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
408# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
409# as well.
410#
411# ptr_bit is the size of a pointer on the target
412v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
413# addr_bit is the size of a target address as represented in gdb
414v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
415#
416# One if \`char' acts like \`signed char', zero if \`unsigned char'.
417v::int:char_signed:::1:-1:1
418#
419F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
420F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
421# Function for getting target's idea of a frame pointer.  FIXME: GDB's
422# whole scheme for dealing with "frames" and "frame pointers" needs a
423# serious shakedown.
424f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425#
426M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
427M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
428#
429v::int:num_regs:::0:-1
430# This macro gives the number of pseudo-registers that live in the
431# register namespace but do not get fetched or stored on the target.
432# These pseudo-registers may be aliases for other registers,
433# combinations of other registers, or they may be computed by GDB.
434v::int:num_pseudo_regs:::0:0::0
435
436# GDB's standard (or well known) register numbers.  These can map onto
437# a real register or a pseudo (computed) register or not be defined at
438# all (-1).
439# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
440v::int:sp_regnum:::-1:-1::0
441v::int:pc_regnum:::-1:-1::0
442v::int:ps_regnum:::-1:-1::0
443v::int:fp0_regnum:::0:-1::0
444# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
445f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
446# Provide a default mapping from a ecoff register number to a gdb REGNUM.
447f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
448# Provide a default mapping from a DWARF register number to a gdb REGNUM.
449f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
450# Convert from an sdb register number to an internal gdb register number.
451f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
452f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
453f::const char *:register_name:int regnr:regnr
454
455# Return the type of a register specified by the architecture.  Only
456# the register cache should call this function directly; others should
457# use "register_type".
458M::struct type *:register_type:int reg_nr:reg_nr
459
460# See gdbint.texinfo, and PUSH_DUMMY_CALL.
461M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
462# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
463# deprecated_fp_regnum.
464v::int:deprecated_fp_regnum:::-1:-1::0
465
466# See gdbint.texinfo.  See infcall.c.
467M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
468v::int:call_dummy_location::::AT_ENTRY_POINT::0
469M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr, regcache
470
471m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
472M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
473M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474# MAP a GDB RAW register number onto a simulator register number.  See
475# also include/...-sim.h.
476f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
477f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
478f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
479# setjmp/longjmp support.
480F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
481#
482v::int:believe_pcc_promotion:::::::
483#
484f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
485f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
486f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
487# Construct a value representing the contents of register REGNUM in
488# frame FRAME, interpreted as type TYPE.  The routine needs to
489# allocate and return a struct value with all value attributes
490# (but not the value contents) filled in.
491f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
492#
493f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
494f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
495M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
496
497# It has been suggested that this, well actually its predecessor,
498# should take the type/value of the function to be called and not the
499# return type.  This is left as an exercise for the reader.
500
501# NOTE: cagney/2004-06-13: The function stack.c:return_command uses
502# the predicate with default hack to avoid calling store_return_value
503# (via legacy_return_value), when a small struct is involved.
504
505M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
506
507# The deprecated methods extract_return_value, store_return_value,
508# DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
509# deprecated_use_struct_convention have all been folded into
510# RETURN_VALUE.
511
512f::void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
513f::void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
514f::int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
515
516f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
517f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
518f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
519M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
520f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
521f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
522v::CORE_ADDR:decr_pc_after_break:::0:::0
523
524# A function can be addressed by either it's "pointer" (possibly a
525# descriptor address) or "entry point" (first executable instruction).
526# The method "convert_from_func_ptr_addr" converting the former to the
527# latter.  gdbarch_deprecated_function_start_offset is being used to implement
528# a simplified subset of that functionality - the function's address
529# corresponds to the "function pointer" and the function's start
530# corresponds to the "function entry point" - and hence is redundant.
531
532v::CORE_ADDR:deprecated_function_start_offset:::0:::0
533
534# Return the remote protocol register number associated with this
535# register.  Normally the identity mapping.
536m::int:remote_register_number:int regno:regno::default_remote_register_number::0
537
538# Fetch the target specific address used to represent a load module.
539F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
540#
541v::CORE_ADDR:frame_args_skip:::0:::0
542M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
543M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
544# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
545# frame-base.  Enable frame-base before frame-unwind.
546F::int:frame_num_args:struct frame_info *frame:frame
547#
548M::CORE_ADDR:frame_align:CORE_ADDR address:address
549# deprecated_reg_struct_has_addr has been replaced by
550# stabs_argument_has_addr.
551F::int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
552m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
553v::int:frame_red_zone_size
554#
555m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
556# On some machines there are bits in addresses which are not really
557# part of the address, but are used by the kernel, the hardware, etc.
558# for special purposes.  gdbarch_addr_bits_remove takes out any such bits so
559# we get a "real" address such as one would find in a symbol table.
560# This is used only for addresses of instructions, and even then I'm
561# not sure it's used in all contexts.  It exists to deal with there
562# being a few stray bits in the PC which would mislead us, not as some
563# sort of generic thing to handle alignment or segmentation (it's
564# possible it should be in TARGET_READ_PC instead).
565f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
566# It is not at all clear why gdbarch_smash_text_address is not folded into
567# gdbarch_addr_bits_remove.
568f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
569
570# FIXME/cagney/2001-01-18: This should be split in two.  A target method that
571# indicates if the target needs software single step.  An ISA method to
572# implement it.
573#
574# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
575# breakpoints using the breakpoint system instead of blatting memory directly
576# (as with rs6000).
577#
578# FIXME/cagney/2001-01-18: The logic is backwards.  It should be asking if the
579# target can single step.  If not, then implement single step using breakpoints.
580#
581# A return value of 1 means that the software_single_step breakpoints 
582# were inserted; 0 means they were not.
583F::int:software_single_step:struct frame_info *frame:frame
584
585# Return non-zero if the processor is executing a delay slot and a
586# further single-step is needed before the instruction finishes.
587M::int:single_step_through_delay:struct frame_info *frame:frame
588# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
589# disassembler.  Perhaps objdump can handle it?
590f::int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
591f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
592
593
594# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
595# evaluates non-zero, this is the address where the debugger will place
596# a step-resume breakpoint to get us past the dynamic linker.
597m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
598# Some systems also have trampoline code for returning from shared libs.
599f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
600
601# A target might have problems with watchpoints as soon as the stack
602# frame of the current function has been destroyed.  This mostly happens
603# as the first action in a funtion's epilogue.  in_function_epilogue_p()
604# is defined to return a non-zero value if either the given addr is one
605# instruction after the stack destroying instruction up to the trailing
606# return instruction or if we can figure out that the stack frame has
607# already been invalidated regardless of the value of addr.  Targets
608# which don't suffer from that problem could just let this functionality
609# untouched.
