1/*
2 * TwinVQ decoder
3 * Copyright (c) 2009 Vitor Sessak
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include "avcodec.h"
23#include "get_bits.h"
24#include "dsputil.h"
25#include "fft.h"
26#include "lsp.h"
27
28#include <math.h>
29#include <stdint.h>
30
31#include "twinvq_data.h"
32
33enum FrameType {
34    FT_SHORT = 0,  ///< Short frame  (divided in n   sub-blocks)
35    FT_MEDIUM,     ///< Medium frame (divided in m<n sub-blocks)
36    FT_LONG,       ///< Long frame   (single sub-block + PPC)
37    FT_PPC,        ///< Periodic Peak Component (part of the long frame)
38};
39
40/**
41 * Parameters and tables that are different for each frame type
42 */
43struct FrameMode {
44    uint8_t         sub;      ///< Number subblocks in each frame
45    const uint16_t *bark_tab;
46
47    /** number of distinct bark scale envelope values */
48    uint8_t         bark_env_size;
49
50    const int16_t  *bark_cb;    ///< codebook for the bark scale envelope (BSE)
51    uint8_t         bark_n_coef;///< number of BSE CB coefficients to read
52    uint8_t         bark_n_bit; ///< number of bits of the BSE coefs
53
54    //@{
55    /** main codebooks for spectrum data */
56    const int16_t    *cb0;
57    const int16_t    *cb1;
58    //@}
59
60    uint8_t         cb_len_read; ///< number of spectrum coefficients to read
61};
62
63/**
64 * Parameters and tables that are different for every combination of
65 * bitrate/sample rate
66 */
67typedef struct {
68    struct FrameMode fmode[3]; ///< frame type-dependant parameters
69
70    uint16_t     size;        ///< frame size in samples
71    uint8_t      n_lsp;       ///< number of lsp coefficients
72    const float *lspcodebook;
73
74    /* number of bits of the different LSP CB coefficients */
75    uint8_t      lsp_bit0;
76    uint8_t      lsp_bit1;
77    uint8_t      lsp_bit2;
78
79    uint8_t      lsp_split;      ///< number of CB entries for the LSP decoding
80    const int16_t *ppc_shape_cb; ///< PPC shape CB
81
82    /** number of the bits for the PPC period value */
83    uint8_t      ppc_period_bit;
84
85    uint8_t      ppc_shape_bit;  ///< number of bits of the PPC shape CB coeffs
86    uint8_t      ppc_shape_len;  ///< size of PPC shape CB
87    uint8_t      pgain_bit;      ///< bits for PPC gain
88
89    /** constant for peak period to peak width conversion */
90    uint16_t     peak_per2wid;
91} ModeTab;
92
93static const ModeTab mode_08_08 = {
94    {
95        { 8, bark_tab_s08_64,  10, tab.fcb08s  , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
96        { 2, bark_tab_m08_256, 20, tab.fcb08m  , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
97        { 1, bark_tab_l08_512, 30, tab.fcb08l  , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
98    },
99    512 , 12, tab.lsp08,   1, 5, 3, 3, tab.shape08  , 8, 28, 20, 6, 40
100};
101
102static const ModeTab mode_11_08 = {
103    {
104        { 8, bark_tab_s11_64,  10, tab.fcb11s  , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
105        { 2, bark_tab_m11_256, 20, tab.fcb11m  , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
106        { 1, bark_tab_l11_512, 30, tab.fcb11l  , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
107    },
108    512 , 16, tab.lsp11,   1, 6, 4, 3, tab.shape11  , 9, 36, 30, 7, 90
109};
110
111static const ModeTab mode_11_10 = {
112    {
113        { 8, bark_tab_s11_64,  10, tab.fcb11s  , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
114        { 2, bark_tab_m11_256, 20, tab.fcb11m  , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
115        { 1, bark_tab_l11_512, 30, tab.fcb11l  , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
116    },
117    512 , 16, tab.lsp11,   1, 6, 4, 3, tab.shape11  , 9, 36, 30, 7, 90
118};
119
120static const ModeTab mode_16_16 = {
121    {
122        { 8, bark_tab_s16_128, 10, tab.fcb16s  , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
123        { 2, bark_tab_m16_512, 20, tab.fcb16m  , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
124        { 1, bark_tab_l16_1024,30, tab.fcb16l  , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
125    },
126    1024, 16, tab.lsp16,   1, 6, 4, 3, tab.shape16  , 9, 56, 60, 7, 180
127};
128
129static const ModeTab mode_22_20 = {
130    {
131        { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
132        { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
133        { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
134    },
135    1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
136};
137
138static const ModeTab mode_22_24 = {
139    {
140        { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
141        { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
