1/*
2 * RV40 decoder
3 * Copyright (c) 2007 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * RV40 decoder
25 */
26
27#include "avcodec.h"
28#include "dsputil.h"
29#include "mpegvideo.h"
30#include "golomb.h"
31
32#include "rv34.h"
33#include "rv40vlc2.h"
34#include "rv40data.h"
35
36static VLC aic_top_vlc;
37static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
38static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
39
40static const int16_t mode2_offs[] = {
41       0,  614, 1222, 1794, 2410,  3014,  3586,  4202,  4792, 5382, 5966, 6542,
42    7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
43};
44
45/**
46 * Initialize all tables.
47 */
48static av_cold void rv40_init_tables(void)
49{
50    int i;
51    static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
52    static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
53    static VLC_TYPE aic_mode2_table[11814][2];
54    static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
55    static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
56
57    aic_top_vlc.table = aic_table;
58    aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
59    init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
60             rv40_aic_top_vlc_bits,  1, 1,
61             rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
62    for(i = 0; i < AIC_MODE1_NUM; i++){
63        // Every tenth VLC table is empty
64        if((i % 10) == 9) continue;
65        aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
66        aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
67        init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
68                 aic_mode1_vlc_bits[i],  1, 1,
69                 aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
70    }
71    for(i = 0; i < AIC_MODE2_NUM; i++){
72        aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
73        aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
74        init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
75                 aic_mode2_vlc_bits[i],  1, 1,
76                 aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
77    }
78    for(i = 0; i < NUM_PTYPE_VLCS; i++){
79        ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
80        ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
81        init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
82                         ptype_vlc_bits[i],  1, 1,
83                         ptype_vlc_codes[i], 1, 1,
84                         ptype_vlc_syms,     1, 1, INIT_VLC_USE_NEW_STATIC);
85    }
86    for(i = 0; i < NUM_BTYPE_VLCS; i++){
87        btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
88        btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
89        init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
90                         btype_vlc_bits[i],  1, 1,
91                         btype_vlc_codes[i], 1, 1,
92                         btype_vlc_syms,     1, 1, INIT_VLC_USE_NEW_STATIC);
93    }
94}
95
96/**
97 * Get stored dimension from bitstream.
98 *
99 * If the width/height is the standard one then it's coded as a 3-bit index.
100 * Otherwise it is coded as escaped 8-bit portions.
101 */
102static int get_dimension(GetBitContext *gb, const int *dim)
103{
104    int t   = get_bits(gb, 3);
105    int val = dim[t];
106    if(val < 0)
107        val = dim[get_bits1(gb) - val];
108    if(!val){
109        do{
110            t = get_bits(gb, 8);
111            val += t << 2;
112        }while(t == 0xFF);
113    }
114    return val;
115}
116
117/**
118 * Get encoded picture size - usually this is called from rv40_parse_slice_header.
119 */
120static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
121{
122    *w = get_dimension(gb, rv40_standard_widths);
123    *h = get_dimension(gb, rv40_standard_heights);
124}
125
126static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
127{
128    int mb_bits;
129    int w = r->s.width, h = r->s.height;
130    int mb_size;
131
132    memset(si, 0, sizeof(SliceInfo));
133    if(get_bits1(gb))
134        return -1;
135    si->type = get_bits(gb, 2);
136    if(si->type == 1) si->type = 0;
137    si->quant = get_bits(gb, 5);
138    if(get_bits(gb, 2))
139        return -1;
140    si->vlc_set = get_bits(gb, 2);
141    skip_bits1(gb);
142    si->pts = get_bits(gb, 13);
143    if(!si->type || !get_bits1(gb))
144        rv40_parse_picture_size(gb, &w, &h);
145    if(avcodec_check_dimensions(r->s.avctx, w, h) < 0)
146        return -1;
147    si->width  = w;
148    si->height = h;
149    mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
150    mb_bits = ff_rv34_get_start_offset(gb, mb_size);
151    si->start = get_bits(gb, mb_bits);
152
153    return 0;
154}
155
156/**
157 * Decode 4x4 intra types array.