610m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
611# Given a vector of command-line arguments, return a newly allocated
612# string which, when passed to the create_inferior function, will be
613# parsed (on Unix systems, by the shell) to yield the same vector.
614# This function should call error() if the argument vector is not
615# representable for this target or if this target does not support
616# command-line arguments.
617# ARGC is the number of elements in the vector.
618# ARGV is an array of strings, one per argument.
619m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
620f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
621f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
622v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
623v::int:cannot_step_breakpoint:::0:0::0
624v::int:have_nonsteppable_watchpoint:::0:0::0
625F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
626M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
627M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
628# Is a register in a group
629m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
630# Fetch the pointer to the ith function argument.
631F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
632
633# Return the appropriate register set for a core file section with
634# name SECT_NAME and size SECT_SIZE.
635M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
636
637# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
638# core file into buffer READBUF with length LEN.
639M::LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
640
641# If the elements of C++ vtables are in-place function descriptors rather
642# than normal function pointers (which may point to code or a descriptor),
643# set this to one.
644v::int:vtable_function_descriptors:::0:0::0
645
646# Set if the least significant bit of the delta is used instead of the least
647# significant bit of the pfn for pointers to virtual member functions.
648v::int:vbit_in_delta:::0:0::0
649
650# Advance PC to next instruction in order to skip a permanent breakpoint.
651F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
652
653# Refresh overlay mapped state for section OSECT.
654F::void:overlay_update:struct obj_section *osect:osect
655EOF
656}
657
658#
659# The .log file
660#
661exec > new-gdbarch.log
662function_list | while do_read
663do
664    cat <<EOF
665${class} ${returntype} ${function} ($formal)
666EOF
667    for r in ${read}
668    do
669	eval echo \"\ \ \ \ ${r}=\${${r}}\"
670    done
671    if class_is_predicate_p && fallback_default_p
672    then
673	echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
674	kill $$
675	exit 1
676    fi
677    if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
678    then
679	echo "Error: postdefault is useless when invalid_p=0" 1>&2
680	kill $$
681	exit 1
682    fi
683    if class_is_multiarch_p
684    then
685	if class_is_predicate_p ; then :
686	elif test "x${predefault}" = "x"
687	then
688	    echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
689	    kill $$
690	    exit 1
691	fi
692    fi
693    echo ""
694done
695
696exec 1>&2
697compare_new gdbarch.log
698
699
700copyright ()
701{
702cat <<EOF
703/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
704
705/* Dynamic architecture support for GDB, the GNU debugger.
706
707   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
708   Free Software Foundation, Inc.
709
710   This file is part of GDB.
711
712   This program is free software; you can redistribute it and/or modify
713   it under the terms of the GNU General Public License as published by
714   the Free Software Foundation; either version 3 of the License, or
715   (at your option) any later version.
716  
717   This program is distributed in the hope that it will be useful,
718   but WITHOUT ANY WARRANTY; without even the implied warranty of
719   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
720   GNU General Public License for more details.
721  
722   You should have received a copy of the GNU General Public License
723   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
724
725/* This file was created with the aid of \`\`gdbarch.sh''.
726
727   The Bourne shell script \`\`gdbarch.sh'' creates the files
728   \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
729   against the existing \`\`gdbarch.[hc]''.  Any differences found
730   being reported.
731
732   If editing this file, please also run gdbarch.sh and merge any
733   changes into that script. Conversely, when making sweeping changes
734   to this file, modifying gdbarch.sh and using its output may prove
735   easier. */
736
737EOF
738}
739
740#
741# The .h file
742#
743
744exec > new-gdbarch.h
745copyright
746cat <<EOF
747#ifndef GDBARCH_H
748#define GDBARCH_H
749
750struct floatformat;
751struct ui_file;
752struct frame_info;
753struct value;
754struct objfile;
755struct obj_section;
756struct minimal_symbol;
757struct regcache;
758struct reggroup;
759struct regset;
760struct disassemble_info;
761struct target_ops;
762struct obstack;
763struct bp_target_info;
764struct target_desc;
765
766extern struct gdbarch *current_gdbarch;
767EOF
768
769# function typedef's
770printf "\n"
771printf "\n"
772printf "/* The following are pre-initialized by GDBARCH. */\n"
773function_list | while do_read
774do
775    if class_is_info_p
776    then
777	printf "\n"
778	printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
779	printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
780	if test -n "${macro}"
781	then
782	    printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
783	    printf "#error \"Non multi-arch definition of ${macro}\"\n"
784	    printf "#endif\n"
785	    printf "#if !defined (${macro})\n"
786	    printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
787	    printf "#endif\n"
788	fi
789    fi
790done
791
792# function typedef's
793printf "\n"
794printf "\n"
795printf "/* The following are initialized by the target dependent code. */\n"
796function_list | while do_read
797do
798    if [ -n "${comment}" ]
799    then
800	echo "${comment}" | sed \
801	    -e '2 s,#,/*,' \
802	    -e '3,$ s,#,  ,' \
803	    -e '$ s,$, */,'
804    fi
805
806    if class_is_predicate_p
807    then
808	if test -n "${macro}"
809	then
810	    printf "\n"
811	    printf "#if defined (${macro})\n"
812	    printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
813	    printf "#if !defined (${macro}_P)\n"
814	    printf "#define ${macro}_P() (1)\n"
815	    printf "#endif\n"
816	    printf "#endif\n"
817	fi
818	printf "\n"
819	printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
820	if test -n "${macro}"
821	then
822	    printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
823	    printf "#error \"Non multi-arch definition of ${macro}\"\n"
824	    printf "#endif\n"
825	    printf "#if !defined (${macro}_P)\n"
826	    printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
827	    printf "#endif\n"
828	fi
829    fi
830    if class_is_variable_p
831    then
832	printf "\n"
833	printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
834	printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
835	if test -n "${macro}"
836	then
837	    printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
838	    printf "#error \"Non multi-arch definition of ${macro}\"\n"
839	    printf "#endif\n"
840	    printf "#if !defined (${macro})\n"
841	    printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
842	    printf "#endif\n"
843	fi
844    fi
845    if class_is_function_p
846    then
847	printf "\n"
848	if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
849	then
850	    printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
851	elif class_is_multiarch_p
852	then
853	    printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
854	else
855	    printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
856	fi
857	if [ "x${formal}" = "xvoid" ]
858	then
859	  printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
860	else
861	  printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
862	fi
863	printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
864	if test -n "${macro}"
865	then
866	    printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
867	    printf "#error \"Non multi-arch definition of ${macro}\"\n"
868	    printf "#endif\n"
869	    if [ "x${actual}" = "x" ]
870	    then
871		d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
872	    elif [ "x${actual}" = "x-" ]
873	    then
874		d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
875	    else
876		d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
877	    fi
878	    printf "#if !defined (${macro})\n"
879	    if [ "x${actual}" = "x" ]
880	    then
881		printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
882	    elif [ "x${actual}" = "x-" ]
883	    then
884		printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
885	    else
886		printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
887	    fi
888	    printf "#endif\n"
889	fi
890    fi
891done
892
893# close it off
894cat <<EOF
895
896extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
897
898
899/* Mechanism for co-ordinating the selection of a specific
900   architecture.
