1/*
2 * Copyright (C) 2003-2004 the ffmpeg project
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * On2 VP3 Video Decoder
24 *
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28 *
29 * Theora decoder by Alex Beregszaszi
30 */
31
32#include <stdio.h>
33#include <stdlib.h>
34#include <string.h>
35
36#include "avcodec.h"
37#include "dsputil.h"
38#include "get_bits.h"
39
40#include "vp3data.h"
41#include "xiph.h"
42
43#define FRAGMENT_PIXELS 8
44
45static av_cold int vp3_decode_end(AVCodecContext *avctx);
46
47//FIXME split things out into their own arrays
48typedef struct Vp3Fragment {
49    int16_t dc;
50    uint8_t coding_method;
51    uint8_t qpi;
52} Vp3Fragment;
53
54#define SB_NOT_CODED        0
55#define SB_PARTIALLY_CODED  1
56#define SB_FULLY_CODED      2
57
58// This is the maximum length of a single long bit run that can be encoded
59// for superblock coding or block qps. Theora special-cases this to read a
60// bit instead of flipping the current bit to allow for runs longer than 4129.
61#define MAXIMUM_LONG_BIT_RUN 4129
62
63#define MODE_INTER_NO_MV      0
64#define MODE_INTRA            1
65#define MODE_INTER_PLUS_MV    2
66#define MODE_INTER_LAST_MV    3
67#define MODE_INTER_PRIOR_LAST 4
68#define MODE_USING_GOLDEN     5
69#define MODE_GOLDEN_MV        6
70#define MODE_INTER_FOURMV     7
71#define CODING_MODE_COUNT     8
72
73/* special internal mode */
74#define MODE_COPY             8
75
76/* There are 6 preset schemes, plus a free-form scheme */
77static const int ModeAlphabet[6][CODING_MODE_COUNT] =
78{
79    /* scheme 1: Last motion vector dominates */
80    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
81         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
82         MODE_INTRA,            MODE_USING_GOLDEN,
83         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
84
85    /* scheme 2 */
86    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
87         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
88         MODE_INTRA,            MODE_USING_GOLDEN,
89         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
90
91    /* scheme 3 */
92    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
93         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
94         MODE_INTRA,            MODE_USING_GOLDEN,
95         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
96
97    /* scheme 4 */
98    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
99         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
100         MODE_INTRA,            MODE_USING_GOLDEN,
101         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
102
103    /* scheme 5: No motion vector dominates */
104    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
105         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
106         MODE_INTRA,            MODE_USING_GOLDEN,
107         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
108
109    /* scheme 6 */
110    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
111         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
112         MODE_INTER_PLUS_MV,    MODE_INTRA,
113         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
114
115};
116
117static const uint8_t hilbert_offset[16][2] = {
118    {0,0}, {1,0}, {1,1}, {0,1},
119    {0,2}, {0,3}, {1,3}, {1,2},
120    {2,2}, {2,3}, {3,3}, {3,2},
121    {3,1}, {2,1}, {2,0}, {3,0}
122};
123
124#define MIN_DEQUANT_VAL 2
125
126typedef struct Vp3DecodeContext {
127    AVCodecContext *avctx;
128    int theora, theora_tables;
129    int version;
130    int width, height;
131    int chroma_x_shift, chroma_y_shift;
132    AVFrame golden_frame;
133    AVFrame last_frame;
134    AVFrame current_frame;
135    int keyframe;
136    DSPContext dsp;
137    int flipped_image;
138    int last_slice_end;
139
140    int qps[3];
141    int nqps;
142    int last_qps[3];
143
144    int superblock_count;
145    int y_superblock_width;
146    int y_superblock_height;
147    int y_superblock_count;
148    int c_superblock_width;
149    int c_superblock_height;
150    int c_superblock_count;
151    int u_superblock_start;
152    int v_superblock_start;
153    unsigned char *superblock_coding;
154
155    int macroblock_count;
156    int macroblock_width;
157    int macroblock_height;
158
159    int fragment_count;
160    int fragment_width[2];
161    int fragment_height[2];
162
163    Vp3Fragment *all_fragments;
164    int fragment_start[3];
165    int data_offset[3];
166
167    int8_t (*motion_val[2])[2];
168
169    ScanTable scantable;
170
171    /* tables */
172    uint16_t coded_dc_scale_factor[64];
173    uint32_t coded_ac_scale_factor[64];
174    uint8_t base_matrix[384][64];
175    uint8_t qr_count[2][3];
176    uint8_t qr_size [2][3][64];
177    uint16_t qr_base[2][3][64];
178
179    /**
180     * This is a list of all tokens in bitstream order. Reordering takes place
181     * by pulling from each level during IDCT. As a consequence, IDCT must be
182     * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
183     * otherwise. The 32 different tokens with up to 12 bits of extradata are
184     * collapsed into 3 types, packed as follows:
185     *   (from the low to high bits)
186     *
187     * 2 bits: type (0,1,2)
188     *   0: EOB run, 14 bits for run length (12 needed)
189     *   1: zero run, 7 bits for run length
190     *                7 bits for the next coefficient (3 needed)
191     *   2: coefficient, 14 bits (11 needed)
192     *
193     * Coefficients are signed, so are packed in the highest bits for automatic
194     * sign extension.
195     */
196    int16_t *dct_tokens[3][64];
197    int16_t *dct_tokens_base;
198#define TOKEN_EOB(eob_run)              ((eob_run) << 2)
199#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
200#define TOKEN_COEFF(coeff)              (((coeff) << 2) + 2)
201
202    /**
203     * number of blocks that contain DCT coefficients at the given level or higher
204     */
205    int num_coded_frags[3][64];
206    int total_num_coded_frags;
207
208    /* this is a list of indexes into the all_fragments array indicating
209     * which of the fragments are coded */
210    int *coded_fragment_list[3];
211
212    VLC dc_vlc[16];
213    VLC ac_vlc_1[16];
214    VLC ac_vlc_2[16];
215    VLC ac_vlc_3[16];
216    VLC ac_vlc_4[16];
217
218    VLC superblock_run_length_vlc;
219    VLC fragment_run_length_vlc;
220    VLC mode_code_vlc;
221    VLC motion_vector_vlc;
222
223    /* these arrays need to be on 16-byte boundaries since SSE2 operations
224     * index into them */
225    DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     //<qmat[qpi][is_inter][plane]
226
227    /* This table contains superblock_count * 16 entries. Each set of 16
228     * numbers corresponds to the fragment indexes 0..15 of the superblock.
229     * An entry will be -1 to indicate that no entry corresponds to that
230     * index. */
231    int *superblock_fragments;
232
233    /* This is an array that indicates how a particular macroblock
234     * is coded. */
235    unsigned char *macroblock_coding;
236
237    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
238    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
239
240    /* Huffman decode */
241    int hti;
242    unsigned int hbits;
243    int entries;
244    int huff_code_size;
245    uint32_t huffman_table[80][32][2];
246
247    uint8_t filter_limit_values[64];
248    DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
249} Vp3DecodeContext;
250
251/************************************************************************
252 * VP3 specific functions
253 ************************************************************************/
254
255/*
256 * This function sets up all of the various blocks mappings:
257 * superblocks <-> fragments, macroblocks <-> fragments,
258 * superblocks <-> macroblocks
259 *
260 * Returns 0 is successful; returns 1 if *anything* went wrong.
261 */
262static int init_block_mapping(Vp3DecodeContext *s)
263{
264    int sb_x, sb_y, plane;
265    int x, y, i, j = 0;
266
267    for (plane = 0; plane < 3; plane++) {
268        int sb_width    = plane ? s->c_superblock_width  : s->y_superblock_width;
269        int sb_height   = plane ? s->c_superblock_height : s->y_superblock_height;
270        int frag_width  = s->fragment_width[!!plane];
271        int frag_height = s->fragment_height[!!plane];
272
273        for (sb_y = 0; sb_y < sb_height; sb_y++)
274            for (sb_x = 0; sb_x < sb_width; sb_x++)
275                for (i = 0; i < 16; i++) {
276                    x = 4*sb_x + hilbert_offset[i][0];
277                    y = 4*sb_y + hilbert_offset[i][1];
278
279                    if (x < frag_width && y < frag_height)
280                        s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
281                    else
282                        s->superblock_fragments[j++] = -1;
283                }
284    }
285
286    return 0;  /* successful path out */
287}
288
289/*
290 * This function sets up the dequantization tables used for a particular
291 * frame.