142        { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
143    },
144    1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
145};
146
147static const ModeTab mode_22_32 = {
148    {
149        { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
150        { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
151        { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
152    },
153    512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
154};
155
156static const ModeTab mode_44_40 = {
157    {
158        {16, bark_tab_s44_128, 10, tab.fcb44s  , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
159        { 4, bark_tab_m44_512, 20, tab.fcb44m  , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
160        { 1, bark_tab_l44_2048,40, tab.fcb44l  , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
161    },
162    2048, 20, tab.lsp44,   1, 6, 4, 4, tab.shape44  , 9, 84, 54, 7, 432
163};
164
165static const ModeTab mode_44_48 = {
166    {
167        {16, bark_tab_s44_128, 10, tab.fcb44s  , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
168        { 4, bark_tab_m44_512, 20, tab.fcb44m  , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
169        { 1, bark_tab_l44_2048,40, tab.fcb44l  , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
170    },
171    2048, 20, tab.lsp44,   1, 6, 4, 4, tab.shape44  , 9, 84, 54, 7, 432
172};
173
174typedef struct TwinContext {
175    AVCodecContext *avctx;
176    DSPContext      dsp;
177    FFTContext mdct_ctx[3];
178
179    const ModeTab *mtab;
180
181    // history
182    float lsp_hist[2][20];           ///< LSP coefficients of the last frame
183    float bark_hist[3][2][40];       ///< BSE coefficients of last frame
184
185    // bitstream parameters
186    int16_t permut[4][4096];
187    uint8_t length[4][2];            ///< main codebook stride
188    uint8_t length_change[4];
189    uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
190    int bits_main_spec_change[4];
191    int n_div[4];
192
193    float *spectrum;
194    float *curr_frame;               ///< non-interleaved output
195    float *prev_frame;               ///< non-interleaved previous frame
196    int last_block_pos[2];
197
198    float *cos_tabs[3];
199
200    // scratch buffers
201    float *tmp_buf;
202} TwinContext;
203
204#define PPC_SHAPE_CB_SIZE 64
205#define SUB_AMP_MAX       4500.0
206#define MULAW_MU          100.0
207#define GAIN_BITS         8
208#define AMP_MAX           13000.0
209#define SUB_GAIN_BITS     5
210#define WINDOW_TYPE_BITS  4
211#define PGAIN_MU          200
212
213/** @note not speed critical, hence not optimized */
214static void memset_float(float *buf, float val, int size)
215{
216    while (size--)
217        *buf++ = val;
218}
219
220/**
221 * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
222 * spectrum pairs.
223 *
224 * @param lsp a vector of the cosinus of the LSP values
225 * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
226 * @param order the order of the LSP (and the size of the *lsp buffer). Must
227 *        be a multiple of four.
228 * @return the LPC value
229 *
230 * @todo reuse code from vorbis_dec.c: vorbis_floor0_decode
231 */
232static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
233{
234    int j;
235    float p = 0.5f;
236    float q = 0.5f;
237    float two_cos_w = 2.0f*cos_val;
238
239    for (j = 0; j + 1 < order; j += 2*2) {
240        // Unroll the loop once since order is a multiple of four
241        q *= lsp[j  ] - two_cos_w;
242        p *= lsp[j+1] - two_cos_w;
243
244        q *= lsp[j+2] - two_cos_w;
245        p *= lsp[j+3] - two_cos_w;
246    }
247
248    p *= p * (2.0f - two_cos_w);
249    q *= q * (2.0f + two_cos_w);
250
251    return 0.5 / (p + q);
252}
253
254/**
255 * Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs.
256 */
257static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
258{
259    int i;
260    const ModeTab *mtab = tctx->mtab;
261    int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
262
263    for (i = 0; i < size_s/2; i++) {
264        float cos_i = tctx->cos_tabs[0][i];
265        lpc[i]          = eval_lpc_spectrum(cos_vals,  cos_i, mtab->n_lsp);
266        lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
267    }
268}
269
270static void interpolate(float *out, float v1, float v2, int size)
271{
272    int i;
273    float step = (v1 - v2)/(size + 1);
274
275    for (i = 0; i < size; i++) {
276        v2 += step;
277        out[i] = v2;
278    }
279}
280
281static inline float get_cos(int idx, int part, const float *cos_tab, int size)
282{
283    return part ? -cos_tab[size - idx - 1] :
284                   cos_tab[       idx    ];
285}
286
287/**
288 * Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs.