901
902   GDB targets (*-tdep.c) can register an interest in a specific
903   architecture.  Other GDB components can register a need to maintain
904   per-architecture data.
905
906   The mechanisms below ensures that there is only a loose connection
907   between the set-architecture command and the various GDB
908   components.  Each component can independently register their need
909   to maintain architecture specific data with gdbarch.
910
911   Pragmatics:
912
913   Previously, a single TARGET_ARCHITECTURE_HOOK was provided.  It
914   didn't scale.
915
916   The more traditional mega-struct containing architecture specific
917   data for all the various GDB components was also considered.  Since
918   GDB is built from a variable number of (fairly independent)
919   components it was determined that the global aproach was not
920   applicable. */
921
922
923/* Register a new architectural family with GDB.
924
925   Register support for the specified ARCHITECTURE with GDB.  When
926   gdbarch determines that the specified architecture has been
927   selected, the corresponding INIT function is called.
928
929   --
930
931   The INIT function takes two parameters: INFO which contains the
932   information available to gdbarch about the (possibly new)
933   architecture; ARCHES which is a list of the previously created
934   \`\`struct gdbarch'' for this architecture.
935
936   The INFO parameter is, as far as possible, be pre-initialized with
937   information obtained from INFO.ABFD or the global defaults.
938
939   The ARCHES parameter is a linked list (sorted most recently used)
940   of all the previously created architures for this architecture
941   family.  The (possibly NULL) ARCHES->gdbarch can used to access
942   values from the previously selected architecture for this
943   architecture family.  The global \`\`current_gdbarch'' shall not be
944   used.
945
946   The INIT function shall return any of: NULL - indicating that it
947   doesn't recognize the selected architecture; an existing \`\`struct
948   gdbarch'' from the ARCHES list - indicating that the new
949   architecture is just a synonym for an earlier architecture (see
950   gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
951   - that describes the selected architecture (see gdbarch_alloc()).
952
953   The DUMP_TDEP function shall print out all target specific values.
954   Care should be taken to ensure that the function works in both the
955   multi-arch and non- multi-arch cases. */
956
957struct gdbarch_list
958{
959  struct gdbarch *gdbarch;
960  struct gdbarch_list *next;
961};
962
963struct gdbarch_info
964{
965  /* Use default: NULL (ZERO). */
966  const struct bfd_arch_info *bfd_arch_info;
967
968  /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO).  */
969  int byte_order;
970
971  /* Use default: NULL (ZERO). */
972  bfd *abfd;
973
974  /* Use default: NULL (ZERO). */
975  struct gdbarch_tdep_info *tdep_info;
976
977  /* Use default: GDB_OSABI_UNINITIALIZED (-1).  */
978  enum gdb_osabi osabi;
979
980  /* Use default: NULL (ZERO).  */
981  const struct target_desc *target_desc;
982};
983
984typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
985typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
986
987/* DEPRECATED - use gdbarch_register() */
988extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
989
990extern void gdbarch_register (enum bfd_architecture architecture,
991                              gdbarch_init_ftype *,
992                              gdbarch_dump_tdep_ftype *);
993
994
995/* Return a freshly allocated, NULL terminated, array of the valid
996   architecture names.  Since architectures are registered during the
997   _initialize phase this function only returns useful information
998   once initialization has been completed. */
999
1000extern const char **gdbarch_printable_names (void);
1001
1002
1003/* Helper function.  Search the list of ARCHES for a GDBARCH that
1004   matches the information provided by INFO. */
1005
1006extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1007
1008
1009/* Helper function.  Create a preliminary \`\`struct gdbarch''.  Perform
1010   basic initialization using values obtained from the INFO and TDEP
1011   parameters.  set_gdbarch_*() functions are called to complete the
1012   initialization of the object. */
1013
1014extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1015
1016
1017/* Helper function.  Free a partially-constructed \`\`struct gdbarch''.
1018   It is assumed that the caller freeds the \`\`struct
1019   gdbarch_tdep''. */
1020
1021extern void gdbarch_free (struct gdbarch *);
1022
1023
1024/* Helper function.  Allocate memory from the \`\`struct gdbarch''
1025   obstack.  The memory is freed when the corresponding architecture
1026   is also freed.  */
1027
1028extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1029#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1030#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1031
1032
1033/* Helper function. Force an update of the current architecture.
1034
1035   The actual architecture selected is determined by INFO, \`\`(gdb) set
1036   architecture'' et.al., the existing architecture and BFD's default
1037   architecture.  INFO should be initialized to zero and then selected
1038   fields should be updated.
1039
1040   Returns non-zero if the update succeeds */
1041
1042extern int gdbarch_update_p (struct gdbarch_info info);
1043
1044
1045/* Helper function.  Find an architecture matching info.
1046
1047   INFO should be initialized using gdbarch_info_init, relevant fields
1048   set, and then finished using gdbarch_info_fill.
1049
1050   Returns the corresponding architecture, or NULL if no matching
1051   architecture was found.  "current_gdbarch" is not updated.  */
1052
1053extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1054
1055
1056/* Helper function.  Set the global "current_gdbarch" to "gdbarch".
1057
1058   FIXME: kettenis/20031124: Of the functions that follow, only
1059   gdbarch_from_bfd is supposed to survive.  The others will
1060   dissappear since in the future GDB will (hopefully) be truly
1061   multi-arch.  However, for now we're still stuck with the concept of
1062   a single active architecture.  */
1063
1064extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1065
1066
1067/* Register per-architecture data-pointer.
1068
1069   Reserve space for a per-architecture data-pointer.  An identifier
1070   for the reserved data-pointer is returned.  That identifer should
1071   be saved in a local static variable.
1072
1073   Memory for the per-architecture data shall be allocated using
1074   gdbarch_obstack_zalloc.  That memory will be deleted when the
1075   corresponding architecture object is deleted.
1076
1077   When a previously created architecture is re-selected, the
1078   per-architecture data-pointer for that previous architecture is
1079   restored.  INIT() is not re-called.