292 */
293static void init_dequantizer(Vp3DecodeContext *s, int qpi)
294{
295    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
296    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
297    int i, plane, inter, qri, bmi, bmj, qistart;
298
299    for(inter=0; inter<2; inter++){
300        for(plane=0; plane<3; plane++){
301            int sum=0;
302            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
303                sum+= s->qr_size[inter][plane][qri];
304                if(s->qps[qpi] <= sum)
305                    break;
306            }
307            qistart= sum - s->qr_size[inter][plane][qri];
308            bmi= s->qr_base[inter][plane][qri  ];
309            bmj= s->qr_base[inter][plane][qri+1];
310            for(i=0; i<64; i++){
311                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
312                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
313                            + s->qr_size[inter][plane][qri])
314                           / (2*s->qr_size[inter][plane][qri]);
315
316                int qmin= 8<<(inter + !i);
317                int qscale= i ? ac_scale_factor : dc_scale_factor;
318
319                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
320            }
321            // all DC coefficients use the same quant so as not to interfere with DC prediction
322            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
323        }
324    }
325
326    memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
327}
328
329/*
330 * This function initializes the loop filter boundary limits if the frame's
331 * quality index is different from the previous frame's.
332 *
333 * The filter_limit_values may not be larger than 127.
334 */
335static void init_loop_filter(Vp3DecodeContext *s)
336{
337    int *bounding_values= s->bounding_values_array+127;
338    int filter_limit;
339    int x;
340    int value;
341
342    filter_limit = s->filter_limit_values[s->qps[0]];
343
344    /* set up the bounding values */
345    memset(s->bounding_values_array, 0, 256 * sizeof(int));
346    for (x = 0; x < filter_limit; x++) {
347        bounding_values[-x] = -x;
348        bounding_values[x] = x;
349    }
350    for (x = value = filter_limit; x < 128 && value; x++, value--) {
351        bounding_values[ x] =  value;
352        bounding_values[-x] = -value;
353    }
354    if (value)
355        bounding_values[128] = value;
356    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
357}
358
359/*
360 * This function unpacks all of the superblock/macroblock/fragment coding
361 * information from the bitstream.
362 */
363static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
364{
365    int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
366    int bit = 0;
367    int current_superblock = 0;
368    int current_run = 0;
369    int num_partial_superblocks = 0;
370
371    int i, j;
372    int current_fragment;
373    int plane;
374
375    if (s->keyframe) {
376        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
377
378    } else {
379
380        /* unpack the list of partially-coded superblocks */
381        bit = get_bits1(gb);
382        while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
383                current_run = get_vlc2(gb,
384                    s->superblock_run_length_vlc.table, 6, 2) + 1;
385                if (current_run == 34)
386                    current_run += get_bits(gb, 12);
387
388            if (current_superblock + current_run > s->superblock_count) {
389                av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
390                return -1;
391            }
392
393            memset(s->superblock_coding + current_superblock, bit, current_run);
394
395            current_superblock += current_run;
396            if (bit)
397                num_partial_superblocks += current_run;
398
399            if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
400                bit = get_bits1(gb);
401            else
402                bit ^= 1;
403        }
404
405        /* unpack the list of fully coded superblocks if any of the blocks were
406         * not marked as partially coded in the previous step */
407        if (num_partial_superblocks < s->superblock_count) {
408            int superblocks_decoded = 0;
409
410            current_superblock = 0;
411            bit = get_bits1(gb);
412            while (superblocks_decoded < s->superblock_count - num_partial_superblocks
413                   && get_bits_left(gb) > 0) {
414                        current_run = get_vlc2(gb,
415                            s->superblock_run_length_vlc.table, 6, 2) + 1;
416                        if (current_run == 34)
417                            current_run += get_bits(gb, 12);
418
419                for (j = 0; j < current_run; current_superblock++) {
420                    if (current_superblock >= s->superblock_count) {
421                        av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
422                        return -1;
423                    }
424
425                /* skip any superblocks already marked as partially coded */
426                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
427                    s->superblock_coding[current_superblock] = 2*bit;
428                    j++;
429                }
430                }
431                superblocks_decoded += current_run;
432
433                if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
434                    bit = get_bits1(gb);
435                else
436                    bit ^= 1;
437            }
438        }
439
440        /* if there were partial blocks, initialize bitstream for
441         * unpacking fragment codings */
442        if (num_partial_superblocks) {
443
444            current_run = 0;
445            bit = get_bits1(gb);
446            /* toggle the bit because as soon as the first run length is
447             * fetched the bit will be toggled again */
448            bit ^= 1;
449        }
450    }
451
452    /* figure out which fragments are coded; iterate through each
453     * superblock (all planes) */
454    s->total_num_coded_frags = 0;
455    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
456
457    for (plane = 0; plane < 3; plane++) {
458        int sb_start = superblock_starts[plane];
459        int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
460        int num_coded_frags = 0;
461
462    for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
463
464        /* iterate through all 16 fragments in a superblock */
465        for (j = 0; j < 16; j++) {
466
467            /* if the fragment is in bounds, check its coding status */
468            current_fragment = s->superblock_fragments[i * 16 + j];
469            if (current_fragment != -1) {
470                int coded = s->superblock_coding[i];
471
472                if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
473
474                    /* fragment may or may not be coded; this is the case
475                     * that cares about the fragment coding runs */
476                    if (current_run-- == 0) {
477                        bit ^= 1;
478                        current_run = get_vlc2(gb,
479                            s->fragment_run_length_vlc.table, 5, 2);
480                    }
481                    coded = bit;
482                }
483
484                    if (coded) {
485                        /* default mode; actual mode will be decoded in
486                         * the next phase */
487                        s->all_fragments[current_fragment].coding_method =
488                            MODE_INTER_NO_MV;
489                        s->coded_fragment_list[plane][num_coded_frags++] =
490                            current_fragment;
491                    } else {
492                        /* not coded; copy this fragment from the prior frame */
493                        s->all_fragments[current_fragment].coding_method =
494                            MODE_COPY;
495                    }
496            }
497        }
498    }
499        s->total_num_coded_frags += num_coded_frags;
500        for (i = 0; i < 64; i++)
501            s->num_coded_frags[plane][i] = num_coded_frags;
502        if (plane < 2)
503            s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
504    }
505    return 0;
506}
507
508/*
509 * This function unpacks all the coding mode data for individual macroblocks
510 * from the bitstream.
511 */
512static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
513{
514    int i, j, k, sb_x, sb_y;
515    int scheme;
516    int current_macroblock;
517    int current_fragment;
518    int coding_mode;
519    int custom_mode_alphabet[CODING_MODE_COUNT];
520    const int *alphabet;
521    Vp3Fragment *frag;
522
523    if (s->keyframe) {
524        for (i = 0; i < s->fragment_count; i++)
525            s->all_fragments[i].coding_method = MODE_INTRA;
526
527    } else {
528
529        /* fetch the mode coding scheme for this frame */
530        scheme = get_bits(gb, 3);
531
532        /* is it a custom coding scheme? */
533        if (scheme == 0) {
534            for (i = 0; i < 8; i++)
535                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
536            for (i = 0; i < 8; i++)
537                custom_mode_alphabet[get_bits(gb, 3)] = i;
538            alphabet = custom_mode_alphabet;
539        } else
540            alphabet = ModeAlphabet[scheme-1];
541
542        /* iterate through all of the macroblocks that contain 1 or more
543         * coded fragments */
544        for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
545            for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
546                if (get_bits_left(gb) <= 0)
547                    return -1;
548
549            for (j = 0; j < 4; j++) {
550                int mb_x = 2*sb_x +   (j>>1);
551                int mb_y = 2*sb_y + (((j>>1)+j)&1);
552                current_macroblock = mb_y * s->macroblock_width + mb_x;
553
554                if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
555                    continue;
556
557#define BLOCK_X (2*mb_x + (k&1))
558#define BLOCK_Y (2*mb_y + (k>>1))
559                /* coding modes are only stored if the macroblock has at least one
560                 * luma block coded, otherwise it must be INTER_NO_MV */
561                for (k = 0; k < 4; k++) {
562                    current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
563                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
564                        break;
565                }
566                if (k == 4) {
567                    s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
568                    continue;
569                }
570
571                /* mode 7 means get 3 bits for each coding mode */
572                if (scheme == 7)
573                    coding_mode = get_bits(gb, 3);
574                else
575                    coding_mode = alphabet
576                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
577
578                s->macroblock_coding[current_macroblock] = coding_mode;
579                for (k = 0; k < 4; k++) {
580                    frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
581                    if (frag->coding_method != MODE_COPY)
582                        frag->coding_method = coding_mode;
583                }
584
585#define SET_CHROMA_MODES \
586    if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
587        frag[s->fragment_start[1]].coding_method = coding_mode;\
588    if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
589        frag[s->fragment_start[2]].coding_method = coding_mode;
590
591                if (s->chroma_y_shift) {
592                    frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
593                    SET_CHROMA_MODES
594                } else if (s->chroma_x_shift) {
595                    frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
596                    for (k = 0; k < 2; k++) {
597                        SET_CHROMA_MODES
598                        frag += s->fragment_width[1];
599                    }
600                } else {
601                    for (k = 0; k < 4; k++) {
602                        frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
603                        SET_CHROMA_MODES
604                    }
605                }
606            }
607            }
608        }
609    }
610
611    return 0;
612}
613
614/*
615 * This function unpacks all the motion vectors for the individual
616 * macroblocks from the bitstream.