289 * Probably for speed reasons, the coefficients are evaluated as
290 * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
291 * where s is an evaluated value, i is a value interpolated from the others
292 * and b might be either calculated or interpolated, depending on an
293 * unexplained condition.
294 *
295 * @param step the size of a block "siiiibiiii"
296 * @param in the cosinus of the LSP data
297 * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
298          (negative cossinus values)
299 * @param size the size of the whole output
300 */
301static inline void eval_lpcenv_or_interp(TwinContext *tctx,
302                                         enum FrameType ftype,
303                                         float *out, const float *in,
304                                         int size, int step, int part)
305{
306    int i;
307    const ModeTab *mtab = tctx->mtab;
308    const float *cos_tab = tctx->cos_tabs[ftype];
309
310    // Fill the 's'
311    for (i = 0; i < size; i += step)
312        out[i] =
313            eval_lpc_spectrum(in,
314                              get_cos(i, part, cos_tab, size),
315                              mtab->n_lsp);
316
317    // Fill the 'iiiibiiii'
318    for (i = step; i <= size - 2*step; i += step) {
319        if (out[i + step] + out[i - step] >  1.95*out[i] ||
320            out[i + step]                 >=  out[i - step]) {
321            interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
322        } else {
323            out[i - step/2] =
324                eval_lpc_spectrum(in,
325                                  get_cos(i-step/2, part, cos_tab, size),
326                                  mtab->n_lsp);
327            interpolate(out + i - step   + 1, out[i-step/2], out[i-step  ], step/2 - 1);
328            interpolate(out + i - step/2 + 1, out[i       ], out[i-step/2], step/2 - 1);
329        }
330    }
331
332    interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
333}
334
335static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
336                               const float *buf, float *lpc,
337                               int size, int step)
338{
339    eval_lpcenv_or_interp(tctx, ftype, lpc         , buf, size/2,   step, 0);
340    eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
341
342    interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
343
344    memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
345}
346
347/**
348 * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
349 * bitstream, sum the corresponding vectors and write the result to *out
350 * after permutation.
351 */
352static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
353                    enum FrameType ftype,
354                    const int16_t *cb0, const int16_t *cb1, int cb_len)
355{
356    int pos = 0;
357    int i, j;
358
359    for (i = 0; i < tctx->n_div[ftype]; i++) {
360        int tmp0, tmp1;
361        int sign0 = 1;
362        int sign1 = 1;
363        const int16_t *tab0, *tab1;
364        int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
365        int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
366
367        int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
368        if (bits == 7) {
369            if (get_bits1(gb))
370                sign0 = -1;
371            bits = 6;
372        }
373        tmp0 = get_bits(gb, bits);
374
375        bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
376
377        if (bits == 7) {
378            if (get_bits1(gb))
379                sign1 = -1;
380
381            bits = 6;
382        }
383        tmp1 = get_bits(gb, bits);
384
385        tab0 = cb0 + tmp0*cb_len;
386        tab1 = cb1 + tmp1*cb_len;
387
388        for (j = 0; j < length; j++)
389            out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
390
391        pos += length;
392    }
393
394}
395
396static inline float mulawinv(float y, float clip, float mu)
397{
398    y = av_clipf(y/clip, -1, 1);
399    return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
400}
401
402/**
403 * Evaluate a*b/400 rounded to the nearest integer. When, for example,
404 * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
405 * the following broken float-based implementation used by the binary decoder:
406 *
407 * \code
408 * static int very_broken_op(int a, int b)
409 * {
410 *    static float test; // Ugh, force gcc to do the division first...
411 *
412 *    test = a/400.;
413 *    return b * test +  0.5;
414 * }
415 * \endcode
416 *
417 * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
418 * between the original file (before encoding with Yamaha encoder) and the
419 * decoded output increases, which leads one to believe that the encoder expects
420 * exactly this broken calculation.