1080
1081   Multiple registrarants for any architecture are allowed (and
1082   strongly encouraged).  */
1083
1084struct gdbarch_data;
1085
1086typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1087extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1088typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1089extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1090extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1091                                         struct gdbarch_data *data,
1092			                 void *pointer);
1093
1094extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1095
1096
1097/* Set the dynamic target-system-dependent parameters (architecture,
1098   byte-order, ...) using information found in the BFD */
1099
1100extern void set_gdbarch_from_file (bfd *);
1101
1102
1103/* Initialize the current architecture to the "first" one we find on
1104   our list.  */
1105
1106extern void initialize_current_architecture (void);
1107
1108/* gdbarch trace variable */
1109extern int gdbarch_debug;
1110
1111extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1112
1113#endif
1114EOF
1115exec 1>&2
1116#../move-if-change new-gdbarch.h gdbarch.h
1117compare_new gdbarch.h
1118
1119
1120#
1121# C file
1122#
1123
1124exec > new-gdbarch.c
1125copyright
1126cat <<EOF
1127
1128#include "defs.h"
1129#include "arch-utils.h"
1130
1131#include "gdbcmd.h"
1132#include "inferior.h" 
1133#include "symcat.h"
1134
1135#include "floatformat.h"
1136
1137#include "gdb_assert.h"
1138#include "gdb_string.h"
1139#include "gdb-events.h"
1140#include "reggroups.h"
1141#include "osabi.h"
1142#include "gdb_obstack.h"
1143
1144/* Static function declarations */
1145
1146static void alloc_gdbarch_data (struct gdbarch *);
1147
1148/* Non-zero if we want to trace architecture code.  */
1149
1150#ifndef GDBARCH_DEBUG
1151#define GDBARCH_DEBUG 0
1152#endif
1153int gdbarch_debug = GDBARCH_DEBUG;
1154static void
1155show_gdbarch_debug (struct ui_file *file, int from_tty,
1156                    struct cmd_list_element *c, const char *value)
1157{
1158  fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1159}
1160
1161static const char *
1162pformat (const struct floatformat **format)
1163{
1164  if (format == NULL)
1165    return "(null)";
1166  else
1167    /* Just print out one of them - this is only for diagnostics.  */
1168    return format[0]->name;
1169}
1170
1171EOF
1172
1173# gdbarch open the gdbarch object
1174printf "\n"
1175printf "/* Maintain the struct gdbarch object */\n"
1176printf "\n"
1177printf "struct gdbarch\n"
1178printf "{\n"
1179printf "  /* Has this architecture been fully initialized?  */\n"
1180printf "  int initialized_p;\n"
1181printf "\n"
1182printf "  /* An obstack bound to the lifetime of the architecture.  */\n"
1183printf "  struct obstack *obstack;\n"
1184printf "\n"
1185printf "  /* basic architectural information */\n"
1186function_list | while do_read
1187do
1188    if class_is_info_p
1189    then
1190	printf "  ${returntype} ${function};\n"
1191    fi
1192done
1193printf "\n"
1194printf "  /* target specific vector. */\n"
1195printf "  struct gdbarch_tdep *tdep;\n"
1196printf "  gdbarch_dump_tdep_ftype *dump_tdep;\n"
1197printf "\n"
1198printf "  /* per-architecture data-pointers */\n"
1199printf "  unsigned nr_data;\n"
1200printf "  void **data;\n"
1201printf "\n"
1202printf "  /* per-architecture swap-regions */\n"
1203printf "  struct gdbarch_swap *swap;\n"
1204printf "\n"
1205cat <<EOF
1206  /* Multi-arch values.
1207
1208     When extending this structure you must:
1209
1210     Add the field below.
1211
1212     Declare set/get functions and define the corresponding
1213     macro in gdbarch.h.
1214
1215     gdbarch_alloc(): If zero/NULL is not a suitable default,
1216     initialize the new field.
1217
1218     verify_gdbarch(): Confirm that the target updated the field
1219     correctly.
1220
1221     gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1222     field is dumped out
1223
1224     \`\`startup_gdbarch()'': Append an initial value to the static
1225     variable (base values on the host's c-type system).
1226
1227     get_gdbarch(): Implement the set/get functions (probably using
1228     the macro's as shortcuts).
1229
1230     */
1231
1232EOF
1233function_list | while do_read
1234do
1235    if class_is_variable_p
1236    then
1237	printf "  ${returntype} ${function};\n"
1238    elif class_is_function_p
1239    then
1240	printf "  gdbarch_${function}_ftype *${function};\n"
1241    fi
1242done
1243printf "};\n"
1244
1245# A pre-initialized vector
1246printf "\n"
1247printf "\n"
1248cat <<EOF
1249/* The default architecture uses host values (for want of a better
1250   choice). */
1251EOF
1252printf "\n"
1253printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1254printf "\n"
1255printf "struct gdbarch startup_gdbarch =\n"
1256printf "{\n"
1257printf "  1, /* Always initialized.  */\n"
1258printf "  NULL, /* The obstack.  */\n"
1259printf "  /* basic architecture information */\n"
1260function_list | while do_read
1261do
1262    if class_is_info_p
1263    then
1264	printf "  ${staticdefault},  /* ${function} */\n"
1265    fi
1266done
1267cat <<EOF
1268  /* target specific vector and its dump routine */
1269  NULL, NULL,
1270  /*per-architecture data-pointers and swap regions */
1271  0, NULL, NULL,
1272  /* Multi-arch values */
1273EOF
1274function_list | while do_read
1275do
1276    if class_is_function_p || class_is_variable_p
1277    then
1278	printf "  ${staticdefault},  /* ${function} */\n"
1279    fi
1280done
1281cat <<EOF
1282  /* startup_gdbarch() */
1283};
1284
1285struct gdbarch *current_gdbarch = &startup_gdbarch;
1286EOF
1287
1288# Create a new gdbarch struct
1289cat <<EOF
1290
1291/* Create a new \`\`struct gdbarch'' based on information provided by
1292   \`\`struct gdbarch_info''. */
1293EOF
1294printf "\n"
1295cat <<EOF
1296struct gdbarch *
1297gdbarch_alloc (const struct gdbarch_info *info,
1298               struct gdbarch_tdep *tdep)
1299{
1300  /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1301     so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1302     the current local architecture and not the previous global
1303     architecture.  This ensures that the new architectures initial
1304     values are not influenced by the previous architecture.  Once
1305     everything is parameterised with gdbarch, this will go away.  */
1306  struct gdbarch *current_gdbarch;
1307
1308  /* Create an obstack for allocating all the per-architecture memory,
1309     then use that to allocate the architecture vector.  */
1310  struct obstack *obstack = XMALLOC (struct obstack);
1311  obstack_init (obstack);
1312  current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1313  memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1314  current_gdbarch->obstack = obstack;
1315
1316  alloc_gdbarch_data (current_gdbarch);
1317
1318  current_gdbarch->tdep = tdep;
1319EOF
1320printf "\n"
1321function_list | while do_read
1322do
1323    if class_is_info_p
1324    then
1325	printf "  current_gdbarch->${function} = info->${function};\n"
1326    fi
1327done
1328printf "\n"
1329printf "  /* Force the explicit initialization of these. */\n"
1330function_list | while do_read
1331do
1332    if class_is_function_p || class_is_variable_p
1333    then
1334	if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1335	then
1336	  printf "  current_gdbarch->${function} = ${predefault};\n"
1337	fi
1338    fi
1339done
1340cat <<EOF
1341  /* gdbarch_alloc() */
1342
1343  return current_gdbarch;
1344}
1345EOF
1346
1347# Free a gdbarch struct.