617 */
618static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
619{
620    int j, k, sb_x, sb_y;
621    int coding_mode;
622    int motion_x[4];
623    int motion_y[4];
624    int last_motion_x = 0;
625    int last_motion_y = 0;
626    int prior_last_motion_x = 0;
627    int prior_last_motion_y = 0;
628    int current_macroblock;
629    int current_fragment;
630    int frag;
631
632    if (s->keyframe)
633        return 0;
634
635    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
636    coding_mode = get_bits1(gb);
637
638    /* iterate through all of the macroblocks that contain 1 or more
639     * coded fragments */
640    for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
641        for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
642            if (get_bits_left(gb) <= 0)
643                return -1;
644
645        for (j = 0; j < 4; j++) {
646            int mb_x = 2*sb_x +   (j>>1);
647            int mb_y = 2*sb_y + (((j>>1)+j)&1);
648            current_macroblock = mb_y * s->macroblock_width + mb_x;
649
650            if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
651                (s->macroblock_coding[current_macroblock] == MODE_COPY))
652                continue;
653
654            switch (s->macroblock_coding[current_macroblock]) {
655
656            case MODE_INTER_PLUS_MV:
657            case MODE_GOLDEN_MV:
658                /* all 6 fragments use the same motion vector */
659                if (coding_mode == 0) {
660                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
661                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
662                } else {
663                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
664                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
665                }
666
667                /* vector maintenance, only on MODE_INTER_PLUS_MV */
668                if (s->macroblock_coding[current_macroblock] ==
669                    MODE_INTER_PLUS_MV) {
670                    prior_last_motion_x = last_motion_x;
671                    prior_last_motion_y = last_motion_y;
672                    last_motion_x = motion_x[0];
673                    last_motion_y = motion_y[0];
674                }
675                break;
676
677            case MODE_INTER_FOURMV:
678                /* vector maintenance */
679                prior_last_motion_x = last_motion_x;
680                prior_last_motion_y = last_motion_y;
681
682                /* fetch 4 vectors from the bitstream, one for each
683                 * Y fragment, then average for the C fragment vectors */
684                for (k = 0; k < 4; k++) {
685                    current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
686                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
687                        if (coding_mode == 0) {
688                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
689                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
690                        } else {
691                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
692                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
693                        }
694                        last_motion_x = motion_x[k];
695                        last_motion_y = motion_y[k];
696                    } else {
697                        motion_x[k] = 0;
698                        motion_y[k] = 0;
699                    }
700                }
701                break;
702
703            case MODE_INTER_LAST_MV:
704                /* all 6 fragments use the last motion vector */
705                motion_x[0] = last_motion_x;
706                motion_y[0] = last_motion_y;
707
708                /* no vector maintenance (last vector remains the
709                 * last vector) */
710                break;
711
712            case MODE_INTER_PRIOR_LAST:
713                /* all 6 fragments use the motion vector prior to the
714                 * last motion vector */
715                motion_x[0] = prior_last_motion_x;
716                motion_y[0] = prior_last_motion_y;
717
718                /* vector maintenance */
719                prior_last_motion_x = last_motion_x;
720                prior_last_motion_y = last_motion_y;
721                last_motion_x = motion_x[0];
722                last_motion_y = motion_y[0];
723                break;
724
725            default:
726                /* covers intra, inter without MV, golden without MV */
727                motion_x[0] = 0;
728                motion_y[0] = 0;
729
730                /* no vector maintenance */
731                break;
732            }
733
734            /* assign the motion vectors to the correct fragments */
735            for (k = 0; k < 4; k++) {
736                current_fragment =
737                    BLOCK_Y*s->fragment_width[0] + BLOCK_X;
738                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
739                    s->motion_val[0][current_fragment][0] = motion_x[k];
740                    s->motion_val[0][current_fragment][1] = motion_y[k];
741                } else {
742                    s->motion_val[0][current_fragment][0] = motion_x[0];
743                    s->motion_val[0][current_fragment][1] = motion_y[0];
744                }
745            }
746
747            if (s->chroma_y_shift) {
748                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
749                    motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
750                    motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
751                }
752                motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
753                motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
754                frag = mb_y*s->fragment_width[1] + mb_x;
755                s->motion_val[1][frag][0] = motion_x[0];
756                s->motion_val[1][frag][1] = motion_y[0];
757            } else if (s->chroma_x_shift) {
758                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
759                    motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
760                    motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
761                    motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
762                    motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
763                } else {
764                    motion_x[1] = motion_x[0];
765                    motion_y[1] = motion_y[0];
766                }
767                motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
768                motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
769
770                frag = 2*mb_y*s->fragment_width[1] + mb_x;
771                for (k = 0; k < 2; k++) {
772                    s->motion_val[1][frag][0] = motion_x[k];
773                    s->motion_val[1][frag][1] = motion_y[k];
774                    frag += s->fragment_width[1];
775                }
776            } else {
777                for (k = 0; k < 4; k++) {
778                    frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
779                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
780                        s->motion_val[1][frag][0] = motion_x[k];
781                        s->motion_val[1][frag][1] = motion_y[k];
782                    } else {
783                        s->motion_val[1][frag][0] = motion_x[0];
784                        s->motion_val[1][frag][1] = motion_y[0];
785                    }
786                }
787            }
788        }
789        }
790    }
791
792    return 0;
793}
794
795static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
796{
797    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
798    int num_blocks = s->total_num_coded_frags;
799
800    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
801        i = blocks_decoded = num_blocks_at_qpi = 0;
802
803        bit = get_bits1(gb);
804
805        do {
806            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
807            if (run_length == 34)
808                run_length += get_bits(gb, 12);
809            blocks_decoded += run_length;
810
811            if (!bit)
812                num_blocks_at_qpi += run_length;
813
814            for (j = 0; j < run_length; i++) {
815                if (i >= s->total_num_coded_frags)
816                    return -1;
817
818                if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
819                    s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
820                    j++;
821                }
822            }
823
824            if (run_length == MAXIMUM_LONG_BIT_RUN)
825                bit = get_bits1(gb);
826            else
827                bit ^= 1;
828        } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
829
830        num_blocks -= num_blocks_at_qpi;
831    }
832
833    return 0;
834}
835
836/*
837 * This function is called by unpack_dct_coeffs() to extract the VLCs from
838 * the bitstream. The VLCs encode tokens which are used to unpack DCT
839 * data. This function unpacks all the VLCs for either the Y plane or both
840 * C planes, and is called for DC coefficients or different AC coefficient
841 * levels (since different coefficient types require different VLC tables.
842 *
843 * This function returns a residual eob run. E.g, if a particular token gave
844 * instructions to EOB the next 5 fragments and there were only 2 fragments
845 * left in the current fragment range, 3 would be returned so that it could
846 * be passed into the next call to this same function.
847 */
848static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
849                        VLC *table, int coeff_index,
850                        int plane,
851                        int eob_run)
852{
853    int i, j = 0;
854    int token;
855    int zero_run = 0;
856    DCTELEM coeff = 0;
857    int bits_to_get;
858    int blocks_ended;
859    int coeff_i = 0;
860    int num_coeffs = s->num_coded_frags[plane][coeff_index];
861    int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
862
863    /* local references to structure members to avoid repeated deferences */
864    int *coded_fragment_list = s->coded_fragment_list[plane];
865    Vp3Fragment *all_fragments = s->all_fragments;
866    VLC_TYPE (*vlc_table)[2] = table->table;
867
868    if (num_coeffs < 0)
869        av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
870
871    if (eob_run > num_coeffs) {
872        coeff_i = blocks_ended = num_coeffs;
873        eob_run -= num_coeffs;
874    } else {
875        coeff_i = blocks_ended = eob_run;
876        eob_run = 0;
877    }
878
879    // insert fake EOB token to cover the split between planes or zzi
880    if (blocks_ended)
881        dct_tokens[j++] = blocks_ended << 2;
882
883    while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
884            /* decode a VLC into a token */
885            token = get_vlc2(gb, vlc_table, 11, 3);
886            /* use the token to get a zero run, a coefficient, and an eob run */
887            if (token <= 6) {
888                eob_run = eob_run_base[token];
889                if (eob_run_get_bits[token])
890                    eob_run += get_bits(gb, eob_run_get_bits[token]);
891
892                // record only the number of blocks ended in this plane,
893                // any spill will be recorded in the next plane.
