1/*
2 * QCELP decoder
3 * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * QCELP decoder
25 * @author Reynaldo H. Verdejo Pinochet
26 * @remark FFmpeg merging spearheaded by Kenan Gillet
27 * @remark Development mentored by Benjamin Larson
28 */
29
30#include <stddef.h>
31
32#include "avcodec.h"
33#include "internal.h"
34#include "get_bits.h"
35
36#include "qcelpdata.h"
37
38#include "celp_math.h"
39#include "celp_filters.h"
40#include "acelp_filters.h"
41#include "acelp_vectors.h"
42#include "lsp.h"
43
44#undef NDEBUG
45#include <assert.h>
46
47typedef enum
48{
49    I_F_Q = -1,    /*!< insufficient frame quality */
50    SILENCE,
51    RATE_OCTAVE,
52    RATE_QUARTER,
53    RATE_HALF,
54    RATE_FULL
55} qcelp_packet_rate;
56
57typedef struct
58{
59    GetBitContext     gb;
60    qcelp_packet_rate bitrate;
61    QCELPFrame        frame;    /*!< unpacked data frame */
62
63    uint8_t  erasure_count;
64    uint8_t  octave_count;      /*!< count the consecutive RATE_OCTAVE frames */
65    float    prev_lspf[10];
66    float    predictor_lspf[10];/*!< LSP predictor for RATE_OCTAVE and I_F_Q */
67    float    pitch_synthesis_filter_mem[303];
68    float    pitch_pre_filter_mem[303];
69    float    rnd_fir_filter_mem[180];
70    float    formant_mem[170];
71    float    last_codebook_gain;
72    int      prev_g1[2];
73    int      prev_bitrate;
74    float    pitch_gain[4];
75    uint8_t  pitch_lag[4];
76    uint16_t first16bits;
77    uint8_t  warned_buf_mismatch_bitrate;
78
79    /* postfilter */
80    float    postfilter_synth_mem[10];
81    float    postfilter_agc_mem;
82    float    postfilter_tilt_mem;
83} QCELPContext;
84
85/**
86 * Initialize the speech codec according to the specification.
87 *
88 * TIA/EIA/IS-733 2.4.9
89 */
90static av_cold int qcelp_decode_init(AVCodecContext *avctx)
91{
92    QCELPContext *q = avctx->priv_data;
93    int i;
94
95    avctx->sample_fmt = SAMPLE_FMT_FLT;
96
97    for(i=0; i<10; i++)
98        q->prev_lspf[i] = (i+1)/11.;
99
100    return 0;
101}
102
103/**
104 * Decodes the 10 quantized LSP frequencies from the LSPV/LSP
105 * transmission codes of any bitrate and checks for badly received packets.
106 *
107 * @param q the context
108 * @param lspf line spectral pair frequencies
109 *
110 * @return 0 on success, -1 if the packet is badly received
111 *
112 * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
113 */
114static int decode_lspf(QCELPContext *q, float *lspf)
115{
116    int i;
117    float tmp_lspf, smooth, erasure_coeff;
118    const float *predictors;
119
120    if(q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q)
121    {
122        predictors = (q->prev_bitrate != RATE_OCTAVE &&
123                       q->prev_bitrate != I_F_Q ?
124                       q->prev_lspf : q->predictor_lspf);
125
126        if(q->bitrate == RATE_OCTAVE)
127        {
128            q->octave_count++;
129
130            for(i=0; i<10; i++)
131            {
132                q->predictor_lspf[i] =
133                             lspf[i] = (q->frame.lspv[i] ?  QCELP_LSP_SPREAD_FACTOR
134                                                         : -QCELP_LSP_SPREAD_FACTOR)
135                                     + predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR
136                                     + (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR)/11);
137            }
138            smooth = (q->octave_count < 10 ? .875 : 0.1);
139        }else
140        {
141            erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
142
143            assert(q->bitrate == I_F_Q);
144
145            if(q->erasure_count > 1)
146                erasure_coeff *= (q->erasure_count < 4 ? 0.9 : 0.7);
147
148            for(i=0; i<10; i++)
149            {
150                q->predictor_lspf[i] =
151                             lspf[i] = (i + 1) * ( 1 - erasure_coeff)/11
152                                     + erasure_coeff * predictors[i];
153            }
154            smooth = 0.125;
155        }
156
157        // Check the stability of the LSP frequencies.