1348printf "\n"
1349printf "\n"
1350cat <<EOF
1351/* Allocate extra space using the per-architecture obstack.  */
1352
1353void *
1354gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1355{
1356  void *data = obstack_alloc (arch->obstack, size);
1357  memset (data, 0, size);
1358  return data;
1359}
1360
1361
1362/* Free a gdbarch struct.  This should never happen in normal
1363   operation --- once you've created a gdbarch, you keep it around.
1364   However, if an architecture's init function encounters an error
1365   building the structure, it may need to clean up a partially
1366   constructed gdbarch.  */
1367
1368void
1369gdbarch_free (struct gdbarch *arch)
1370{
1371  struct obstack *obstack;
1372  gdb_assert (arch != NULL);
1373  gdb_assert (!arch->initialized_p);
1374  obstack = arch->obstack;
1375  obstack_free (obstack, 0); /* Includes the ARCH.  */
1376  xfree (obstack);
1377}
1378EOF
1379
1380# verify a new architecture
1381cat <<EOF
1382
1383
1384/* Ensure that all values in a GDBARCH are reasonable.  */
1385
1386/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1387   just happens to match the global variable \`\`current_gdbarch''.  That
1388   way macros refering to that variable get the local and not the global
1389   version - ulgh.  Once everything is parameterised with gdbarch, this
1390   will go away. */
1391
1392static void
1393verify_gdbarch (struct gdbarch *current_gdbarch)
1394{
1395  struct ui_file *log;
1396  struct cleanup *cleanups;
1397  long dummy;
1398  char *buf;
1399  log = mem_fileopen ();
1400  cleanups = make_cleanup_ui_file_delete (log);
1401  /* fundamental */
1402  if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1403    fprintf_unfiltered (log, "\n\tbyte-order");
1404  if (current_gdbarch->bfd_arch_info == NULL)
1405    fprintf_unfiltered (log, "\n\tbfd_arch_info");
1406  /* Check those that need to be defined for the given multi-arch level. */
1407EOF
1408function_list | while do_read
1409do
1410    if class_is_function_p || class_is_variable_p
1411    then
1412	if [ "x${invalid_p}" = "x0" ]
1413	then
1414	    printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1415	elif class_is_predicate_p
1416	then
1417	    printf "  /* Skip verify of ${function}, has predicate */\n"
1418	# FIXME: See do_read for potential simplification
1419 	elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1420	then
1421	    printf "  if (${invalid_p})\n"
1422	    printf "    current_gdbarch->${function} = ${postdefault};\n"
1423	elif [ -n "${predefault}" -a -n "${postdefault}" ]
1424	then
1425	    printf "  if (current_gdbarch->${function} == ${predefault})\n"
1426	    printf "    current_gdbarch->${function} = ${postdefault};\n"
1427	elif [ -n "${postdefault}" ]
1428	then
1429	    printf "  if (current_gdbarch->${function} == 0)\n"
1430	    printf "    current_gdbarch->${function} = ${postdefault};\n"
1431	elif [ -n "${invalid_p}" ]
1432	then
1433	    printf "  if (${invalid_p})\n"
1434	    printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1435	elif [ -n "${predefault}" ]
1436	then
1437	    printf "  if (current_gdbarch->${function} == ${predefault})\n"
1438	    printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1439	fi
1440    fi
1441done
1442cat <<EOF
1443  buf = ui_file_xstrdup (log, &dummy);
1444  make_cleanup (xfree, buf);
1445  if (strlen (buf) > 0)
1446    internal_error (__FILE__, __LINE__,
1447                    _("verify_gdbarch: the following are invalid ...%s"),
1448                    buf);
1449  do_cleanups (cleanups);
1450}
1451EOF
1452
1453# dump the structure
1454printf "\n"
1455printf "\n"
1456cat <<EOF
1457/* Print out the details of the current architecture. */
1458
1459/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1460   just happens to match the global variable \`\`current_gdbarch''.  That
1461   way macros refering to that variable get the local and not the global
1462   version - ulgh.  Once everything is parameterised with gdbarch, this
1463   will go away. */
1464
1465void
1466gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1467{
1468  const char *gdb_xm_file = "<not-defined>";
1469  const char *gdb_nm_file = "<not-defined>";
1470  const char *gdb_tm_file = "<not-defined>";
1471#if defined (GDB_XM_FILE)
1472  gdb_xm_file = GDB_XM_FILE;
1473#endif
1474  fprintf_unfiltered (file,
1475                      "gdbarch_dump: GDB_XM_FILE = %s\\n",
1476                      gdb_xm_file);
1477#if defined (GDB_NM_FILE)
1478  gdb_nm_file = GDB_NM_FILE;
1479#endif
1480  fprintf_unfiltered (file,
1481                      "gdbarch_dump: GDB_NM_FILE = %s\\n",
1482                      gdb_nm_file);
1483#if defined (GDB_TM_FILE)
1484  gdb_tm_file = GDB_TM_FILE;
1485#endif
1486  fprintf_unfiltered (file,
1487                      "gdbarch_dump: GDB_TM_FILE = %s\\n",
1488                      gdb_tm_file);
1489EOF
1490function_list | sort -t: -k 4 | while do_read
1491do
1492    # First the predicate
1493    if class_is_predicate_p
1494    then
1495	if test -n "${macro}"
1496	then
1497	    printf "#ifdef ${macro}_P\n"
1498	    printf "  fprintf_unfiltered (file,\n"
1499	    printf "                      \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1500	    printf "                      \"${macro}_P()\",\n"
1501	    printf "                      XSTRING (${macro}_P ()));\n"
1502	    printf "#endif\n"
1503	fi
1504	printf "  fprintf_unfiltered (file,\n"
1505	printf "                      \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1506	printf "                      gdbarch_${function}_p (current_gdbarch));\n"
1507    fi
1508    # Print the macro definition.