421 */
422static int very_broken_op(int a, int b)
423{
424    int x = a*b + 200;
425    int size;
426    const uint8_t *rtab;
427
428    if (x%400 || b%5)
429        return x/400;
430
431    x /= 400;
432
433    size = tabs[b/5].size;
434    rtab = tabs[b/5].tab;
435    return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
436}
437
438/**
439 * Sum to data a periodic peak of a given period, width and shape.
440 *
441 * @param period the period of the peak divised by 400.0
442 */
443static void add_peak(int period, int width, const float *shape,
444                     float ppc_gain, float *speech, int len)
445{
446    int i, j;
447
448    const float *shape_end = shape + len;
449    int center;
450
451    // First peak centered around zero
452    for (i = 0; i < width/2; i++)
453        speech[i] += ppc_gain * *shape++;
454
455    for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
456        center = very_broken_op(period, i);
457        for (j = -width/2; j < (width+1)/2; j++)
458            speech[j+center] += ppc_gain * *shape++;
459    }
460
461    // For the last block, be careful not to go beyond the end of the buffer
462    center = very_broken_op(period, i);
463    for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
464        speech[j+center] += ppc_gain * *shape++;
465}
466
467static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
468                       float ppc_gain, float *speech)
469{
470    const ModeTab *mtab = tctx->mtab;
471    int isampf = tctx->avctx->sample_rate/1000;
472    int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
473    int min_period = ROUNDED_DIV(  40*2*mtab->size, isampf);
474    int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
475    int period_range = max_period - min_period;
476
477    // This is actually the period multiplied by 400. It is just linearly coded
478    // between its maximum and minimum value.
479    int period = min_period +
480        ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
481    int width;
482
483    if (isampf == 22 && ibps == 32) {
484        // For some unknown reason, NTT decided to code this case differently...
485        width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
486    } else
487        width =             (period      )* mtab->peak_per2wid/(400*mtab->size);
488
489    add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
490}
491
492static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
493                     float *out)
494{
495    const ModeTab *mtab = tctx->mtab;
496    int i, j;
497    int sub = mtab->fmode[ftype].sub;
498    float step     = AMP_MAX     / ((1 <<     GAIN_BITS) - 1);
499    float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
500
501    if (ftype == FT_LONG) {
502        for (i = 0; i < tctx->avctx->channels; i++)
503            out[i] = (1./(1<<13)) *
504                mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
505                         AMP_MAX, MULAW_MU);
506    } else {
507        for (i = 0; i < tctx->avctx->channels; i++) {
508            float val = (1./(1<<23)) *
509                mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
510                         AMP_MAX, MULAW_MU);
511
512            for (j = 0; j < sub; j++) {
513                out[i*sub + j] =
514                    val*mulawinv(sub_step* 0.5 +
515                                 sub_step* get_bits(gb, SUB_GAIN_BITS),
516                                 SUB_AMP_MAX, MULAW_MU);
517            }
518        }
519    }
520}
521
522/**
523 * Rearrange the LSP coefficients so that they have a minimum distance of
524 * min_dist. This function does it exactly as described in section of 3.2.4
525 * of the G.729 specification (but interestingly is different from what the
526 * reference decoder actually does).