158        lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
159        for(i=1; i<10; i++)
160            lspf[i] = FFMAX(lspf[i], (lspf[i-1] + QCELP_LSP_SPREAD_FACTOR));
161
162        lspf[9] = FFMIN(lspf[9], (1.0 - QCELP_LSP_SPREAD_FACTOR));
163        for(i=9; i>0; i--)
164            lspf[i-1] = FFMIN(lspf[i-1], (lspf[i] - QCELP_LSP_SPREAD_FACTOR));
165
166        // Low-pass filter the LSP frequencies.
167        ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0-smooth, 10);
168    }else
169    {
170        q->octave_count = 0;
171
172        tmp_lspf = 0.;
173        for(i=0; i<5 ; i++)
174        {
175            lspf[2*i+0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
176            lspf[2*i+1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
177        }
178
179        // Check for badly received packets.
180        if(q->bitrate == RATE_QUARTER)
181        {
182            if(lspf[9] <= .70 || lspf[9] >=  .97)
183                return -1;
184            for(i=3; i<10; i++)
185                if(fabs(lspf[i] - lspf[i-2]) < .08)
186                    return -1;
187        }else
188        {
189            if(lspf[9] <= .66 || lspf[9] >= .985)
190                return -1;
191            for(i=4; i<10; i++)
192                if (fabs(lspf[i] - lspf[i-4]) < .0931)
193                    return -1;
194        }
195    }
196    return 0;
197}
198
199/**
200 * Converts codebook transmission codes to GAIN and INDEX.
201 *
202 * @param q the context
203 * @param gain array holding the decoded gain
204 *
205 * TIA/EIA/IS-733 2.4.6.2
206 */
207static void decode_gain_and_index(QCELPContext  *q,
208                                  float *gain) {
209    int   i, subframes_count, g1[16];
210    float slope;
211
212    if(q->bitrate >= RATE_QUARTER)
213    {
214        switch(q->bitrate)
215        {
216            case RATE_FULL: subframes_count = 16; break;
217            case RATE_HALF: subframes_count = 4;  break;
218            default:        subframes_count = 5;
219        }
220        for(i=0; i<subframes_count; i++)
221        {
222            g1[i] = 4 * q->frame.cbgain[i];
223            if(q->bitrate == RATE_FULL && !((i+1) & 3))
224            {
225                g1[i] += av_clip((g1[i-1] + g1[i-2] + g1[i-3]) / 3 - 6, 0, 32);
226            }
227
228            gain[i] = qcelp_g12ga[g1[i]];
229
230            if(q->frame.cbsign[i])
231            {
232                gain[i] = -gain[i];
233                q->frame.cindex[i] = (q->frame.cindex[i]-89) & 127;
234            }
235        }
236
237        q->prev_g1[0] = g1[i-2];
238        q->prev_g1[1] = g1[i-1];
239        q->last_codebook_gain = qcelp_g12ga[g1[i-1]];
240
241        if(q->bitrate == RATE_QUARTER)
242        {
243            // Provide smoothing of the unvoiced excitation energy.
244            gain[7] =     gain[4];
245            gain[6] = 0.4*gain[3] + 0.6*gain[4];
246            gain[5] =     gain[3];
247            gain[4] = 0.8*gain[2] + 0.2*gain[3];
248            gain[3] = 0.2*gain[1] + 0.8*gain[2];
249            gain[2] =     gain[1];
250            gain[1] = 0.6*gain[0] + 0.4*gain[1];
251        }
252    }else if (q->bitrate != SILENCE)
253    {
254        if(q->bitrate == RATE_OCTAVE)
255        {
256            g1[0] = 2 * q->frame.cbgain[0]
257                  + av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
258            subframes_count = 8;
259        }else
260        {
261            assert(q->bitrate == I_F_Q);
262
263            g1[0] = q->prev_g1[1];
264            switch(q->erasure_count)
265            {
266                case 1 : break;
267                case 2 : g1[0] -= 1; break;
268                case 3 : g1[0] -= 2; break;
269                default: g1[0] -= 6;
270            }
271            if(g1[0] < 0)
272                g1[0] = 0;
273            subframes_count = 4;
274        }
275        // This interpolation is done to produce smoother background noise.