158 */
159static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
160{
161    MpegEncContext *s = &r->s;
162    int i, j, k, v;
163    int A, B, C;
164    int pattern;
165    int8_t *ptr;
166
167    for(i = 0; i < 4; i++, dst += r->intra_types_stride){
168        if(!i && s->first_slice_line){
169            pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
170            dst[0] = (pattern >> 2) & 2;
171            dst[1] = (pattern >> 1) & 2;
172            dst[2] =  pattern       & 2;
173            dst[3] = (pattern << 1) & 2;
174            continue;
175        }
176        ptr = dst;
177        for(j = 0; j < 4; j++){
178            /* Coefficients are read using VLC chosen by the prediction pattern
179             * The first one (used for retrieving a pair of coefficients) is
180             * constructed from the top, top right and left coefficients
181             * The second one (used for retrieving only one coefficient) is
182             * top + 10 * left.
183             */
184            A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
185            B = ptr[-r->intra_types_stride];
186            C = ptr[-1];
187            pattern = A + (B << 4) + (C << 8);
188            for(k = 0; k < MODE2_PATTERNS_NUM; k++)
189                if(pattern == rv40_aic_table_index[k])
190                    break;
191            if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
192                v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
193                *ptr++ = v/9;
194                *ptr++ = v%9;
195                j++;
196            }else{
197                if(B != -1 && C != -1)
198                    v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
199                else{ // tricky decoding
200                    v = 0;
201                    switch(C){
202                    case -1: // code 0 -> 1, 1 -> 0
203                        if(B < 2)
204                            v = get_bits1(gb) ^ 1;
205                        break;
206                    case  0:
207                    case  2: // code 0 -> 2, 1 -> 0
208                        v = (get_bits1(gb) ^ 1) << 1;
209                        break;
210                    }
211                }
212                *ptr++ = v;
213            }
214        }
215    }
216    return 0;
217}
218
219/**
220 * Decode macroblock information.
221 */
222static int rv40_decode_mb_info(RV34DecContext *r)
223{
224    MpegEncContext *s = &r->s;
225    GetBitContext *gb = &s->gb;
226    int q, i;
227    int prev_type = 0;
228    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
229    int blocks[RV34_MB_TYPES] = {0};
230    int count = 0;
231
232    if(!r->s.mb_skip_run)
233        r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
234
235    if(--r->s.mb_skip_run)
236         return RV34_MB_SKIP;
237
238    if(r->avail_cache[6-1])
239        blocks[r->mb_type[mb_pos - 1]]++;
240    if(r->avail_cache[6-4]){
241        blocks[r->mb_type[mb_pos - s->mb_stride]]++;
242        if(r->avail_cache[6-2])
243            blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
244        if(r->avail_cache[6-5])
245            blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
246    }
247
248    for(i = 0; i < RV34_MB_TYPES; i++){
249        if(blocks[i] > count){
250            count = blocks[i];
251            prev_type = i;
252        }
253    }
254    if(s->pict_type == FF_P_TYPE){
255        prev_type = block_num_to_ptype_vlc_num[prev_type];
256        q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
257        if(q < PBTYPE_ESCAPE)
258            return q;
259        q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
260        av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
261    }else{
262        prev_type = block_num_to_btype_vlc_num[prev_type];
263        q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
264        if(q < PBTYPE_ESCAPE)
265            return q;
266        q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
267        av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
268    }