527 */
528static void rearrange_lsp(int order, float *lsp, float min_dist)
529{
530    int i;
531    float min_dist2 = min_dist * 0.5;
532    for (i = 1; i < order; i++)
533        if (lsp[i] - lsp[i-1] < min_dist) {
534            float avg = (lsp[i] + lsp[i-1]) * 0.5;
535
536            lsp[i-1] = avg - min_dist2;
537            lsp[i  ] = avg + min_dist2;
538        }
539}
540
541static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
542                       int lpc_hist_idx, float *lsp, float *hist)
543{
544    const ModeTab *mtab = tctx->mtab;
545    int i, j;
546
547    const float *cb  =  mtab->lspcodebook;
548    const float *cb2 =  cb  + (1 << mtab->lsp_bit1)*mtab->n_lsp;
549    const float *cb3 =  cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
550
551    const int8_t funny_rounding[4] = {
552        -2,
553        mtab->lsp_split == 4 ? -2 : 1,
554        mtab->lsp_split == 4 ? -2 : 1,
555        0
556    };
557
558    j = 0;
559    for (i = 0; i < mtab->lsp_split; i++) {
560        int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
561        for (; j < chunk_end; j++)
562            lsp[j] = cb [lpc_idx1    * mtab->n_lsp + j] +
563                     cb2[lpc_idx2[i] * mtab->n_lsp + j];
564    }
565
566    rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
567
568    for (i = 0; i < mtab->n_lsp; i++) {
569        float tmp1 = 1. -          cb3[lpc_hist_idx*mtab->n_lsp + i];
570        float tmp2 =     hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
571        hist[i] = lsp[i];
572        lsp[i]  = lsp[i] * tmp1 + tmp2;
573    }
574
575    rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
576    rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
577    ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
578}
579
580static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
581                                 enum FrameType ftype, float *lpc)
582{
583    int i;
584    int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
585
586    for (i = 0; i < tctx->mtab->n_lsp; i++)
587        lsp[i] =  2*cos(lsp[i]);
588
589    switch (ftype) {
590    case FT_LONG:
591        eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
592        break;
593    case FT_MEDIUM:
594        eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
595        break;
596    case FT_SHORT:
597        eval_lpcenv(tctx, lsp, lpc);
598        break;
599    }
600}
601
602static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
603                            float *in, float *prev, int ch)
604{
605    const ModeTab *mtab = tctx->mtab;
606    int bsize = mtab->size / mtab->fmode[ftype].sub;
607    int size  = mtab->size;
608    float *buf1 = tctx->tmp_buf;
609    int j;
610    int wsize; // Window size
611    float *out = tctx->curr_frame + 2*ch*mtab->size;
612    float *out2 = out;
613    float *prev_buf;
614    int first_wsize;
615
616    static const uint8_t wtype_to_wsize[]      = {0, 0, 2, 2, 2, 1, 0, 1, 1};
617    int types_sizes[] = {
618        mtab->size /    mtab->fmode[FT_LONG  ].sub,
619        mtab->size /    mtab->fmode[FT_MEDIUM].sub,
620        mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
621    };
622
623    wsize = types_sizes[wtype_to_wsize[wtype]];
624    first_wsize = wsize;
625    prev_buf = prev + (size - bsize)/2;
626
627    for (j = 0; j < mtab->fmode[ftype].sub; j++) {
628        int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
629
630        if (!j && wtype == 4)
631            sub_wtype = 4;
632        else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
633            sub_wtype = 7;
634
635        wsize = types_sizes[wtype_to_wsize[sub_wtype]];
636
637        ff_imdct_half(&tctx->mdct_ctx[ftype], buf1 + bsize*j, in + bsize*j);
638
639        tctx->dsp.vector_fmul_window(out2,
640                                     prev_buf + (bsize-wsize)/2,
641                                     buf1 + bsize*j,
642                                     ff_sine_windows[av_log2(wsize)],
643                                     0.0,
644                                     wsize/2);
645        out2 += wsize;
646
647        memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
648
649        out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
650
651        prev_buf = buf1 + bsize*j + bsize/2;
652    }
653
654    tctx->last_block_pos[ch] = (size + first_wsize)/2;
655}
656
657static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
658                         float *out)
659{
660    const ModeTab *mtab = tctx->mtab;
661    float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
662    int i, j;
663
664    for (i = 0; i < tctx->avctx->channels; i++) {
665        imdct_and_window(tctx, ftype, wtype,
666                         tctx->spectrum + i*mtab->size,
667                         prev_buf + 2*i*mtab->size,
668                         i);
669    }
670
671    if (tctx->avctx->channels == 2) {
672        for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) {
673            float f1 = prev_buf[               i];
674            float f2 = prev_buf[2*mtab->size + i];
675            out[2*i    ] = f1 + f2;
676            out[2*i + 1] = f1 - f2;
677        }
678        for (j = 0; i < mtab->size; j++,i++) {
679            float f1 = tctx->curr_frame[               j];
680            float f2 = tctx->curr_frame[2*mtab->size + j];
681            out[2*i    ] = f1 + f2;
682            out[2*i + 1] = f1 - f2;
683        }
684    } else {
685        memcpy(out, prev_buf,
686               (mtab->size - tctx->last_block_pos[0]) * sizeof(*out));
687
688        out +=  mtab->size - tctx->last_block_pos[0];
689
690        memcpy(out, tctx->curr_frame,
691               (tctx->last_block_pos[0]) * sizeof(*out));
692    }
693
694}
695
696static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
697                         int ch, float *out, float gain, enum FrameType ftype)
698{
699    const ModeTab *mtab = tctx->mtab;
700    int i,j;
701    float *hist = tctx->bark_hist[ftype][ch];
702    float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
703    int bark_n_coef  = mtab->fmode[ftype].bark_n_coef;
704    int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
705    int idx = 0;
706
707    for (i = 0; i < fw_cb_len; i++)
708        for (j = 0; j < bark_n_coef; j++, idx++) {
709            float tmp2 =
710                mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
711            float st = use_hist ?