894                if (eob_run > num_coeffs - coeff_i) {
895                    dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
896                    blocks_ended   += num_coeffs - coeff_i;
897                    eob_run        -= num_coeffs - coeff_i;
898                    coeff_i         = num_coeffs;
899                } else {
900                    dct_tokens[j++] = TOKEN_EOB(eob_run);
901                    blocks_ended   += eob_run;
902                    coeff_i        += eob_run;
903                    eob_run = 0;
904                }
905            } else {
906                bits_to_get = coeff_get_bits[token];
907                if (bits_to_get)
908                    bits_to_get = get_bits(gb, bits_to_get);
909                coeff = coeff_tables[token][bits_to_get];
910
911                zero_run = zero_run_base[token];
912                if (zero_run_get_bits[token])
913                    zero_run += get_bits(gb, zero_run_get_bits[token]);
914
915                if (zero_run) {
916                    dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
917                } else {
918                    // Save DC into the fragment structure. DC prediction is
919                    // done in raster order, so the actual DC can't be in with
920                    // other tokens. We still need the token in dct_tokens[]
921                    // however, or else the structure collapses on itself.
922                    if (!coeff_index)
923                        all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
924
925                    dct_tokens[j++] = TOKEN_COEFF(coeff);
926                }
927
928                if (coeff_index + zero_run > 64) {
929                    av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
930                           " %d coeffs left\n", zero_run, 64-coeff_index);
931                    zero_run = 64 - coeff_index;
932                }
933
934                // zero runs code multiple coefficients,
935                // so don't try to decode coeffs for those higher levels
936                for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
937                    s->num_coded_frags[plane][i]--;
938                coeff_i++;
939            }
940    }
941
942    if (blocks_ended > s->num_coded_frags[plane][coeff_index])
943        av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
944
945    // decrement the number of blocks that have higher coeffecients for each
946    // EOB run at this level
947    if (blocks_ended)
948        for (i = coeff_index+1; i < 64; i++)
949            s->num_coded_frags[plane][i] -= blocks_ended;
950
951    // setup the next buffer
952    if (plane < 2)
953        s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
954    else if (coeff_index < 63)
955        s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
956
957    return eob_run;
958}
959
960static void reverse_dc_prediction(Vp3DecodeContext *s,
961                                  int first_fragment,
962                                  int fragment_width,
963                                  int fragment_height);
964/*
965 * This function unpacks all of the DCT coefficient data from the
966 * bitstream.
967 */
968static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
969{
970    int i;
971    int dc_y_table;
972    int dc_c_table;
973    int ac_y_table;
974    int ac_c_table;
975    int residual_eob_run = 0;
976    VLC *y_tables[64];
977    VLC *c_tables[64];
978
979    s->dct_tokens[0][0] = s->dct_tokens_base;
980
981    /* fetch the DC table indexes */
982    dc_y_table = get_bits(gb, 4);
983    dc_c_table = get_bits(gb, 4);
984
985    /* unpack the Y plane DC coefficients */
986    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
987        0, residual_eob_run);
988
989    /* reverse prediction of the Y-plane DC coefficients */
990    reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
991
992    /* unpack the C plane DC coefficients */
993    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
994        1, residual_eob_run);
995    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
996        2, residual_eob_run);
997
998    /* reverse prediction of the C-plane DC coefficients */
999    if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1000    {
1001        reverse_dc_prediction(s, s->fragment_start[1],
1002            s->fragment_width[1], s->fragment_height[1]);
1003        reverse_dc_prediction(s, s->fragment_start[2],
1004            s->fragment_width[1], s->fragment_height[1]);
1005    }
1006
1007    /* fetch the AC table indexes */
1008    ac_y_table = get_bits(gb, 4);
1009    ac_c_table = get_bits(gb, 4);
1010
1011    /* build tables of AC VLC tables */
1012    for (i = 1; i <= 5; i++) {
1013        y_tables[i] = &s->ac_vlc_1[ac_y_table];
1014        c_tables[i] = &s->ac_vlc_1[ac_c_table];
1015    }
1016    for (i = 6; i <= 14; i++) {
1017        y_tables[i] = &s->ac_vlc_2[ac_y_table];
1018        c_tables[i] = &s->ac_vlc_2[ac_c_table];
1019    }
1020    for (i = 15; i <= 27; i++) {
1021        y_tables[i] = &s->ac_vlc_3[ac_y_table];
1022        c_tables[i] = &s->ac_vlc_3[ac_c_table];
1023    }
1024    for (i = 28; i <= 63; i++) {
1025        y_tables[i] = &s->ac_vlc_4[ac_y_table];
1026        c_tables[i] = &s->ac_vlc_4[ac_c_table];
1027    }
1028
1029    /* decode all AC coefficents */
1030    for (i = 1; i <= 63; i++) {
1031            residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1032                0, residual_eob_run);
1033
1034            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1035                1, residual_eob_run);
1036            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1037                2, residual_eob_run);
1038    }
1039
1040    return 0;
1041}
1042
1043/*
1044 * This function reverses the DC prediction for each coded fragment in
1045 * the frame. Much of this function is adapted directly from the original
1046 * VP3 source code.
1047 */
1048#define COMPATIBLE_FRAME(x) \
1049  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1050#define DC_COEFF(u) s->all_fragments[u].dc
1051
1052static void reverse_dc_prediction(Vp3DecodeContext *s,
1053                                  int first_fragment,
1054                                  int fragment_width,
1055                                  int fragment_height)
1056{
1057
1058#define PUL 8
1059#define PU 4
1060#define PUR 2
1061#define PL 1
1062
1063    int x, y;
1064    int i = first_fragment;
1065
1066    int predicted_dc;
1067
1068    /* DC values for the left, up-left, up, and up-right fragments */
1069    int vl, vul, vu, vur;
1070
1071    /* indexes for the left, up-left, up, and up-right fragments */
1072    int l, ul, u, ur;
1073
1074    /*
1075     * The 6 fields mean:
1076     *   0: up-left multiplier
1077     *   1: up multiplier
1078     *   2: up-right multiplier
1079     *   3: left multiplier
1080     */
1081    static const int predictor_transform[16][4] = {
1082        {  0,  0,  0,  0},
1083        {  0,  0,  0,128},        // PL
1084        {  0,  0,128,  0},        // PUR
1085        {  0,  0, 53, 75},        // PUR|PL
1086        {  0,128,  0,  0},        // PU
1087        {  0, 64,  0, 64},        // PU|PL
1088        {  0,128,  0,  0},        // PU|PUR
1089        {  0,  0, 53, 75},        // PU|PUR|PL
1090        {128,  0,  0,  0},        // PUL
1091        {  0,  0,  0,128},        // PUL|PL
1092        { 64,  0, 64,  0},        // PUL|PUR
1093        {  0,  0, 53, 75},        // PUL|PUR|PL
1094        {  0,128,  0,  0},        // PUL|PU
1095       {-104,116,  0,116},        // PUL|PU|PL
1096        { 24, 80, 24,  0},        // PUL|PU|PUR
1097       {-104,116,  0,116}         // PUL|PU|PUR|PL
1098    };
1099
1100    /* This table shows which types of blocks can use other blocks for
1101     * prediction. For example, INTRA is the only mode in this table to
1102     * have a frame number of 0. That means INTRA blocks can only predict
1103     * from other INTRA blocks. There are 2 golden frame coding types;
1104     * blocks encoding in these modes can only predict from other blocks
1105     * that were encoded with these 1 of these 2 modes. */
1106    static const unsigned char compatible_frame[9] = {
1107        1,    /* MODE_INTER_NO_MV */
1108        0,    /* MODE_INTRA */
1109        1,    /* MODE_INTER_PLUS_MV */
1110        1,    /* MODE_INTER_LAST_MV */
1111        1,    /* MODE_INTER_PRIOR_MV */
1112        2,    /* MODE_USING_GOLDEN */
1113        2,    /* MODE_GOLDEN_MV */
1114        1,    /* MODE_INTER_FOUR_MV */