1509    if test -n "${macro}"
1510    then
1511	printf "#ifdef ${macro}\n"
1512	if class_is_function_p
1513	then
1514	    printf "  fprintf_unfiltered (file,\n"
1515	    printf "                      \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1516	    printf "                      \"${macro}(${actual})\",\n"
1517	    printf "                      XSTRING (${macro} (${actual})));\n"
1518	else
1519	    printf "  fprintf_unfiltered (file,\n"
1520	    printf "                      \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1521	    printf "                      XSTRING (${macro}));\n"
1522	fi
1523	printf "#endif\n"
1524    fi
1525    # Print the corresponding value.
1526    if class_is_function_p
1527    then
1528	printf "  fprintf_unfiltered (file,\n"
1529	printf "                      \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1530	printf "                      (long) current_gdbarch->${function});\n"
1531    else
1532	# It is a variable
1533	case "${print}:${returntype}" in
1534	    :CORE_ADDR )
1535		fmt="0x%s"
1536		print="paddr_nz (current_gdbarch->${function})"
1537		;;
1538	    :* )
1539	        fmt="%s"
1540		print="paddr_d (current_gdbarch->${function})"
1541		;;
1542	    * )
1543	        fmt="%s"
1544		;;
1545        esac
1546	printf "  fprintf_unfiltered (file,\n"
1547	printf "                      \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1548	printf "                      ${print});\n"
1549    fi
1550done
1551cat <<EOF
1552  if (current_gdbarch->dump_tdep != NULL)
1553    current_gdbarch->dump_tdep (current_gdbarch, file);
1554}
1555EOF
1556
1557
1558# GET/SET
1559printf "\n"
1560cat <<EOF
1561struct gdbarch_tdep *
1562gdbarch_tdep (struct gdbarch *gdbarch)
1563{
1564  if (gdbarch_debug >= 2)
1565    fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1566  return gdbarch->tdep;
1567}
1568EOF
1569printf "\n"
1570function_list | while do_read
1571do
1572    if class_is_predicate_p
1573    then
1574	printf "\n"
1575	printf "int\n"
1576	printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1577	printf "{\n"
1578        printf "  gdb_assert (gdbarch != NULL);\n"
1579	printf "  return ${predicate};\n"
1580	printf "}\n"
1581    fi
1582    if class_is_function_p
1583    then
1584	printf "\n"
1585	printf "${returntype}\n"
1586	if [ "x${formal}" = "xvoid" ]
1587	then
1588	  printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1589	else
1590	  printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1591	fi
1592	printf "{\n"
1593        printf "  gdb_assert (gdbarch != NULL);\n"
1594	printf "  gdb_assert (gdbarch->${function} != NULL);\n"
1595	if class_is_predicate_p && test -n "${predefault}"
1596	then
1597	    # Allow a call to a function with a predicate.
1598	    printf "  /* Do not check predicate: ${predicate}, allow call.  */\n"
1599	fi
1600	printf "  if (gdbarch_debug >= 2)\n"
1601	printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1602	if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1603	then
1604	    if class_is_multiarch_p
1605	    then
1606		params="gdbarch"
1607	    else
1608		params=""
1609	    fi
1610	else
1611	    if class_is_multiarch_p
1612	    then
1613		params="gdbarch, ${actual}"
1614	    else
1615		params="${actual}"
1616	    fi
1617        fi
1618       	if [ "x${returntype}" = "xvoid" ]
1619	then
1620	  printf "  gdbarch->${function} (${params});\n"
1621	else
1622	  printf "  return gdbarch->${function} (${params});\n"
1623	fi
1624	printf "}\n"
1625	printf "\n"
1626	printf "void\n"
1627	printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1628        printf "            `echo ${function} | sed -e 's/./ /g'`  gdbarch_${function}_ftype ${function})\n"
1629	printf "{\n"
1630	printf "  gdbarch->${function} = ${function};\n"
1631	printf "}\n"
1632    elif class_is_variable_p
1633    then
1634	printf "\n"
1635	printf "${returntype}\n"
1636	printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1637	printf "{\n"
1638        printf "  gdb_assert (gdbarch != NULL);\n"
1639	if [ "x${invalid_p}" = "x0" ]
1640	then
1641	    printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1642	elif [ -n "${invalid_p}" ]
1643	then
1644	    printf "  /* Check variable is valid.  */\n"
1645	    printf "  gdb_assert (!(${invalid_p}));\n"
1646	elif [ -n "${predefault}" ]
1647	then
1648	    printf "  /* Check variable changed from pre-default.  */\n"
1649	    printf "  gdb_assert (gdbarch->${function} != ${predefault});\n"
1650	fi
1651	printf "  if (gdbarch_debug >= 2)\n"
1652	printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1653	printf "  return gdbarch->${function};\n"
1654	printf "}\n"
1655	printf "\n"
1656	printf "void\n"
1657	printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1658        printf "            `echo ${function} | sed -e 's/./ /g'`  ${returntype} ${function})\n"
1659	printf "{\n"
1660	printf "  gdbarch->${function} = ${function};\n"
1661	printf "}\n"
1662    elif class_is_info_p
1663    then
1664	printf "\n"
1665	printf "${returntype}\n"
1666	printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1667	printf "{\n"
1668        printf "  gdb_assert (gdbarch != NULL);\n"
1669	printf "  if (gdbarch_debug >= 2)\n"
1670	printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1671	printf "  return gdbarch->${function};\n"
1672	printf "}\n"
1673    fi
1674done
1675
1676# All the trailing guff
1677cat <<EOF
1678
1679
1680/* Keep a registry of per-architecture data-pointers required by GDB
1681   modules. */
1682
1683struct gdbarch_data
1684{
1685  unsigned index;
1686  int init_p;
1687  gdbarch_data_pre_init_ftype *pre_init;
1688  gdbarch_data_post_init_ftype *post_init;
1689};
1690
1691struct gdbarch_data_registration
1692{
1693  struct gdbarch_data *data;
1694  struct gdbarch_data_registration *next;
1695};
1696
1697struct gdbarch_data_registry
1698{
1699  unsigned nr;
1700  struct gdbarch_data_registration *registrations;
1701};
1702
1703struct gdbarch_data_registry gdbarch_data_registry =
1704{
1705  0, NULL,
1706};
1707
1708static struct gdbarch_data *
1709gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1710		       gdbarch_data_post_init_ftype *post_init)
1711{
1712  struct gdbarch_data_registration **curr;
1713  /* Append the new registraration.  */
1714  for (curr = &gdbarch_data_registry.registrations;
1715       (*curr) != NULL;
1716       curr = &(*curr)->next);
1717  (*curr) = XMALLOC (struct gdbarch_data_registration);
1718  (*curr)->next = NULL;
1719  (*curr)->data = XMALLOC (struct gdbarch_data);
