1/*
2 * SIPR / ACELP.NET decoder
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 * Copyright (c) 2009 Vitor Sessak
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24#include <math.h>
25#include <stdint.h>
26
27#include "libavutil/mathematics.h"
28#include "avcodec.h"
29#define ALT_BITSTREAM_READER_LE
30#include "get_bits.h"
31#include "dsputil.h"
32
33#include "lsp.h"
34#include "celp_math.h"
35#include "acelp_vectors.h"
36#include "acelp_pitch_delay.h"
37#include "acelp_filters.h"
38#include "celp_filters.h"
39
40#define MAX_SUBFRAME_COUNT   5
41
42#include "sipr.h"
43#include "siprdata.h"
44
45typedef struct {
46    const char *mode_name;
47    uint16_t bits_per_frame;
48    uint8_t subframe_count;
49    uint8_t frames_per_packet;
50    float pitch_sharp_factor;
51
52    /* bitstream parameters */
53    uint8_t number_of_fc_indexes;
54    uint8_t ma_predictor_bits;  ///< size in bits of the switched MA predictor
55
56    /** size in bits of the i-th stage vector of quantizer */
57    uint8_t vq_indexes_bits[5];
58
59    /** size in bits of the adaptive-codebook index for every subframe */
60    uint8_t pitch_delay_bits[5];
61
62    uint8_t gp_index_bits;
63    uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes
64    uint8_t gc_index_bits;     ///< size in bits of the gain  codebook indexes
65} SiprModeParam;
66
67static const SiprModeParam modes[MODE_COUNT] = {
68    [MODE_16k] = {
69        .mode_name          = "16k",
70        .bits_per_frame     = 160,
71        .subframe_count     = SUBFRAME_COUNT_16k,
72        .frames_per_packet  = 1,
73        .pitch_sharp_factor = 0.00,
74
75        .number_of_fc_indexes = 10,
76        .ma_predictor_bits    = 1,
77        .vq_indexes_bits      = {7, 8, 7, 7, 7},
78        .pitch_delay_bits     = {9, 6},
79        .gp_index_bits        = 4,
80        .fc_index_bits        = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
81        .gc_index_bits        = 5
82    },
83
84    [MODE_8k5] = {
85        .mode_name          = "8k5",
86        .bits_per_frame     = 152,
87        .subframe_count     = 3,
88        .frames_per_packet  = 1,
89        .pitch_sharp_factor = 0.8,
90
91        .number_of_fc_indexes = 3,
92        .ma_predictor_bits    = 0,
93        .vq_indexes_bits      = {6, 7, 7, 7, 5},
94        .pitch_delay_bits     = {8, 5, 5},
95        .gp_index_bits        = 0,
96        .fc_index_bits        = {9, 9, 9},
97        .gc_index_bits        = 7
98    },
99
100    [MODE_6k5] = {
101        .mode_name          = "6k5",
102        .bits_per_frame     = 232,
103        .subframe_count     = 3,
104        .frames_per_packet  = 2,
105        .pitch_sharp_factor = 0.8,
106
107        .number_of_fc_indexes = 3,
108        .ma_predictor_bits    = 0,
109        .vq_indexes_bits      = {6, 7, 7, 7, 5},
110        .pitch_delay_bits     = {8, 5, 5},
111        .gp_index_bits        = 0,
112        .fc_index_bits        = {5, 5, 5},
113        .gc_index_bits        = 7
114    },
115
116    [MODE_5k0] = {
117        .mode_name          = "5k0",
118        .bits_per_frame     = 296,
119        .subframe_count     = 5,
120        .frames_per_packet  = 2,
121        .pitch_sharp_factor = 0.85,
122
123        .number_of_fc_indexes = 1,
124        .ma_predictor_bits    = 0,
125        .vq_indexes_bits      = {6, 7, 7, 7, 5},
126        .pitch_delay_bits     = {8, 5, 8, 5, 5},
127        .gp_index_bits        = 0,
128        .fc_index_bits        = {10},
129        .gc_index_bits        = 7
130    }
131};
132
133const float ff_pow_0_5[] = {
134    1.0/(1 <<  1), 1.0/(1 <<  2), 1.0/(1 <<  3), 1.0/(1 <<  4),
135    1.0/(1 <<  5), 1.0/(1 <<  6), 1.0/(1 <<  7), 1.0/(1 <<  8),
136    1.0/(1 <<  9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
137    1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
138};
139
140static void dequant(float *out, const int *idx, const float *cbs[])
141{
142    int i;
143    int stride  = 2;
144    int num_vec = 5;
145
146    for (i = 0; i < num_vec; i++)
147        memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
148
149}
150
151static void lsf_decode_fp(float *lsfnew, float *lsf_history,
152                          const SiprParameters *parm)
153{
154    int i;
155    float lsf_tmp[LP_FILTER_ORDER];
156
157    dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
158
159    for (i = 0; i < LP_FILTER_ORDER; i++)
160        lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
161
162    ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
163
164    /* Note that a minimum distance is not enforced between the last value and
165       the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
166    ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
167    lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
168
169    memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
170
171    for (i = 0; i < LP_FILTER_ORDER - 1; i++)
172        lsfnew[i] = cos(lsfnew[i]);
173    lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
174}
175
176/** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
177static void pitch_sharpening(int pitch_lag_int, float beta,
178                             float *fixed_vector)
179{
180    int i;
181
182    for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
183        fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
184}
185
186/**
187 * Extracts decoding parameters from the input bitstream.