1115        3     /* MODE_COPY */
1116    };
1117    int current_frame_type;
1118
1119    /* there is a last DC predictor for each of the 3 frame types */
1120    short last_dc[3];
1121
1122    int transform = 0;
1123
1124    vul = vu = vur = vl = 0;
1125    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1126
1127    /* for each fragment row... */
1128    for (y = 0; y < fragment_height; y++) {
1129
1130        /* for each fragment in a row... */
1131        for (x = 0; x < fragment_width; x++, i++) {
1132
1133            /* reverse prediction if this block was coded */
1134            if (s->all_fragments[i].coding_method != MODE_COPY) {
1135
1136                current_frame_type =
1137                    compatible_frame[s->all_fragments[i].coding_method];
1138
1139                transform= 0;
1140                if(x){
1141                    l= i-1;
1142                    vl = DC_COEFF(l);
1143                    if(COMPATIBLE_FRAME(l))
1144                        transform |= PL;
1145                }
1146                if(y){
1147                    u= i-fragment_width;
1148                    vu = DC_COEFF(u);
1149                    if(COMPATIBLE_FRAME(u))
1150                        transform |= PU;
1151                    if(x){
1152                        ul= i-fragment_width-1;
1153                        vul = DC_COEFF(ul);
1154                        if(COMPATIBLE_FRAME(ul))
1155                            transform |= PUL;
1156                    }
1157                    if(x + 1 < fragment_width){
1158                        ur= i-fragment_width+1;
1159                        vur = DC_COEFF(ur);
1160                        if(COMPATIBLE_FRAME(ur))
1161                            transform |= PUR;
1162                    }
1163                }
1164
1165                if (transform == 0) {
1166
1167                    /* if there were no fragments to predict from, use last
1168                     * DC saved */
1169                    predicted_dc = last_dc[current_frame_type];
1170                } else {
1171
1172                    /* apply the appropriate predictor transform */
1173                    predicted_dc =
1174                        (predictor_transform[transform][0] * vul) +
1175                        (predictor_transform[transform][1] * vu) +
1176                        (predictor_transform[transform][2] * vur) +
1177                        (predictor_transform[transform][3] * vl);
1178
1179                    predicted_dc /= 128;
1180
1181                    /* check for outranging on the [ul u l] and
1182                     * [ul u ur l] predictors */
1183                    if ((transform == 15) || (transform == 13)) {
1184                        if (FFABS(predicted_dc - vu) > 128)
1185                            predicted_dc = vu;
1186                        else if (FFABS(predicted_dc - vl) > 128)
1187                            predicted_dc = vl;
1188                        else if (FFABS(predicted_dc - vul) > 128)
1189                            predicted_dc = vul;
1190                    }
1191                }
1192
1193                /* at long last, apply the predictor */
1194                DC_COEFF(i) += predicted_dc;
1195                /* save the DC */
1196                last_dc[current_frame_type] = DC_COEFF(i);
1197            }
1198        }
1199    }
1200}
1201
1202static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1203{
1204    int x, y;
1205    int *bounding_values= s->bounding_values_array+127;
1206
1207    int width           = s->fragment_width[!!plane];
1208    int height          = s->fragment_height[!!plane];
1209    int fragment        = s->fragment_start        [plane] + ystart * width;
1210    int stride          = s->current_frame.linesize[plane];
1211    uint8_t *plane_data = s->current_frame.data    [plane];
1212    if (!s->flipped_image) stride = -stride;
1213    plane_data += s->data_offset[plane] + 8*ystart*stride;
1214
1215    for (y = ystart; y < yend; y++) {
1216
1217        for (x = 0; x < width; x++) {
1218            /* This code basically just deblocks on the edges of coded blocks.
1219             * However, it has to be much more complicated because of the
1220             * braindamaged deblock ordering used in VP3/Theora. Order matters
1221             * because some pixels get filtered twice. */
1222            if( s->all_fragments[fragment].coding_method != MODE_COPY )
1223            {
1224                /* do not perform left edge filter for left columns frags */
1225                if (x > 0) {
1226                    s->dsp.vp3_h_loop_filter(
1227                        plane_data + 8*x,
1228                        stride, bounding_values);
1229                }
1230
1231                /* do not perform top edge filter for top row fragments */
1232                if (y > 0) {
1233                    s->dsp.vp3_v_loop_filter(
1234                        plane_data + 8*x,
1235                        stride, bounding_values);
1236                }
1237
1238                /* do not perform right edge filter for right column
1239                 * fragments or if right fragment neighbor is also coded
1240                 * in this frame (it will be filtered in next iteration) */
1241                if ((x < width - 1) &&
1242                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1243                    s->dsp.vp3_h_loop_filter(
1244                        plane_data + 8*x + 8,
1245                        stride, bounding_values);
1246                }
1247
1248                /* do not perform bottom edge filter for bottom row
1249                 * fragments or if bottom fragment neighbor is also coded
1250                 * in this frame (it will be filtered in the next row) */
1251                if ((y < height - 1) &&
1252                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1253                    s->dsp.vp3_v_loop_filter(
1254                        plane_data + 8*x + 8*stride,
1255                        stride, bounding_values);
1256                }
1257            }
1258
1259            fragment++;
1260        }
1261        plane_data += 8*stride;
1262    }
1263}
1264
1265/**
1266 * Pulls DCT tokens from the 64 levels to decode and dequant the coefficients
1267 * for the next block in coding order
1268 */
1269static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1270                              int plane, int inter, DCTELEM block[64])
1271{
1272    int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1273    uint8_t *perm = s->scantable.permutated;
1274    int i = 0;
1275
1276    do {
1277        int token = *s->dct_tokens[plane][i];
1278        switch (token & 3) {
1279        case 0: // EOB
1280            if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
1281                s->dct_tokens[plane][i]++;
1282            else
1283                *s->dct_tokens[plane][i] = token & ~3;
1284            goto end;
1285        case 1: // zero run
1286            s->dct_tokens[plane][i]++;
1287            i += (token >> 2) & 0x7f;
1288            block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1289            i++;
1290            break;
1291        case 2: // coeff
1292            block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1293            s->dct_tokens[plane][i++]++;
1294            break;
1295        default: // shouldn't happen
1296            return i;
1297        }
1298    } while (i < 64);
1299end:
1300    // the actual DC+prediction is in the fragment structure
1301    block[0] = frag->dc * s->qmat[0][inter][plane][0];
1302    return i;
1303}
1304
1305/**
1306 * called when all pixels up to row y are complete
1307 */
1308static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1309{
1310    int h, cy;
1311    int offset[4];
1312
1313    if(s->avctx->draw_horiz_band==NULL)
1314        return;
1315
1316    h= y - s->last_slice_end;
1317    y -= h;
1318
1319    if (!s->flipped_image) {
1320        if (y == 0)
1321            h -= s->height - s->avctx->height;  // account for non-mod16
1322        y = s->height - y - h;
1323    }
1324
1325    cy = y >> 1;
1326    offset[0] = s->current_frame.linesize[0]*y;
1327    offset[1] = s->current_frame.linesize[1]*cy;
1328    offset[2] = s->current_frame.linesize[2]*cy;
1329    offset[3] = 0;
1330
1331    emms_c();
1332    s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1333    s->last_slice_end= y + h;
1334}
1335
1336/*
1337 * Perform the final rendering for a particular slice of data.
1338 * The slice number ranges from 0..(c_superblock_height - 1).