712                (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
713
714            hist[idx] = tmp2;
715            if (st < -1.) st = 1.;
716
717            memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
718            out += mtab->fmode[ftype].bark_tab[idx];
719        }
720
721}
722
723static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
724                                     float *out, enum FrameType ftype)
725{
726    const ModeTab *mtab = tctx->mtab;
727    int channels = tctx->avctx->channels;
728    int sub = mtab->fmode[ftype].sub;
729    int block_size = mtab->size / sub;
730    float gain[channels*sub];
731    float ppc_shape[mtab->ppc_shape_len * channels * 4];
732    uint8_t bark1[channels][sub][mtab->fmode[ftype].bark_n_coef];
733    uint8_t bark_use_hist[channels][sub];
734
735    uint8_t lpc_idx1[channels];
736    uint8_t lpc_idx2[channels][tctx->mtab->lsp_split];
737    uint8_t lpc_hist_idx[channels];
738
739    int i, j, k;
740
741    dequant(tctx, gb, out, ftype,
742            mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
743            mtab->fmode[ftype].cb_len_read);
744
745    for (i = 0; i < channels; i++)
746        for (j = 0; j < sub; j++)
747            for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
748                bark1[i][j][k] =
749                    get_bits(gb, mtab->fmode[ftype].bark_n_bit);
750
751    for (i = 0; i < channels; i++)
752        for (j = 0; j < sub; j++)
753            bark_use_hist[i][j] = get_bits1(gb);
754
755    dec_gain(tctx, gb, ftype, gain);
756
757    for (i = 0; i < channels; i++) {
758        lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
759        lpc_idx1    [i] = get_bits(gb, tctx->mtab->lsp_bit1);
760
761        for (j = 0; j < tctx->mtab->lsp_split; j++)
762            lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
763    }
764
765    if (ftype == FT_LONG) {
766        int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
767            tctx->n_div[3];
768        dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
769                mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
770    }
771
772    for (i = 0; i < channels; i++) {
773        float *chunk = out + mtab->size * i;
774        float lsp[tctx->mtab->n_lsp];
775
776        for (j = 0; j < sub; j++) {
777            dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
778                         tctx->tmp_buf, gain[sub*i+j], ftype);
779
780            tctx->dsp.vector_fmul(chunk + block_size*j, tctx->tmp_buf,
781                                  block_size);
782
783        }
784
785        if (ftype == FT_LONG) {
786            float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
787            int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
788            int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
789            float v = 1./8192*
790                mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
791
792            decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
793                       chunk);
794        }
795
796        decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
797                   tctx->lsp_hist[i]);
798
799        dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
800
801        for (j = 0; j < mtab->fmode[ftype].sub; j++) {
802            tctx->dsp.vector_fmul(chunk, tctx->tmp_buf, block_size);
803            chunk += block_size;
804        }
805    }
806}
807
808static int twin_decode_frame(AVCodecContext * avctx, void *data,
809                             int *data_size, AVPacket *avpkt)
810{
811    const uint8_t *buf = avpkt->data;
812    int buf_size = avpkt->size;
813    TwinContext *tctx = avctx->priv_data;
814    GetBitContext gb;
815    const ModeTab *mtab = tctx->mtab;
816    float *out = data;
817    enum FrameType ftype;
818    int window_type;
819    static const enum FrameType wtype_to_ftype_table[] = {
820        FT_LONG,   FT_LONG, FT_SHORT, FT_LONG,
821        FT_MEDIUM, FT_LONG, FT_LONG,  FT_MEDIUM, FT_MEDIUM
822    };
823
824    if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
825        av_log(avctx, AV_LOG_ERROR,
826               "Frame too small (%d bytes). Truncated file?\n", buf_size);
827        *data_size = 0;
828        return buf_size;
829    }
830
831    init_get_bits(&gb, buf, buf_size * 8);
832    skip_bits(&gb, get_bits(&gb, 8));
833    window_type = get_bits(&gb, WINDOW_TYPE_BITS);
834
835    if (window_type > 8) {
836        av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
837        return -1;
838    }
839
840    ftype = wtype_to_ftype_table[window_type];
841
842    read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
843
844    imdct_output(tctx, ftype, window_type, out);
845
846    FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