188 * @param parms          parameters structure
189 * @param pgb            pointer to initialized GetBitContext structure
190 */
191static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
192                              const SiprModeParam *p)
193{
194    int i, j;
195
196    parms->ma_pred_switch           = get_bits(pgb, p->ma_predictor_bits);
197
198    for (i = 0; i < 5; i++)
199        parms->vq_indexes[i]        = get_bits(pgb, p->vq_indexes_bits[i]);
200
201    for (i = 0; i < p->subframe_count; i++) {
202        parms->pitch_delay[i]       = get_bits(pgb, p->pitch_delay_bits[i]);
203        parms->gp_index[i]          = get_bits(pgb, p->gp_index_bits);
204
205        for (j = 0; j < p->number_of_fc_indexes; j++)
206            parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
207
208        parms->gc_index[i]          = get_bits(pgb, p->gc_index_bits);
209    }
210}
211
212static void lsp2lpc_sipr(const double *lsp, float *Az)
213{
214    int lp_half_order = LP_FILTER_ORDER >> 1;
215    double buf[(LP_FILTER_ORDER >> 1) + 1];
216    double pa[(LP_FILTER_ORDER >> 1) + 1];
217    double *qa = buf + 1;
218    int i,j;
219
220    qa[-1] = 0.0;
221
222    ff_lsp2polyf(lsp    , pa, lp_half_order    );
223    ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
224
225    for (i = 1, j = LP_FILTER_ORDER - 1; i < lp_half_order; i++, j--) {
226        double paf =  pa[i]            * (1 + lsp[LP_FILTER_ORDER - 1]);
227        double qaf = (qa[i] - qa[i-2]) * (1 - lsp[LP_FILTER_ORDER - 1]);
228        Az[i-1]  = (paf + qaf) * 0.5;
229        Az[j-1]  = (paf - qaf) * 0.5;
230    }
231
232    Az[lp_half_order - 1] = (1.0 + lsp[LP_FILTER_ORDER - 1]) *
233        pa[lp_half_order] * 0.5;
234
235    Az[LP_FILTER_ORDER - 1] = lsp[LP_FILTER_ORDER - 1];
236}
237
238static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
239                           int num_subfr)
240{
241    double lsfint[LP_FILTER_ORDER];
242    int i,j;
243    float t, t0 = 1.0 / num_subfr;
244
245    t = t0 * 0.5;
246    for (i = 0; i < num_subfr; i++) {
247        for (j = 0; j < LP_FILTER_ORDER; j++)
248            lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
249
250        lsp2lpc_sipr(lsfint, Az);
251        Az += LP_FILTER_ORDER;
252        t += t0;
253    }
254}
255
256/**
257 * Evaluates the adaptive impulse response.
258 */
259static void eval_ir(const float *Az, int pitch_lag, float *freq,
260                    float pitch_sharp_factor)
261{
262    float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
263    int i;
264
265    tmp1[0] = 1.;
266    for (i = 0; i < LP_FILTER_ORDER; i++) {
267        tmp1[i+1] = Az[i] * ff_pow_0_55[i];
268        tmp2[i  ] = Az[i] * ff_pow_0_7 [i];
269    }
270    memset(tmp1 + 11, 0, 37 * sizeof(float));
271
272    ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
273                                 LP_FILTER_ORDER);
274
275    pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
276}
277
278/**
279 * Evaluates the convolution of a vector with a sparse vector.