1720  (*curr)->data->index = gdbarch_data_registry.nr++;
1721  (*curr)->data->pre_init = pre_init;
1722  (*curr)->data->post_init = post_init;
1723  (*curr)->data->init_p = 1;
1724  return (*curr)->data;
1725}
1726
1727struct gdbarch_data *
1728gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1729{
1730  return gdbarch_data_register (pre_init, NULL);
1731}
1732
1733struct gdbarch_data *
1734gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1735{
1736  return gdbarch_data_register (NULL, post_init);
1737}
1738
1739/* Create/delete the gdbarch data vector. */
1740
1741static void
1742alloc_gdbarch_data (struct gdbarch *gdbarch)
1743{
1744  gdb_assert (gdbarch->data == NULL);
1745  gdbarch->nr_data = gdbarch_data_registry.nr;
1746  gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1747}
1748
1749/* Initialize the current value of the specified per-architecture
1750   data-pointer. */
1751
1752void
1753deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1754			     struct gdbarch_data *data,
1755			     void *pointer)
1756{
1757  gdb_assert (data->index < gdbarch->nr_data);
1758  gdb_assert (gdbarch->data[data->index] == NULL);
1759  gdb_assert (data->pre_init == NULL);
1760  gdbarch->data[data->index] = pointer;
1761}
1762
1763/* Return the current value of the specified per-architecture
1764   data-pointer. */
1765
1766void *
1767gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1768{
1769  gdb_assert (data->index < gdbarch->nr_data);
1770  if (gdbarch->data[data->index] == NULL)
1771    {
1772      /* The data-pointer isn't initialized, call init() to get a
1773	 value.  */
1774      if (data->pre_init != NULL)
1775	/* Mid architecture creation: pass just the obstack, and not
1776	   the entire architecture, as that way it isn't possible for
1777	   pre-init code to refer to undefined architecture
1778	   fields.  */
1779	gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1780      else if (gdbarch->initialized_p
1781	       && data->post_init != NULL)
1782	/* Post architecture creation: pass the entire architecture
1783	   (as all fields are valid), but be careful to also detect
1784	   recursive references.  */
1785	{
1786	  gdb_assert (data->init_p);
1787	  data->init_p = 0;
1788	  gdbarch->data[data->index] = data->post_init (gdbarch);
1789	  data->init_p = 1;
1790	}
1791      else
1792	/* The architecture initialization hasn't completed - punt -
1793	 hope that the caller knows what they are doing.  Once
1794	 deprecated_set_gdbarch_data has been initialized, this can be
1795	 changed to an internal error.  */
1796	return NULL;
1797      gdb_assert (gdbarch->data[data->index] != NULL);
1798    }
1799  return gdbarch->data[data->index];
1800}
1801
1802
1803/* Keep a registry of the architectures known by GDB. */
1804
1805struct gdbarch_registration
1806{
1807  enum bfd_architecture bfd_architecture;
1808  gdbarch_init_ftype *init;
1809  gdbarch_dump_tdep_ftype *dump_tdep;
1810  struct gdbarch_list *arches;
1811  struct gdbarch_registration *next;
1812};
1813
1814static struct gdbarch_registration *gdbarch_registry = NULL;
1815
1816static void
1817append_name (const char ***buf, int *nr, const char *name)
1818{
1819  *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1820  (*buf)[*nr] = name;
1821  *nr += 1;
1822}
1823
1824const char **
1825gdbarch_printable_names (void)
1826{
1827  /* Accumulate a list of names based on the registed list of
1828     architectures. */
1829  enum bfd_architecture a;
1830  int nr_arches = 0;
1831  const char **arches = NULL;
1832  struct gdbarch_registration *rego;
1833  for (rego = gdbarch_registry;
1834       rego != NULL;
1835       rego = rego->next)
1836    {
1837      const struct bfd_arch_info *ap;
1838      ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1839      if (ap == NULL)
1840        internal_error (__FILE__, __LINE__,
1841                        _("gdbarch_architecture_names: multi-arch unknown"));
1842      do
1843        {
1844          append_name (&arches, &nr_arches, ap->printable_name);
1845          ap = ap->next;
1846        }
1847      while (ap != NULL);
1848    }
1849  append_name (&arches, &nr_arches, NULL);
1850  return arches;
1851}
1852
1853
1854void
1855gdbarch_register (enum bfd_architecture bfd_architecture,
1856                  gdbarch_init_ftype *init,
1857		  gdbarch_dump_tdep_ftype *dump_tdep)
1858{
1859  struct gdbarch_registration **curr;
1860  const struct bfd_arch_info *bfd_arch_info;
1861  /* Check that BFD recognizes this architecture */
1862  bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1863  if (bfd_arch_info == NULL)
1864    {
1865      internal_error (__FILE__, __LINE__,
1866                      _("gdbarch: Attempt to register unknown architecture (%d)"),
1867                      bfd_architecture);
1868    }
1869  /* Check that we haven't seen this architecture before */
1870  for (curr = &gdbarch_registry;
1871       (*curr) != NULL;
1872       curr = &(*curr)->next)
1873    {
1874      if (bfd_architecture == (*curr)->bfd_architecture)
1875	internal_error (__FILE__, __LINE__,
1876                        _("gdbarch: Duplicate registraration of architecture (%s)"),
1877	                bfd_arch_info->printable_name);
1878    }
1879  /* log it */
1880  if (gdbarch_debug)
1881    fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1882			bfd_arch_info->printable_name,
1883			(long) init);
1884  /* Append it */
1885  (*curr) = XMALLOC (struct gdbarch_registration);
1886  (*curr)->bfd_architecture = bfd_architecture;
1887  (*curr)->init = init;
1888  (*curr)->dump_tdep = dump_tdep;
1889  (*curr)->arches = NULL;
1890  (*curr)->next = NULL;
1891}
1892
1893void
1894register_gdbarch_init (enum bfd_architecture bfd_architecture,
1895		       gdbarch_init_ftype *init)
1896{
1897  gdbarch_register (bfd_architecture, init, NULL);
1898}
1899
1900
1901/* Look for an architecture using gdbarch_info.  */
1902
1903struct gdbarch_list *
1904gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1905                             const struct gdbarch_info *info)
1906{
1907  for (; arches != NULL; arches = arches->next)
1908    {
1909      if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1910	continue;
1911      if (info->byte_order != arches->gdbarch->byte_order)
1912	continue;
1913      if (info->osabi != arches->gdbarch->osabi)
1914	continue;
1915      if (info->target_desc != arches->gdbarch->target_desc)
1916	continue;
1917      return arches;
1918    }
1919  return NULL;
1920}
1921
1922