269    return 0;
270}
271
272#define CLIP_SYMM(a, b) av_clip(a, -(b), b)
273/**
274 * weaker deblocking very similar to the one described in 4.4.2 of JVT-A003r1
275 */
276static inline void rv40_weak_loop_filter(uint8_t *src, const int step,
277                                         const int filter_p1, const int filter_q1,
278                                         const int alpha, const int beta,
279                                         const int lim_p0q0,
280                                         const int lim_q1, const int lim_p1,
281                                         const int diff_p1p0, const int diff_q1q0,
282                                         const int diff_p1p2, const int diff_q1q2)
283{
284    uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
285    int t, u, diff;
286
287    t = src[0*step] - src[-1*step];
288    if(!t)
289        return;
290    u = (alpha * FFABS(t)) >> 7;
291    if(u > 3 - (filter_p1 && filter_q1))
292        return;
293
294    t <<= 2;
295    if(filter_p1 && filter_q1)
296        t += src[-2*step] - src[1*step];
297    diff = CLIP_SYMM((t + 4) >> 3, lim_p0q0);
298    src[-1*step] = cm[src[-1*step] + diff];
299    src[ 0*step] = cm[src[ 0*step] - diff];
300    if(FFABS(diff_p1p2) <= beta && filter_p1){
301        t = (diff_p1p0 + diff_p1p2 - diff) >> 1;
302        src[-2*step] = cm[src[-2*step] - CLIP_SYMM(t, lim_p1)];
303    }
304    if(FFABS(diff_q1q2) <= beta && filter_q1){
305        t = (diff_q1q0 + diff_q1q2 + diff) >> 1;
306        src[ 1*step] = cm[src[ 1*step] - CLIP_SYMM(t, lim_q1)];
307    }
308}
309
310static inline void rv40_adaptive_loop_filter(uint8_t *src, const int step,
311                                             const int stride, const int dmode,
312                                             const int lim_q1, const int lim_p1,
313                                             const int alpha,
314                                             const int beta, const int beta2,
315                                             const int chroma, const int edge)
316{
317    int diff_p1p0[4], diff_q1q0[4], diff_p1p2[4], diff_q1q2[4];
318    int sum_p1p0 = 0, sum_q1q0 = 0, sum_p1p2 = 0, sum_q1q2 = 0;
319    uint8_t *ptr;
320    int flag_strong0 = 1, flag_strong1 = 1;
321    int filter_p1, filter_q1;
322    int i;
323    int lims;
324
325    for(i = 0, ptr = src; i < 4; i++, ptr += stride){
326        diff_p1p0[i] = ptr[-2*step] - ptr[-1*step];
327        diff_q1q0[i] = ptr[ 1*step] - ptr[ 0*step];
328        sum_p1p0 += diff_p1p0[i];
329        sum_q1q0 += diff_q1q0[i];
330    }
331    filter_p1 = FFABS(sum_p1p0) < (beta<<2);
332    filter_q1 = FFABS(sum_q1q0) < (beta<<2);
333    if(!filter_p1 && !filter_q1)
334        return;
335
336    for(i = 0, ptr = src; i < 4; i++, ptr += stride){
337        diff_p1p2[i] = ptr[-2*step] - ptr[-3*step];
338        diff_q1q2[i] = ptr[ 1*step] - ptr[ 2*step];
339        sum_p1p2 += diff_p1p2[i];
340        sum_q1q2 += diff_q1q2[i];
341    }
342
343    if(edge){
344        flag_strong0 = filter_p1 && (FFABS(sum_p1p2) < beta2);
345        flag_strong1 = filter_q1 && (FFABS(sum_q1q2) < beta2);
346    }else{
347        flag_strong0 = flag_strong1 = 0;
348    }
349
350    lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
351    if(flag_strong0 && flag_strong1){ /* strong filtering */
352        for(i = 0; i < 4; i++, src += stride){
353            int sflag, p0, q0, p1, q1;
354            int t = src[0*step] - src[-1*step];
355
356            if(!t) continue;
357            sflag = (alpha * FFABS(t)) >> 7;
358            if(sflag > 1) continue;
359
360            p0 = (25*src[-3*step] + 26*src[-2*step]
361                + 26*src[-1*step]
362                + 26*src[ 0*step] + 25*src[ 1*step] + rv40_dither_l[dmode + i]) >> 7;
363            q0 = (25*src[-2*step] + 26*src[-1*step]
364                + 26*src[ 0*step]
365                + 26*src[ 1*step] + 25*src[ 2*step] + rv40_dither_r[dmode + i]) >> 7;
366            if(sflag){
367                p0 = av_clip(p0, src[-1*step] - lims, src[-1*step] + lims);