280 */
281static void convolute_with_sparse(float *out, const AMRFixed *pulses,
282                                  const float *shape, int length)
283{
284    int i, j;
285
286    memset(out, 0, length*sizeof(float));
287    for (i = 0; i < pulses->n; i++)
288        for (j = pulses->x[i]; j < length; j++)
289            out[j] += pulses->y[i] * shape[j - pulses->x[i]];
290}
291
292/**
293 * Apply postfilter, very similar to AMR one.
294 */
295static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
296{
297    float buf[SUBFR_SIZE + LP_FILTER_ORDER];
298    float *pole_out = buf + LP_FILTER_ORDER;
299    float lpc_n[LP_FILTER_ORDER];
300    float lpc_d[LP_FILTER_ORDER];
301    int i;
302
303    for (i = 0; i < LP_FILTER_ORDER; i++) {
304        lpc_d[i] = lpc[i] * ff_pow_0_75[i];
305        lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
306    };
307
308    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
309           LP_FILTER_ORDER*sizeof(float));
310
311    ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
312                                 LP_FILTER_ORDER);
313
314    memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
315           LP_FILTER_ORDER*sizeof(float));
316
317    ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
318
319    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
320           LP_FILTER_ORDER*sizeof(*pole_out));
321
322    memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
323           LP_FILTER_ORDER*sizeof(*pole_out));
324
325    ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
326                                      LP_FILTER_ORDER);
327
328}
329
330static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
331                                SiprMode mode, int low_gain)
332{
333    int i;
334
335    switch (mode) {
336    case MODE_6k5:
337        for (i = 0; i < 3; i++) {
338            fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
339            fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
340        }
341        fixed_sparse->n = 3;
342        break;
343    case MODE_8k5:
344        for (i = 0; i < 3; i++) {
345            fixed_sparse->x[2*i    ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
346            fixed_sparse->x[2*i + 1] = 3 * ( pulses[i]       & 0xf) + i;
347
348            fixed_sparse->y[2*i    ] = (pulses[i] & 0x100) ? -1.0: 1.0;
349
350            fixed_sparse->y[2*i + 1] =
351                (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
352                -fixed_sparse->y[2*i    ] : fixed_sparse->y[2*i];
353        }
354
355        fixed_sparse->n = 6;
356        break;
357    case MODE_5k0:
358    default:
359        if (low_gain) {
360            int offset = (pulses[0] & 0x200) ? 2 : 0;
361            int val = pulses[0];
362
363            for (i = 0; i < 3; i++) {
364                int index = (val & 0x7) * 6 + 4 - i*2;
365
366                fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
367                fixed_sparse->x[i] = index;
368
369                val >>= 3;
370            }
371            fixed_sparse->n = 3;
372        } else {
373            int pulse_subset = (pulses[0] >> 8) & 1;
374
375            fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
376            fixed_sparse->x[1] = ( pulses[0]       & 15) * 3 + pulse_subset + 1;
377
378            fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
379            fixed_sparse->y[1] = -fixed_sparse->y[0];
380            fixed_sparse->n = 2;
381        }
382        break;
383    }
384}
385
386static void decode_frame(SiprContext *ctx, SiprParameters *params,
387                         float *out_data)
388{
389    int i, j;
390    int subframe_count = modes[ctx->mode].subframe_count;
391    int frame_size = subframe_count * SUBFR_SIZE;
392    float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
393    float *excitation;
394    float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
395    float lsf_new[LP_FILTER_ORDER];
396    float *impulse_response = ir_buf + LP_FILTER_ORDER;
397    float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
398                                        // memory alignment
399    int t0_first = 0;
400    AMRFixed fixed_cb;
401
402    memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
403    lsf_decode_fp(lsf_new, ctx->lsf_history, params);
404
405    sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
406
407    memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
408
409    excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
410
411    for (i = 0; i < subframe_count; i++) {
412        float *pAz = Az + i*LP_FILTER_ORDER;
413        float fixed_vector[SUBFR_SIZE];
414        int T0,T0_frac;
415        float pitch_gain, gain_code, avg_energy;
416
417        ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
418                            ctx->mode == MODE_5k0, 6);
419
420        if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
421            t0_first = T0;
422
423        ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
424                              ff_b60_sinc, 6,
425                              2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
426                              SUBFR_SIZE);
427
428        decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
429                            ctx->past_pitch_gain < 0.8);
430
431        eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
432
433        convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
434                              SUBFR_SIZE);
435
436        avg_energy =