1339 */
1340static void render_slice(Vp3DecodeContext *s, int slice)
1341{
1342    int x, y, i, j;
1343    LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1344    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1345    int motion_halfpel_index;
1346    uint8_t *motion_source;
1347    int plane, first_pixel;
1348
1349    if (slice >= s->c_superblock_height)
1350        return;
1351
1352    for (plane = 0; plane < 3; plane++) {
1353        uint8_t *output_plane = s->current_frame.data    [plane] + s->data_offset[plane];
1354        uint8_t *  last_plane = s->   last_frame.data    [plane] + s->data_offset[plane];
1355        uint8_t *golden_plane = s-> golden_frame.data    [plane] + s->data_offset[plane];
1356        int stride            = s->current_frame.linesize[plane];
1357        int plane_width       = s->width  >> (plane && s->chroma_x_shift);
1358        int plane_height      = s->height >> (plane && s->chroma_y_shift);
1359        int8_t (*motion_val)[2] = s->motion_val[!!plane];
1360
1361        int sb_x, sb_y        = slice << (!plane && s->chroma_y_shift);
1362        int slice_height      = sb_y + 1 + (!plane && s->chroma_y_shift);
1363        int slice_width       = plane ? s->c_superblock_width : s->y_superblock_width;
1364
1365        int fragment_width    = s->fragment_width[!!plane];
1366        int fragment_height   = s->fragment_height[!!plane];
1367        int fragment_start    = s->fragment_start[plane];
1368
1369        if (!s->flipped_image) stride = -stride;
1370        if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1371            continue;
1372
1373
1374        if(FFABS(stride) > 2048)
1375            return; //various tables are fixed size
1376
1377        /* for each superblock row in the slice (both of them)... */
1378        for (; sb_y < slice_height; sb_y++) {
1379
1380            /* for each superblock in a row... */
1381            for (sb_x = 0; sb_x < slice_width; sb_x++) {
1382
1383                /* for each block in a superblock... */
1384                for (j = 0; j < 16; j++) {
1385                    x = 4*sb_x + hilbert_offset[j][0];
1386                    y = 4*sb_y + hilbert_offset[j][1];
1387
1388                    i = fragment_start + y*fragment_width + x;
1389
1390                    // bounds check
1391                    if (x >= fragment_width || y >= fragment_height)
1392                        continue;
1393
1394                first_pixel = 8*y*stride + 8*x;
1395
1396                /* transform if this block was coded */
1397                if (s->all_fragments[i].coding_method != MODE_COPY) {
1398                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1399                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1400                        motion_source= golden_plane;
1401                    else
1402                        motion_source= last_plane;
1403
1404                    motion_source += first_pixel;
1405                    motion_halfpel_index = 0;
1406
1407                    /* sort out the motion vector if this fragment is coded
1408                     * using a motion vector method */
1409                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1410                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1411                        int src_x, src_y;
1412                        motion_x = motion_val[y*fragment_width + x][0];
1413                        motion_y = motion_val[y*fragment_width + x][1];
1414
1415                        src_x= (motion_x>>1) + 8*x;
1416                        src_y= (motion_y>>1) + 8*y;
1417
1418                        motion_halfpel_index = motion_x & 0x01;
1419                        motion_source += (motion_x >> 1);
1420
1421                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1422                        motion_source += ((motion_y >> 1) * stride);
1423
1424                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1425                            uint8_t *temp= s->edge_emu_buffer;
1426                            if(stride<0) temp -= 9*stride;
1427                            else temp += 9*stride;
1428
1429                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1430                            motion_source= temp;
1431                        }
1432                    }
1433
1434
1435                    /* first, take care of copying a block from either the
1436                     * previous or the golden frame */
1437                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1438                        /* Note, it is possible to implement all MC cases with
1439                           put_no_rnd_pixels_l2 which would look more like the
1440                           VP3 source but this would be slower as
1441                           put_no_rnd_pixels_tab is better optimzed */
1442                        if(motion_halfpel_index != 3){
1443                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1444                                output_plane + first_pixel,
1445                                motion_source, stride, 8);
1446                        }else{
1447                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1448                            s->dsp.put_no_rnd_pixels_l2[1](
1449                                output_plane + first_pixel,
1450                                motion_source - d,
1451                                motion_source + stride + 1 + d,
1452                                stride, 8);
1453                        }
1454                    }
1455
1456                        s->dsp.clear_block(block);
1457
1458                    /* invert DCT and place (or add) in final output */
1459
1460                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1461                        vp3_dequant(s, s->all_fragments + i, plane, 0, block);
1462                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1463                            block[0] += 128<<3;
1464                        s->dsp.idct_put(
1465                            output_plane + first_pixel,
1466                            stride,
1467                            block);
1468                    } else {
1469                        if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
1470                        s->dsp.idct_add(
1471                            output_plane + first_pixel,
1472                            stride,
1473                            block);
1474                        } else {
1475                            s->dsp.vp3_idct_dc_add(output_plane + first_pixel, stride, block);
1476                        }
1477                    }
1478                } else {
1479
1480                    /* copy directly from the previous frame */
1481                    s->dsp.put_pixels_tab[1][0](
1482                        output_plane + first_pixel,
1483                        last_plane + first_pixel,
1484                        stride, 8);
1485
1486                }
1487                }
1488            }
1489
1490            // Filter up to the last row in the superblock row
1491            apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1492        }
1493    }
1494
1495     /* this looks like a good place for slice dispatch... */
1496     /* algorithm:
1497      *   if (slice == s->macroblock_height - 1)
1498      *     dispatch (both last slice & 2nd-to-last slice);
1499      *   else if (slice > 0)
1500      *     dispatch (slice - 1);
1501      */
1502
1503    vp3_draw_horiz_band(s, FFMIN(64*slice + 64-16, s->height-16));
1504}
1505
1506/*
1507 * This is the ffmpeg/libavcodec API init function.
1508 */
1509static av_cold int vp3_decode_init(AVCodecContext *avctx)
1510{
1511    Vp3DecodeContext *s = avctx->priv_data;
1512    int i, inter, plane;
1513    int c_width;
1514    int c_height;
1515    int y_fragment_count, c_fragment_count;
1516
1517    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1518        s->version = 0;
1519    else
1520        s->version = 1;
1521
1522    s->avctx = avctx;
1523    s->width = FFALIGN(avctx->width, 16);
1524    s->height = FFALIGN(avctx->height, 16);
1525    if (avctx->pix_fmt == PIX_FMT_NONE)
1526        avctx->pix_fmt = PIX_FMT_YUV420P;
1527    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1528    if(avctx->idct_algo==FF_IDCT_AUTO)
1529        avctx->idct_algo=FF_IDCT_VP3;
1530    dsputil_init(&s->dsp, avctx);
1531
1532    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1533
1534    /* initialize to an impossible value which will force a recalculation
1535     * in the first frame decode */
1536    for (i = 0; i < 3; i++)
1537        s->qps[i] = -1;
1538
1539    avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1540
1541    s->y_superblock_width = (s->width + 31) / 32;
1542    s->y_superblock_height = (s->height + 31) / 32;
1543    s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1544
1545    /* work out the dimensions for the C planes */
1546    c_width = s->width >> s->chroma_x_shift;
1547    c_height = s->height >> s->chroma_y_shift;
1548    s->c_superblock_width = (c_width + 31) / 32;
1549    s->c_superblock_height = (c_height + 31) / 32;
1550    s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1551
1552    s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1553    s->u_superblock_start = s->y_superblock_count;
1554    s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1555    s->superblock_coding = av_malloc(s->superblock_count);
1556
1557    s->macroblock_width = (s->width + 15) / 16;
1558    s->macroblock_height = (s->height + 15) / 16;
1559    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1560
1561    s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1562    s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1563    s->fragment_width[1]  = s->fragment_width[0]  >> s->chroma_x_shift;
1564    s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1565
1566    /* fragment count covers all 8x8 blocks for all 3 planes */
1567    y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
1568    c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
1569    s->fragment_count    = y_fragment_count + 2*c_fragment_count;
1570    s->fragment_start[1] = y_fragment_count;
1571    s->fragment_start[2] = y_fragment_count + c_fragment_count;
1572
1573    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1574    s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
1575    s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
1576    s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
1577    s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
1578
1579    if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
1580        !s->coded_fragment_list[0] || !s->motion_val[0] || !s->motion_val[1]) {
1581        vp3_decode_end(avctx);
1582        return -1;
1583    }
1584
1585    if (!s->theora_tables)
1586    {
1587        for (i = 0; i < 64; i++) {
1588            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1589            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1590            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1591            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1592            s->base_matrix[2][i] = vp31_inter_dequant[i];
1593            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1594        }
1595
1596        for(inter=0; inter<2; inter++){
1597            for(plane=0; plane<3; plane++){
1598                s->qr_count[inter][plane]= 1;
1599                s->qr_size [inter][plane][0]= 63;
1600                s->qr_base [inter][plane][0]=
1601                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1602            }
1603        }
1604
1605        /* init VLC tables */
1606        for (i = 0; i < 16; i++) {
1607
1608            /* DC histograms */
1609            init_vlc(&s->dc_vlc[i], 11, 32,
1610                &dc_bias[i][0][1], 4, 2,
1611                &dc_bias[i][0][0], 4, 2, 0);
1612
1613            /* group 1 AC histograms */
1614            init_vlc(&s->ac_vlc_1[i], 11, 32,
1615                &ac_bias_0[i][0][1], 4, 2,
1616                &ac_bias_0[i][0][0], 4, 2, 0);
1617
1618            /* group 2 AC histograms */
1619            init_vlc(&s->ac_vlc_2[i], 11, 32,
1620                &ac_bias_1[i][0][1], 4, 2,
1621                &ac_bias_1[i][0][0], 4, 2, 0);
1622
1623            /* group 3 AC histograms */
1624            init_vlc(&s->ac_vlc_3[i], 11, 32,
1625                &ac_bias_2[i][0][1], 4, 2,
1626                &ac_bias_2[i][0][0], 4, 2, 0);
1627
1628            /* group 4 AC histograms */
1629            init_vlc(&s->ac_vlc_4[i], 11, 32,
1630                &ac_bias_3[i][0][1], 4, 2,
1631                &ac_bias_3[i][0][0], 4, 2, 0);
1632        }
1633    } else {
1634
1635        for (i = 0; i < 16; i++) {
1636            /* DC histograms */
1637            if (init_vlc(&s->dc_vlc[i], 11, 32,
1638                &s->huffman_table[i][0][1], 8, 4,
1639                &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1640                goto vlc_fail;
1641
1642            /* group 1 AC histograms */
1643            if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1644                &s->huffman_table[i+16][0][1], 8, 4,
1645                &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
1646                goto vlc_fail;
1647
1648            /* group 2 AC histograms */
1649            if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1650                &s->huffman_table[i+16*2][0][1], 8, 4,
1651                &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
1652                goto vlc_fail;
1653
1654            /* group 3 AC histograms */
1655            if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1656                &s->huffman_table[i+16*3][0][1], 8, 4,
1657                &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
1658                goto vlc_fail;
1659
1660            /* group 4 AC histograms */
1661            if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1662                &s->huffman_table[i+16*4][0][1], 8, 4,
1663                &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
1664                goto vlc_fail;
1665        }
1666    }
1667
1668    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1669        &superblock_run_length_vlc_table[0][1], 4, 2,
1670        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1671
1672    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1673        &fragment_run_length_vlc_table[0][1], 4, 2,
1674        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1675
1676    init_vlc(&s->mode_code_vlc, 3, 8,
1677        &mode_code_vlc_table[0][1], 2, 1,
1678        &mode_code_vlc_table[0][0], 2, 1, 0);
1679
1680    init_vlc(&s->motion_vector_vlc, 6, 63,
1681        &motion_vector_vlc_table[0][1], 2, 1,
1682        &motion_vector_vlc_table[0][0], 2, 1, 0);
1683
1684    /* work out the block mapping tables */
1685    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1686    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1687    if (!s->superblock_fragments || !s->macroblock_coding) {
1688        vp3_decode_end(avctx);
1689        return -1;
1690    }
1691    init_block_mapping(s);
1692
1693    for (i = 0; i < 3; i++) {
1694        s->current_frame.data[i] = NULL;
1695        s->last_frame.data[i] = NULL;
1696        s->golden_frame.data[i] = NULL;
1697    }
1698
1699    return 0;
1700
1701vlc_fail:
1702    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1703    return -1;
1704}
1705
1706/*
1707 * This is the ffmpeg/libavcodec API frame decode function.