368                q0 = av_clip(q0, src[ 0*step] - lims, src[ 0*step] + lims);
369            }
370            p1 = (25*src[-4*step] + 26*src[-3*step]
371                + 26*src[-2*step]
372                + 26*p0           + 25*src[ 0*step] + rv40_dither_l[dmode + i]) >> 7;
373            q1 = (25*src[-1*step] + 26*q0
374                + 26*src[ 1*step]
375                + 26*src[ 2*step] + 25*src[ 3*step] + rv40_dither_r[dmode + i]) >> 7;
376            if(sflag){
377                p1 = av_clip(p1, src[-2*step] - lims, src[-2*step] + lims);
378                q1 = av_clip(q1, src[ 1*step] - lims, src[ 1*step] + lims);
379            }
380            src[-2*step] = p1;
381            src[-1*step] = p0;
382            src[ 0*step] = q0;
383            src[ 1*step] = q1;
384            if(!chroma){
385                src[-3*step] = (25*src[-1*step] + 26*src[-2*step] + 51*src[-3*step] + 26*src[-4*step] + 64) >> 7;
386                src[ 2*step] = (25*src[ 0*step] + 26*src[ 1*step] + 51*src[ 2*step] + 26*src[ 3*step] + 64) >> 7;
387            }
388        }
389    }else if(filter_p1 && filter_q1){
390        for(i = 0; i < 4; i++, src += stride)
391            rv40_weak_loop_filter(src, step, 1, 1, alpha, beta, lims, lim_q1, lim_p1,
392                                  diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
393    }else{
394        for(i = 0; i < 4; i++, src += stride)
395            rv40_weak_loop_filter(src, step, filter_p1, filter_q1,
396                                  alpha, beta, lims>>1, lim_q1>>1, lim_p1>>1,
397                                  diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
398    }
399}
400
401static void rv40_v_loop_filter(uint8_t *src, int stride, int dmode,
402                               int lim_q1, int lim_p1,
403                               int alpha, int beta, int beta2, int chroma, int edge){
404    rv40_adaptive_loop_filter(src, 1, stride, dmode, lim_q1, lim_p1,
405                              alpha, beta, beta2, chroma, edge);
406}
407static void rv40_h_loop_filter(uint8_t *src, int stride, int dmode,
408                               int lim_q1, int lim_p1,
409                               int alpha, int beta, int beta2, int chroma, int edge){
410    rv40_adaptive_loop_filter(src, stride, 1, dmode, lim_q1, lim_p1,
411                              alpha, beta, beta2, chroma, edge);
412}
413
414enum RV40BlockPos{
415    POS_CUR,
416    POS_TOP,
417    POS_LEFT,
418    POS_BOTTOM,
419};
420
421#define MASK_CUR          0x0001
422#define MASK_RIGHT        0x0008
423#define MASK_BOTTOM       0x0010
424#define MASK_TOP          0x1000
425#define MASK_Y_TOP_ROW    0x000F
426#define MASK_Y_LAST_ROW   0xF000
427#define MASK_Y_LEFT_COL   0x1111
428#define MASK_Y_RIGHT_COL  0x8888
429#define MASK_C_TOP_ROW    0x0003
430#define MASK_C_LAST_ROW   0x000C
431#define MASK_C_LEFT_COL   0x0005
432#define MASK_C_RIGHT_COL  0x000A
433
434static const int neighbour_offs_x[4] = { 0,  0, -1, 0 };
435static const int neighbour_offs_y[4] = { 0, -1,  0, 1 };
436
437/**
438 * RV40 loop filtering function
439 */
440static void rv40_loop_filter(RV34DecContext *r, int row)
441{
442    MpegEncContext *s = &r->s;
443    int mb_pos, mb_x;
444    int i, j, k;
445    uint8_t *Y, *C;
446    int alpha, beta, betaY, betaC;
447    int q;
448    int mbtype[4];   ///< current macroblock and its neighbours types
449    /**
450     * flags indicating that macroblock can be filtered with strong filter
451     * it is set only for intra coded MB and MB with DCs coded separately
452     */
453    int mb_strong[4];
454    int clip[4];     ///< MB filter clipping value calculated from filtering strength
455    /**
456     * coded block patterns for luma part of current macroblock and its neighbours
457     * Format:
458     * LSB corresponds to the top left block,
459     * each nibble represents one row of subblocks.
460     */
461    int cbp[4];
462    /**
463     * coded block patterns for chroma part of current macroblock and its neighbours
464     * Format is the same as for luma with two subblocks in a row.