437            (0.01 + ff_dot_productf(fixed_vector, fixed_vector, SUBFR_SIZE))/
438                SUBFR_SIZE;
439
440        ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
441
442        gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
443                                          avg_energy, ctx->energy_history,
444                                          34 - 15.0/(0.05*M_LN10/M_LN2),
445                                          pred);
446
447        ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
448                                pitch_gain, gain_code, SUBFR_SIZE);
449
450        pitch_gain *= 0.5 * pitch_gain;
451        pitch_gain = FFMIN(pitch_gain, 0.4);
452
453        ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
454        ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
455        gain_code *= ctx->gain_mem;
456
457        for (j = 0; j < SUBFR_SIZE; j++)
458            fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
459
460        if (ctx->mode == MODE_5k0) {
461            postfilter_5k0(ctx, pAz, fixed_vector);
462
463            ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
464                                         pAz, excitation, SUBFR_SIZE,
465                                         LP_FILTER_ORDER);
466        }
467
468        ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
469                                     SUBFR_SIZE, LP_FILTER_ORDER);
470
471        excitation += SUBFR_SIZE;
472    }
473
474    memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
475           LP_FILTER_ORDER * sizeof(float));
476
477    if (ctx->mode == MODE_5k0) {
478        for (i = 0; i < subframe_count; i++) {
479            float energy = ff_dot_productf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
480                                           ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
481                                           SUBFR_SIZE);
482            ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
483                                     &synth[i * SUBFR_SIZE], energy,
484                                     SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
485        }
486
487        memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
488               LP_FILTER_ORDER*sizeof(float));
489    }
490    memcpy(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
491           (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
492
493    ff_acelp_apply_order_2_transfer_function(out_data, synth,
494                                             (const float[2]) {-1.99997   , 1.000000000},
495                                             (const float[2]) {-1.93307352, 0.935891986},
496                                             0.939805806,
497                                             ctx->highpass_filt_mem,
498                                             frame_size);
499}
500
501static av_cold int sipr_decoder_init(AVCodecContext * avctx)
502{
503    SiprContext *ctx = avctx->priv_data;
504    int i;
505
506    if      (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
507    else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
508    else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
509    else                              ctx->mode = MODE_5k0;
510
511    av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
512
513    if (ctx->mode == MODE_16k)
514        ff_sipr_init_16k(ctx);
515
516    for (i = 0; i < LP_FILTER_ORDER; i++)
517        ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
518
519    for (i = 0; i < 4; i++)
520        ctx->energy_history[i] = -14;
521
522    avctx->sample_fmt = SAMPLE_FMT_FLT;
523
524    dsputil_init(&ctx->dsp, avctx);
525
526    return 0;
527}
528
529static int sipr_decode_frame(AVCodecContext *avctx, void *datap,
530                             int *data_size, AVPacket *avpkt)
531{
532    SiprContext *ctx = avctx->priv_data;
533    const uint8_t *buf=avpkt->data;
534    SiprParameters parm;
535    const SiprModeParam *mode_par = &modes[ctx->mode];
536    GetBitContext gb;
537    float *data = datap;
538    int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
539    int i;
540
541    ctx->avctx = avctx;
542    if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
543        av_log(avctx, AV_LOG_ERROR,
544               "Error processing packet: packet size (%d) too small\n",
545               avpkt->size);
546
547        *data_size = 0;
548        return -1;
549    }
550    if (*data_size < subframe_size * mode_par->subframe_count * sizeof(float)) {
551        av_log(avctx, AV_LOG_ERROR,
552               "Error processing packet: output buffer (%d) too small\n",
553               *data_size);
554
555        *data_size = 0;
556        return -1;
557    }
558
559    init_get_bits(&gb, buf, mode_par->bits_per_frame);
560
561    for (i = 0; i < mode_par->frames_per_packet; i++) {
562        decode_parameters(&parm, &gb, mode_par);
563
564        if (ctx->mode == MODE_16k)
565            ff_sipr_decode_frame_16k(ctx, &parm, data);
566        else
567            decode_frame(ctx, &parm, data);
568
569        data += subframe_size * mode_par->subframe_count;
570    }
571
572    *data_size = mode_par->frames_per_packet * subframe_size *
573        mode_par->subframe_count * sizeof(float);
574
575    return mode_par->bits_per_frame >> 3;
576};
577
578AVCodec sipr_decoder = {
579    "sipr",
580    AVMEDIA_TYPE_AUDIO,
581    CODEC_ID_SIPR,
582    sizeof(SiprContext),
583    sipr_decoder_init,
584    NULL,
585    NULL,
586    sipr_decode_frame,
587    .long_name = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
588};
589