1708 */
1709static int vp3_decode_frame(AVCodecContext *avctx,
1710                            void *data, int *data_size,
1711                            AVPacket *avpkt)
1712{
1713    const uint8_t *buf = avpkt->data;
1714    int buf_size = avpkt->size;
1715    Vp3DecodeContext *s = avctx->priv_data;
1716    GetBitContext gb;
1717    static int counter = 0;
1718    int i;
1719
1720    init_get_bits(&gb, buf, buf_size * 8);
1721
1722    if (s->theora && get_bits1(&gb))
1723    {
1724        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1725        return -1;
1726    }
1727
1728    s->keyframe = !get_bits1(&gb);
1729    if (!s->theora)
1730        skip_bits(&gb, 1);
1731    for (i = 0; i < 3; i++)
1732        s->last_qps[i] = s->qps[i];
1733
1734    s->nqps=0;
1735    do{
1736        s->qps[s->nqps++]= get_bits(&gb, 6);
1737    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1738    for (i = s->nqps; i < 3; i++)
1739        s->qps[i] = -1;
1740
1741    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1742        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1743            s->keyframe?"key":"", counter, s->qps[0]);
1744    counter++;
1745
1746    if (s->qps[0] != s->last_qps[0])
1747        init_loop_filter(s);
1748
1749    for (i = 0; i < s->nqps; i++)
1750        // reinit all dequantizers if the first one changed, because
1751        // the DC of the first quantizer must be used for all matrices
1752        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1753            init_dequantizer(s, i);
1754
1755    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1756        return buf_size;
1757
1758    s->current_frame.reference = 3;
1759    s->current_frame.pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
1760    if (avctx->get_buffer(avctx, &s->current_frame) < 0) {
1761        av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1762        goto error;
1763    }
1764
1765    if (s->keyframe) {
1766        if (!s->theora)
1767        {
1768            skip_bits(&gb, 4); /* width code */
1769            skip_bits(&gb, 4); /* height code */
1770            if (s->version)
1771            {
1772                s->version = get_bits(&gb, 5);
1773                if (counter == 1)
1774                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1775            }
1776        }
1777        if (s->version || s->theora)
1778        {
1779                if (get_bits1(&gb))
1780                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1781            skip_bits(&gb, 2); /* reserved? */
1782        }
1783    } else {
1784        if (!s->golden_frame.data[0]) {
1785            av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
1786
1787            s->golden_frame.reference = 3;
1788            s->golden_frame.pict_type = FF_I_TYPE;
1789            if (avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1790                av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1791                goto error;
1792            }
1793            s->last_frame = s->golden_frame;
1794            s->last_frame.type = FF_BUFFER_TYPE_COPY;
1795        }
1796    }
1797
1798    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1799    s->current_frame.qstride= 0;
1800
1801    memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
1802
1803    if (unpack_superblocks(s, &gb)){
1804        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1805        goto error;
1806    }
1807    if (unpack_modes(s, &gb)){
1808        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1809        goto error;
1810    }
1811    if (unpack_vectors(s, &gb)){
1812        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1813        goto error;
1814    }
1815    if (unpack_block_qpis(s, &gb)){
1816        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1817        goto error;
1818    }
1819    if (unpack_dct_coeffs(s, &gb)){
1820        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1821        goto error;
1822    }
1823
1824    for (i = 0; i < 3; i++) {
1825        int height = s->height >> (i && s->chroma_y_shift);
1826        if (s->flipped_image)
1827            s->data_offset[i] = 0;
1828        else
1829            s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
1830    }
1831
1832    s->last_slice_end = 0;
1833    for (i = 0; i < s->c_superblock_height; i++)
1834        render_slice(s, i);
1835
1836    // filter the last row
1837    for (i = 0; i < 3; i++) {
1838        int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
1839        apply_loop_filter(s, i, row, row+1);
1840    }
1841    vp3_draw_horiz_band(s, s->height);
1842
1843    *data_size=sizeof(AVFrame);
1844    *(AVFrame*)data= s->current_frame;
1845
1846    /* release the last frame, if it is allocated and if it is not the
1847     * golden frame */
1848    if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1849        avctx->release_buffer(avctx, &s->last_frame);
1850
1851    /* shuffle frames (last = current) */
1852    s->last_frame= s->current_frame;
1853
1854    if (s->keyframe) {
1855        if (s->golden_frame.data[0])
1856            avctx->release_buffer(avctx, &s->golden_frame);
1857        s->golden_frame = s->current_frame;
1858        s->last_frame.type = FF_BUFFER_TYPE_COPY;
1859    }
1860
1861    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1862
1863    return buf_size;
1864
1865error:
1866    if (s->current_frame.data[0])
1867        avctx->release_buffer(avctx, &s->current_frame);
1868    return -1;
1869}
1870
1871/*
1872 * This is the ffmpeg/libavcodec API module cleanup function.