465     */
466    int uvcbp[4][2];
467    /**
468     * This mask represents the pattern of luma subblocks that should be filtered
469     * in addition to the coded ones because because they lie at the edge of
470     * 8x8 block with different enough motion vectors
471     */
472    int mvmasks[4];
473
474    mb_pos = row * s->mb_stride;
475    for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
476        int mbtype = s->current_picture_ptr->mb_type[mb_pos];
477        if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
478            r->cbp_luma  [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
479        if(IS_INTRA(mbtype))
480            r->cbp_chroma[mb_pos] = 0xFF;
481    }
482    mb_pos = row * s->mb_stride;
483    for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
484        int y_h_deblock, y_v_deblock;
485        int c_v_deblock[2], c_h_deblock[2];
486        int clip_left;
487        int avail[4];
488        int y_to_deblock, c_to_deblock[2];
489
490        q = s->current_picture_ptr->qscale_table[mb_pos];
491        alpha = rv40_alpha_tab[q];
492        beta  = rv40_beta_tab [q];
493        betaY = betaC = beta * 3;
494        if(s->width * s->height <= 176*144)
495            betaY += beta;
496
497        avail[0] = 1;
498        avail[1] = row;
499        avail[2] = mb_x;
500        avail[3] = row < s->mb_height - 1;
501        for(i = 0; i < 4; i++){
502            if(avail[i]){
503                int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
504                mvmasks[i] = r->deblock_coefs[pos];
505                mbtype [i] = s->current_picture_ptr->mb_type[pos];
506                cbp    [i] = r->cbp_luma[pos];
507                uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
508                uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
509            }else{
510                mvmasks[i] = 0;
511                mbtype [i] = mbtype[0];
512                cbp    [i] = 0;
513                uvcbp[i][0] = uvcbp[i][1] = 0;
514            }
515            mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
516            clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
517        }
518        y_to_deblock =  mvmasks[POS_CUR]
519                     | (mvmasks[POS_BOTTOM] << 16);
520        /* This pattern contains bits signalling that horizontal edges of
521         * the current block can be filtered.
522         * That happens when either of adjacent subblocks is coded or lies on
523         * the edge of 8x8 blocks with motion vectors differing by more than
524         * 3/4 pel in any component (any edge orientation for some reason).
525         */
526        y_h_deblock =   y_to_deblock
527                    | ((cbp[POS_CUR]                           <<  4) & ~MASK_Y_TOP_ROW)
528                    | ((cbp[POS_TOP]        & MASK_Y_LAST_ROW) >> 12);
529        /* This pattern contains bits signalling that vertical edges of
530         * the current block can be filtered.
531         * That happens when either of adjacent subblocks is coded or lies on
532         * the edge of 8x8 blocks with motion vectors differing by more than
533         * 3/4 pel in any component (any edge orientation for some reason).
534         */
535        y_v_deblock =   y_to_deblock
536                    | ((cbp[POS_CUR]                      << 1) & ~MASK_Y_LEFT_COL)
537                    | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
538        if(!mb_x)
539            y_v_deblock &= ~MASK_Y_LEFT_COL;
540        if(!row)
541            y_h_deblock &= ~MASK_Y_TOP_ROW;
542        if(row == s->mb_height - 1 || (mb_strong[POS_CUR] || mb_strong[POS_BOTTOM]))
543            y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
544        /* Calculating chroma patterns is similar and easier since there is
545         * no motion vector pattern for them.