847
848    if (tctx->avctx->frame_number < 2) {
849        *data_size=0;
850        return buf_size;
851    }
852
853    *data_size = mtab->size*avctx->channels*4;
854
855    return buf_size;
856}
857
858/**
859 * Init IMDCT and windowing tables
860 */
861static av_cold void init_mdct_win(TwinContext *tctx)
862{
863    int i,j;
864    const ModeTab *mtab = tctx->mtab;
865    int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
866    int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
867    int channels = tctx->avctx->channels;
868    float norm = channels == 1 ? 2. : 1.;
869
870    for (i = 0; i < 3; i++) {
871        int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
872        ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
873                     -sqrt(norm/bsize) / (1<<15));
874    }
875
876    tctx->tmp_buf  = av_malloc(mtab->size            * sizeof(*tctx->tmp_buf));
877
878    tctx->spectrum  = av_malloc(2*mtab->size*channels*sizeof(float));
879    tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float));
880    tctx->prev_frame  = av_malloc(2*mtab->size*channels*sizeof(float));
881
882    for (i = 0; i < 3; i++) {
883        int m = 4*mtab->size/mtab->fmode[i].sub;
884        double freq = 2*M_PI/m;
885        tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs));
886
887        for (j = 0; j <= m/8; j++)
888            tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
889        for (j = 1; j <  m/8; j++)
890            tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
891    }
892
893
894    ff_init_ff_sine_windows(av_log2(size_m));
895    ff_init_ff_sine_windows(av_log2(size_s/2));
896    ff_init_ff_sine_windows(av_log2(mtab->size));
897}
898
899/**
900 * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
901 * each line do a cyclic permutation, i.e.
902 * abcdefghijklm -> defghijklmabc
903 * where the amount to be shifted is evaluated depending on the column.
904 */
905static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
906                              int block_size,
907                              const uint8_t line_len[2], int length_div,
908                              enum FrameType ftype)
909
910{
911    int i,j;
912
913    for (i = 0; i < line_len[0]; i++) {
914        int shift;
915
916        if (num_blocks == 1 ||
917            (ftype == FT_LONG && num_vect % num_blocks) ||
918            (ftype != FT_LONG && num_vect & 1         ) ||
919            i == line_len[1]) {
920            shift = 0;
921        } else if (ftype == FT_LONG) {
922            shift = i;
923        } else
924            shift = i*i;
925
926        for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
927            tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
928    }
929}
930
931/**
932 * Interpret the input data as in the following table:
933 *
934 * \verbatim
935 *
936 * abcdefgh
937 * ijklmnop
938 * qrstuvw
939 * x123456
940 *
941 * \endverbatim
942 *
943 * and transpose it, giving the output
944 * aiqxbjr1cks2dlt3emu4fvn5gow6hp
945 */
946static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
947                           const uint8_t line_len[2], int length_div)
948{
949    int i,j;
950    int cont= 0;
951    for (i = 0; i < num_vect; i++)
952        for (j = 0; j < line_len[i >= length_div]; j++)
953            out[cont++] = in[j*num_vect + i];
954}
955
956static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
957{
958    int block_size = size/n_blocks;
959    int i;
960
961    for (i = 0; i < size; i++)
962        out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
963}
964
965static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
966{
967    int block_size;
968    const ModeTab *mtab = tctx->mtab;
969    int size = tctx->avctx->channels*mtab->fmode[ftype].sub;
970    int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
971
972    if (ftype == FT_PPC) {
973        size  = tctx->avctx->channels;
974        block_size = mtab->ppc_shape_len;
975    } else
976        block_size = mtab->size / mtab->fmode[ftype].sub;
977
978    permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
979                      block_size, tctx->length[ftype],
980                      tctx->length_change[ftype], ftype);
981
982    transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
983                   tctx->length[ftype], tctx->length_change[ftype]);
984
985    linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
986                size*block_size);
987}
988
989static av_cold void init_bitstream_params(TwinContext *tctx)
990{
991    const ModeTab *mtab = tctx->mtab;
992    int n_ch = tctx->avctx->channels;
993    int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
994                             tctx->avctx->sample_rate;
995
996    int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