1873 */
1874static av_cold int vp3_decode_end(AVCodecContext *avctx)
1875{
1876    Vp3DecodeContext *s = avctx->priv_data;
1877    int i;
1878
1879    av_free(s->superblock_coding);
1880    av_free(s->all_fragments);
1881    av_free(s->coded_fragment_list[0]);
1882    av_free(s->dct_tokens_base);
1883    av_free(s->superblock_fragments);
1884    av_free(s->macroblock_coding);
1885    av_free(s->motion_val[0]);
1886    av_free(s->motion_val[1]);
1887
1888    for (i = 0; i < 16; i++) {
1889        free_vlc(&s->dc_vlc[i]);
1890        free_vlc(&s->ac_vlc_1[i]);
1891        free_vlc(&s->ac_vlc_2[i]);
1892        free_vlc(&s->ac_vlc_3[i]);
1893        free_vlc(&s->ac_vlc_4[i]);
1894    }
1895
1896    free_vlc(&s->superblock_run_length_vlc);
1897    free_vlc(&s->fragment_run_length_vlc);
1898    free_vlc(&s->mode_code_vlc);
1899    free_vlc(&s->motion_vector_vlc);
1900
1901    /* release all frames */
1902    if (s->golden_frame.data[0])
1903        avctx->release_buffer(avctx, &s->golden_frame);
1904    if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1905        avctx->release_buffer(avctx, &s->last_frame);
1906    /* no need to release the current_frame since it will always be pointing
1907     * to the same frame as either the golden or last frame */
1908
1909    return 0;
1910}
1911
1912static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1913{
1914    Vp3DecodeContext *s = avctx->priv_data;
1915
1916    if (get_bits1(gb)) {
1917        int token;
1918        if (s->entries >= 32) { /* overflow */
1919            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1920            return -1;
1921        }
1922        token = get_bits(gb, 5);
1923        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
1924        s->huffman_table[s->hti][token][0] = s->hbits;
1925        s->huffman_table[s->hti][token][1] = s->huff_code_size;
1926        s->entries++;
1927    }
1928    else {
1929        if (s->huff_code_size >= 32) {/* overflow */
1930            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1931            return -1;
1932        }
1933        s->huff_code_size++;
1934        s->hbits <<= 1;
1935        if (read_huffman_tree(avctx, gb))
1936            return -1;
1937        s->hbits |= 1;
1938        if (read_huffman_tree(avctx, gb))
1939            return -1;
1940        s->hbits >>= 1;
1941        s->huff_code_size--;
1942    }
1943    return 0;
1944}
1945
1946#if CONFIG_THEORA_DECODER
1947static const enum PixelFormat theora_pix_fmts[4] = {
1948    PIX_FMT_YUV420P, PIX_FMT_NONE, PIX_FMT_YUV422P, PIX_FMT_YUV444P
1949};
1950
1951static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
1952{
1953    Vp3DecodeContext *s = avctx->priv_data;
1954    int visible_width, visible_height, colorspace;
1955    int offset_x = 0, offset_y = 0;
1956    AVRational fps;
1957
1958    s->theora = get_bits_long(gb, 24);
1959    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
1960
1961    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
1962    /* but previous versions have the image flipped relative to vp3 */
1963    if (s->theora < 0x030200)
1964    {
1965        s->flipped_image = 1;
1966        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
1967    }
1968
1969    visible_width  = s->width  = get_bits(gb, 16) << 4;
1970    visible_height = s->height = get_bits(gb, 16) << 4;
1971
1972    if(avcodec_check_dimensions(avctx, s->width, s->height)){
1973        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
1974        s->width= s->height= 0;
1975        return -1;
1976    }
1977
1978    if (s->theora >= 0x030200) {
1979        visible_width  = get_bits_long(gb, 24);
1980        visible_height = get_bits_long(gb, 24);
1981
1982        offset_x = get_bits(gb, 8); /* offset x */
1983        offset_y = get_bits(gb, 8); /* offset y, from bottom */
1984    }
1985
1986    fps.num = get_bits_long(gb, 32);
1987    fps.den = get_bits_long(gb, 32);
1988    if (fps.num && fps.den) {
1989        av_reduce(&avctx->time_base.num, &avctx->time_base.den,
1990                  fps.den, fps.num, 1<<30);
1991    }
1992
1993    avctx->sample_aspect_ratio.num = get_bits_long(gb, 24);
1994    avctx->sample_aspect_ratio.den = get_bits_long(gb, 24);
1995
1996    if (s->theora < 0x030200)
1997        skip_bits(gb, 5); /* keyframe frequency force */
1998    colorspace = get_bits(gb, 8);
1999    skip_bits(gb, 24); /* bitrate */
2000
2001    skip_bits(gb, 6); /* quality hint */
2002
2003    if (s->theora >= 0x030200)
2004    {
2005        skip_bits(gb, 5); /* keyframe frequency force */
2006        avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2007        skip_bits(gb, 3); /* reserved */
2008    }
2009
2010//    align_get_bits(gb);
2011
2012    if (   visible_width  <= s->width  && visible_width  > s->width-16
2013        && visible_height <= s->height && visible_height > s->height-16
2014        && !offset_x && (offset_y == s->height - visible_height))
2015        avcodec_set_dimensions(avctx, visible_width, visible_height);
2016    else
2017        avcodec_set_dimensions(avctx, s->width, s->height);
2018
2019    if (colorspace == 1) {
2020        avctx->color_primaries = AVCOL_PRI_BT470M;
2021    } else if (colorspace == 2) {
2022        avctx->color_primaries = AVCOL_PRI_BT470BG;
2023    }
2024    if (colorspace == 1 || colorspace == 2) {
2025        avctx->colorspace = AVCOL_SPC_BT470BG;
2026        avctx->color_trc  = AVCOL_TRC_BT709;
2027    }
2028
2029    return 0;
2030}
2031
2032static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2033{
2034    Vp3DecodeContext *s = avctx->priv_data;
2035    int i, n, matrices, inter, plane;
2036
2037    if (s->theora >= 0x030200) {
2038        n = get_bits(gb, 3);
2039        /* loop filter limit values table */
2040        for (i = 0; i < 64; i++) {
2041            s->filter_limit_values[i] = get_bits(gb, n);
2042            if (s->filter_limit_values[i] > 127) {
2043                av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2044                s->filter_limit_values[i] = 127;
2045            }
2046        }
2047    }
2048
2049    if (s->theora >= 0x030200)
2050        n = get_bits(gb, 4) + 1;
2051    else
2052        n = 16;
2053    /* quality threshold table */
2054    for (i = 0; i < 64; i++)
2055        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2056
2057    if (s->theora >= 0x030200)
2058        n = get_bits(gb, 4) + 1;
2059    else
2060        n = 16;
2061    /* dc scale factor table */
2062    for (i = 0; i < 64; i++)
2063        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2064
2065    if (s->theora >= 0x030200)
2066        matrices = get_bits(gb, 9) + 1;
2067    else
2068        matrices = 3;
2069
2070    if(matrices > 384){
2071        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2072        return -1;
2073    }
2074
2075    for(n=0; n<matrices; n++){
2076        for (i = 0; i < 64; i++)
2077            s->base_matrix[n][i]= get_bits(gb, 8);
2078    }
2079
2080    for (inter = 0; inter <= 1; inter++) {
2081        for (plane = 0; plane <= 2; plane++) {
2082            int newqr= 1;
2083            if (inter || plane > 0)
2084                newqr = get_bits1(gb);
2085            if (!newqr) {
2086                int qtj, plj;
2087                if(inter && get_bits1(gb)){
2088                    qtj = 0;
2089                    plj = plane;
2090                }else{
2091                    qtj= (3*inter + plane - 1) / 3;
2092                    plj= (plane + 2) % 3;
2093                }
2094                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2095                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2096                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2097            } else {
2098                int qri= 0;
2099                int qi = 0;
2100
2101                for(;;){
2102                    i= get_bits(gb, av_log2(matrices-1)+1);
2103                    if(i>= matrices){
2104                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2105                        return -1;
2106                    }
2107                    s->qr_base[inter][plane][qri]= i;
2108                    if(qi >= 63)
2109                        break;
2110                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2111                    s->qr_size[inter][plane][qri++]= i;
2112                    qi += i;
2113                }
2114
2115                if (qi > 63) {
2116                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2117                    return -1;
2118                }
2119                s->qr_count[inter][plane]= qri;
2120            }
2121        }
2122    }
2123
2124    /* Huffman tables */
2125    for (s->hti = 0; s->hti < 80; s->hti++) {
2126        s->entries = 0;
2127        s->huff_code_size = 1;
2128        if (!get_bits1(gb)) {
2129            s->hbits = 0;
2130            if(read_huffman_tree(avctx, gb))
2131                return -1;
2132            s->hbits = 1;
2133            if(read_huffman_tree(avctx, gb))
2134                return -1;
2135        }
2136    }
2137
2138    s->theora_tables = 1;
2139
2140    return 0;
2141}
2142
2143static av_cold int theora_decode_init(AVCodecContext *avctx)
2144{
2145    Vp3DecodeContext *s = avctx->priv_data;
2146    GetBitContext gb;
2147    int ptype;
2148    uint8_t *header_start[3];
2149    int header_len[3];
2150    int i;
2151
2152    s->theora = 1;
2153
2154    if (!avctx->extradata_size)
2155    {
2156        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2157        return -1;
2158    }
2159
2160    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2161                              42, header_start, header_len) < 0) {
2162        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2163        return -1;
2164    }
2165
2166  for(i=0;i<3;i++) {
2167    init_get_bits(&gb, header_start[i], header_len[i] * 8);
2168
2169    ptype = get_bits(&gb, 8);
2170
2171     if (!(ptype & 0x80))
2172     {
2173        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2174//        return -1;
2175     }
2176
2177    // FIXME: Check for this as well.
2178    skip_bits_long(&gb, 6*8); /* "theora" */
2179
2180    switch(ptype)
2181    {
2182        case 0x80:
2183            theora_decode_header(avctx, &gb);
2184                break;
2185        case 0x81:
2186// FIXME: is this needed? it breaks sometimes
2187//            theora_decode_comments(avctx, gb);
2188            break;
2189        case 0x82:
2190            if (theora_decode_tables(avctx, &gb))
2191                return -1;
2192            break;
2193        default:
2194            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2195            break;
2196    }
2197    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2198        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2199    if (s->theora < 0x030200)
2200        break;
2201  }
2202
2203    return vp3_decode_init(avctx);
2204}
2205
2206AVCodec theora_decoder = {
2207    "theora",
2208    AVMEDIA_TYPE_VIDEO,
2209    CODEC_ID_THEORA,
2210    sizeof(Vp3DecodeContext),
2211    theora_decode_init,
2212    NULL,
2213    vp3_decode_end,
2214    vp3_decode_frame,
2215    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2216    NULL,
2217    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2218};
2219#endif
2220
2221AVCodec vp3_decoder = {
2222    "vp3",
2223    AVMEDIA_TYPE_VIDEO,
2224    CODEC_ID_VP3,
2225    sizeof(Vp3DecodeContext),
2226    vp3_decode_init,
2227    NULL,
2228    vp3_decode_end,
2229    vp3_decode_frame,
2230    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2231    NULL,
2232    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2233};
2234