546         */
547        for(i = 0; i < 2; i++){
548            c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
549            c_v_deblock[i] =   c_to_deblock[i]
550                           | ((uvcbp[POS_CUR] [i]                       << 1) & ~MASK_C_LEFT_COL)
551                           | ((uvcbp[POS_LEFT][i]   & MASK_C_RIGHT_COL) >> 1);
552            c_h_deblock[i] =   c_to_deblock[i]
553                           | ((uvcbp[POS_TOP][i]    & MASK_C_LAST_ROW)  >> 2)
554                           |  (uvcbp[POS_CUR][i]                        << 2);
555            if(!mb_x)
556                c_v_deblock[i] &= ~MASK_C_LEFT_COL;
557            if(!row)
558                c_h_deblock[i] &= ~MASK_C_TOP_ROW;
559            if(row == s->mb_height - 1 || mb_strong[POS_CUR] || mb_strong[POS_BOTTOM])
560                c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
561        }
562
563        for(j = 0; j < 16; j += 4){
564            Y = s->current_picture_ptr->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
565            for(i = 0; i < 4; i++, Y += 4){
566                int ij = i + j;
567                int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
568                int dither = j ? ij : i*4;
569
570                // if bottom block is coded then we can filter its top edge
571                // (or bottom edge of this block, which is the same)
572                if(y_h_deblock & (MASK_BOTTOM << ij)){
573                    rv40_h_loop_filter(Y+4*s->linesize, s->linesize, dither,
574                                       y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
575                                       clip_cur,
576                                       alpha, beta, betaY, 0, 0);
577                }
578                // filter left block edge in ordinary mode (with low filtering strength)
579                if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
580                    if(!i)
581                        clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
582                    else
583                        clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
584                    rv40_v_loop_filter(Y, s->linesize, dither,
585                                       clip_cur,
586                                       clip_left,
587                                       alpha, beta, betaY, 0, 0);
588                }
589                // filter top edge of the current macroblock when filtering strength is high
590                if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
591                    rv40_h_loop_filter(Y, s->linesize, dither,
592                                       clip_cur,
593                                       mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
594                                       alpha, beta, betaY, 0, 1);
595                }
596                // filter left block edge in edge mode (with high filtering strength)
597                if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
598                    clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
599                    rv40_v_loop_filter(Y, s->linesize, dither,
600                                       clip_cur,
601                                       clip_left,
602                                       alpha, beta, betaY, 0, 1);
603                }
604            }
605        }
606        for(k = 0; k < 2; k++){
607            for(j = 0; j < 2; j++){
608                C = s->current_picture_ptr->data[k+1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
609                for(i = 0; i < 2; i++, C += 4){
610                    int ij = i + j*2;
611                    int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
612                    if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
613                        int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
614                        rv40_h_loop_filter(C+4*s->uvlinesize, s->uvlinesize, i*8,
615                                           clip_bot,
616                                           clip_cur,
617                                           alpha, beta, betaC, 1, 0);
618                    }
619                    if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
620                        if(!i)
621                            clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
622                        else
623                            clip_left = c_to_deblock[k]    & (MASK_CUR << (ij-1))  ? clip[POS_CUR]  : 0;
624                        rv40_v_loop_filter(C, s->uvlinesize, j*8,
625                                           clip_cur,
626                                           clip_left,
627                                           alpha, beta, betaC, 1, 0);
628                    }
629                    if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
630                        int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
631                        rv40_h_loop_filter(C, s->uvlinesize, i*8,
632                                           clip_cur,
633                                           clip_top,
634                                           alpha, beta, betaC, 1, 1);
635                    }
636                    if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
637                        clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
638                        rv40_v_loop_filter(C, s->uvlinesize, j*8,
639                                           clip_cur,
640                                           clip_left,
641                                           alpha, beta, betaC, 1, 1);
642                    }
643                }
644            }
645        }
646    }
647}
648
649/**
650 * Initialize decoder.
651 */
652static av_cold int rv40_decode_init(AVCodecContext *avctx)
653{
654    RV34DecContext *r = avctx->priv_data;
655
656    r->rv30 = 0;
657    ff_rv34_decode_init(avctx);
658    if(!aic_top_vlc.bits)
659        rv40_init_tables();
660    r->parse_slice_header = rv40_parse_slice_header;
661    r->decode_intra_types = rv40_decode_intra_types;
662    r->decode_mb_info     = rv40_decode_mb_info;
663    r->loop_filter        = rv40_loop_filter;
664    r->luma_dc_quant_i = rv40_luma_dc_quant[0];
665    r->luma_dc_quant_p = rv40_luma_dc_quant[1];
666    return 0;
667}
668
669AVCodec rv40_decoder = {
670    "rv40",
671    AVMEDIA_TYPE_VIDEO,
672    CODEC_ID_RV40,
673    sizeof(RV34DecContext),
674    rv40_decode_init,
675    NULL,
676    ff_rv34_decode_end,
677    ff_rv34_decode_frame,
678    CODEC_CAP_DR1 | CODEC_CAP_DELAY,
679    .flush = ff_mpeg_flush,
680    .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
681    .pix_fmts= ff_pixfmt_list_420,
682};
683