997                                   mtab->lsp_split*mtab->lsp_bit2);
998
999    int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
1000                         mtab->ppc_period_bit);
1001
1002    int bsize_no_main_cb[3];
1003    int bse_bits[3];
1004    int i;
1005    enum FrameType frametype;
1006
1007    for (i = 0; i < 3; i++)
1008        // +1 for history usage switch
1009        bse_bits[i] = n_ch *
1010            (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
1011
1012    bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
1013                          WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
1014
1015    for (i = 0; i < 2; i++)
1016        bsize_no_main_cb[i] =
1017            lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
1018            mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
1019
1020    // The remaining bits are all used for the main spectrum coefficients
1021    for (i = 0; i < 4; i++) {
1022        int bit_size;
1023        int vect_size;
1024        int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
1025        if (i == 3) {
1026            bit_size  = n_ch * mtab->ppc_shape_bit;
1027            vect_size = n_ch * mtab->ppc_shape_len;
1028        } else {
1029            bit_size = total_fr_bits - bsize_no_main_cb[i];
1030            vect_size = n_ch * mtab->size;
1031        }
1032
1033        tctx->n_div[i] = (bit_size + 13) / 14;
1034
1035        rounded_up   = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
1036        rounded_down = (bit_size           )/tctx->n_div[i];
1037        num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
1038        num_rounded_up = tctx->n_div[i] - num_rounded_down;
1039        tctx->bits_main_spec[0][i][0] = (rounded_up   + 1)/2;
1040        tctx->bits_main_spec[1][i][0] = (rounded_up      )/2;
1041        tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
1042        tctx->bits_main_spec[1][i][1] = (rounded_down    )/2;
1043        tctx->bits_main_spec_change[i] = num_rounded_up;
1044
1045        rounded_up   = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
1046        rounded_down = (vect_size                     )/tctx->n_div[i];
1047        num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
1048        num_rounded_up = tctx->n_div[i] - num_rounded_down;
1049        tctx->length[i][0] = rounded_up;
1050        tctx->length[i][1] = rounded_down;
1051        tctx->length_change[i] = num_rounded_up;
1052    }
1053
1054    for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
1055        construct_perm_table(tctx, frametype);
1056}
1057
1058static av_cold int twin_decode_init(AVCodecContext *avctx)
1059{
1060    TwinContext *tctx = avctx->priv_data;
1061    int isampf = avctx->sample_rate/1000;
1062    int ibps = avctx->bit_rate/(1000 * avctx->channels);
1063
1064    tctx->avctx       = avctx;
1065    avctx->sample_fmt = SAMPLE_FMT_FLT;
1066
1067    if (avctx->channels > 2) {
1068        av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
1069               avctx->channels);
1070        return -1;
1071    }
1072
1073    switch ((isampf << 8) +  ibps) {
1074    case (8 <<8) +  8: tctx->mtab = &mode_08_08; break;
1075    case (11<<8) +  8: tctx->mtab = &mode_11_08; break;
1076    case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
1077    case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
1078    case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
1079    case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
1080    case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
1081    case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
1082    case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
1083    default:
1084        av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
1085        return -1;
1086    }
1087
1088    dsputil_init(&tctx->dsp, avctx);
1089    init_mdct_win(tctx);
1090    init_bitstream_params(tctx);
1091
1092    memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
1093
1094    return 0;
1095}
1096
1097static av_cold int twin_decode_close(AVCodecContext *avctx)
1098{
1099    TwinContext *tctx = avctx->priv_data;
1100    int i;
1101
1102    for (i = 0; i < 3; i++) {
1103        ff_mdct_end(&tctx->mdct_ctx[i]);
1104        av_free(tctx->cos_tabs[i]);
1105    }
1106
1107
1108    av_free(tctx->curr_frame);
1109    av_free(tctx->spectrum);
1110    av_free(tctx->prev_frame);
1111    av_free(tctx->tmp_buf);
1112
1113    return 0;
1114}
1115
1116AVCodec twinvq_decoder =
1117{
1118    "twinvq",
1119    AVMEDIA_TYPE_AUDIO,
1120    CODEC_ID_TWINVQ,
1121    sizeof(TwinContext),
1122    twin_decode_init,
1123    NULL,
1124    twin_decode_close,
1125    twin_decode_frame,
1126    .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
1127};
1128