1923/* Find an architecture that matches the specified INFO.  Create a new
1924   architecture if needed.  Return that new architecture.  Assumes
1925   that there is no current architecture.  */
1926
1927static struct gdbarch *
1928find_arch_by_info (struct gdbarch_info info)
1929{
1930  struct gdbarch *new_gdbarch;
1931  struct gdbarch_registration *rego;
1932
1933  /* The existing architecture has been swapped out - all this code
1934     works from a clean slate.  */
1935  gdb_assert (current_gdbarch == NULL);
1936
1937  /* Fill in missing parts of the INFO struct using a number of
1938     sources: "set ..."; INFOabfd supplied; and the global
1939     defaults.  */
1940  gdbarch_info_fill (&info);
1941
1942  /* Must have found some sort of architecture. */
1943  gdb_assert (info.bfd_arch_info != NULL);
1944
1945  if (gdbarch_debug)
1946    {
1947      fprintf_unfiltered (gdb_stdlog,
1948			  "find_arch_by_info: info.bfd_arch_info %s\n",
1949			  (info.bfd_arch_info != NULL
1950			   ? info.bfd_arch_info->printable_name
1951			   : "(null)"));
1952      fprintf_unfiltered (gdb_stdlog,
1953			  "find_arch_by_info: info.byte_order %d (%s)\n",
1954			  info.byte_order,
1955			  (info.byte_order == BFD_ENDIAN_BIG ? "big"
1956			   : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1957			   : "default"));
1958      fprintf_unfiltered (gdb_stdlog,
1959			  "find_arch_by_info: info.osabi %d (%s)\n",
1960			  info.osabi, gdbarch_osabi_name (info.osabi));
1961      fprintf_unfiltered (gdb_stdlog,
1962			  "find_arch_by_info: info.abfd 0x%lx\n",
1963			  (long) info.abfd);
1964      fprintf_unfiltered (gdb_stdlog,
1965			  "find_arch_by_info: info.tdep_info 0x%lx\n",
1966			  (long) info.tdep_info);
1967    }
1968
1969  /* Find the tdep code that knows about this architecture.  */
1970  for (rego = gdbarch_registry;
1971       rego != NULL;
1972       rego = rego->next)
1973    if (rego->bfd_architecture == info.bfd_arch_info->arch)
1974      break;
1975  if (rego == NULL)
1976    {
1977      if (gdbarch_debug)
1978	fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1979			    "No matching architecture\n");
1980      return 0;
1981    }
1982
1983  /* Ask the tdep code for an architecture that matches "info".  */
1984  new_gdbarch = rego->init (info, rego->arches);
1985
1986  /* Did the tdep code like it?  No.  Reject the change and revert to
1987     the old architecture.  */
1988  if (new_gdbarch == NULL)
1989    {
1990      if (gdbarch_debug)
1991	fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1992			    "Target rejected architecture\n");
1993      return NULL;
1994    }
1995
1996  /* Is this a pre-existing architecture (as determined by already
1997     being initialized)?  Move it to the front of the architecture
1998     list (keeping the list sorted Most Recently Used).  */
1999  if (new_gdbarch->initialized_p)
2000    {
2001      struct gdbarch_list **list;
2002      struct gdbarch_list *this;
2003      if (gdbarch_debug)
2004	fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2005			    "Previous architecture 0x%08lx (%s) selected\n",
2006			    (long) new_gdbarch,
2007			    new_gdbarch->bfd_arch_info->printable_name);
2008      /* Find the existing arch in the list.  */
2009      for (list = &rego->arches;
2010	   (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2011	   list = &(*list)->next);
2012      /* It had better be in the list of architectures.  */
2013      gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2014      /* Unlink THIS.  */
2015      this = (*list);
2016      (*list) = this->next;
2017      /* Insert THIS at the front.  */
2018      this->next = rego->arches;
2019      rego->arches = this;
2020      /* Return it.  */
2021      return new_gdbarch;
2022    }
2023
2024  /* It's a new architecture.  */
2025  if (gdbarch_debug)
2026    fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2027			"New architecture 0x%08lx (%s) selected\n",
2028			(long) new_gdbarch,
2029			new_gdbarch->bfd_arch_info->printable_name);
2030  
2031  /* Insert the new architecture into the front of the architecture
2032     list (keep the list sorted Most Recently Used).  */
2033  {
2034    struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2035    this->next = rego->arches;
2036    this->gdbarch = new_gdbarch;
2037    rego->arches = this;
2038  }    
2039
2040  /* Check that the newly installed architecture is valid.  Plug in
2041     any post init values.  */
2042  new_gdbarch->dump_tdep = rego->dump_tdep;
2043  verify_gdbarch (new_gdbarch);
2044  new_gdbarch->initialized_p = 1;
2045
2046  if (gdbarch_debug)
2047    gdbarch_dump (new_gdbarch, gdb_stdlog);
2048
2049  return new_gdbarch;
2050}
2051
2052struct gdbarch *
2053gdbarch_find_by_info (struct gdbarch_info info)
2054{
2055  struct gdbarch *new_gdbarch;
2056
2057  /* Save the previously selected architecture, setting the global to
2058     NULL.  This stops things like gdbarch->init() trying to use the
2059     previous architecture's configuration.  The previous architecture
2060     may not even be of the same architecture family.  The most recent
2061     architecture of the same family is found at the head of the
2062     rego->arches list.  */
2063  struct gdbarch *old_gdbarch = current_gdbarch;
2064  current_gdbarch = NULL;
2065
2066  /* Find the specified architecture.  */
2067  new_gdbarch = find_arch_by_info (info);
2068
2069  /* Restore the existing architecture.  */
2070  gdb_assert (current_gdbarch == NULL);
2071  current_gdbarch = old_gdbarch;
2072
2073  return new_gdbarch;
2074}
2075
2076/* Make the specified architecture current.  */
2077
2078void
2079deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2080{
2081  gdb_assert (new_gdbarch != NULL);
2082  gdb_assert (current_gdbarch != NULL);
2083  gdb_assert (new_gdbarch->initialized_p);
2084  current_gdbarch = new_gdbarch;
2085  architecture_changed_event ();
2086  reinit_frame_cache ();
2087}
2088
2089extern void _initialize_gdbarch (void);
2090
2091void
2092_initialize_gdbarch (void)
2093{
2094  struct cmd_list_element *c;
2095
2096  add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2097Set architecture debugging."), _("\\
2098Show architecture debugging."), _("\\
2099When non-zero, architecture debugging is enabled."),
2100                            NULL,
2101                            show_gdbarch_debug,
2102                            &setdebuglist, &showdebuglist);
2103}
2104EOF
2105
2106# close things off
2107exec 1>&2
2108#../move-if-change new-gdbarch.c gdbarch.c
2109compare_new gdbarch.c
2110