276        slope = 0.5*(qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
277        for(i=1; i<=subframes_count; i++)
278            gain[i-1] = q->last_codebook_gain + slope * i;
279
280        q->last_codebook_gain = gain[i-2];
281        q->prev_g1[0] = q->prev_g1[1];
282        q->prev_g1[1] = g1[0];
283    }
284}
285
286/**
287 * If the received packet is Rate 1/4 a further sanity check is made of the
288 * codebook gain.
289 *
290 * @param cbgain the unpacked cbgain array
291 * @return -1 if the sanity check fails, 0 otherwise
292 *
293 * TIA/EIA/IS-733 2.4.8.7.3
294 */
295static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
296{
297    int i, diff, prev_diff=0;
298
299    for(i=1; i<5; i++)
300    {
301        diff = cbgain[i] - cbgain[i-1];
302        if(FFABS(diff) > 10)
303            return -1;
304        else if(FFABS(diff - prev_diff) > 12)
305            return -1;
306        prev_diff = diff;
307    }
308    return 0;
309}
310
311/**
312 * Computes the scaled codebook vector Cdn From INDEX and GAIN
313 * for all rates.
314 *
315 * The specification lacks some information here.
316 *
317 * TIA/EIA/IS-733 has an omission on the codebook index determination
318 * formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
319 * you have to subtract the decoded index parameter from the given scaled
320 * codebook vector index 'n' to get the desired circular codebook index, but
321 * it does not mention that you have to clamp 'n' to [0-9] in order to get
322 * RI-compliant results.
323 *
324 * The reason for this mistake seems to be the fact they forgot to mention you
325 * have to do these calculations per codebook subframe and adjust given
326 * equation values accordingly.
327 *
328 * @param q the context
329 * @param gain array holding the 4 pitch subframe gain values
330 * @param cdn_vector array for the generated scaled codebook vector
331 */
332static void compute_svector(QCELPContext *q, const float *gain,
333                            float *cdn_vector)
334{
335    int      i, j, k;
336    uint16_t cbseed, cindex;
337    float    *rnd, tmp_gain, fir_filter_value;
338
339    switch(q->bitrate)
340    {
341        case RATE_FULL:
342            for(i=0; i<16; i++)
343            {
344                tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
345                cindex = -q->frame.cindex[i];
346                for(j=0; j<10; j++)
347                    *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127];
348            }
349        break;
350        case RATE_HALF:
351            for(i=0; i<4; i++)
352            {
353                tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
354                cindex = -q->frame.cindex[i];
355                for (j = 0; j < 40; j++)
356                *cdn_vector++ = tmp_gain * qcelp_rate_half_codebook[cindex++ & 127];
357            }
358        break;
359        case RATE_QUARTER:
360            cbseed = (0x0003 & q->frame.lspv[4])<<14 |
361                     (0x003F & q->frame.lspv[3])<< 8 |
362                     (0x0060 & q->frame.lspv[2])<< 1 |
363                     (0x0007 & q->frame.lspv[1])<< 3 |
364                     (0x0038 & q->frame.lspv[0])>> 3 ;
365            rnd = q->rnd_fir_filter_mem + 20;
366            for(i=0; i<8; i++)
367            {
368                tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
369                for(k=0; k<20; k++)
370                {
371                    cbseed = 521 * cbseed + 259;
372                    *rnd = (int16_t)cbseed;
373
374                    // FIR filter
375                    fir_filter_value = 0.0;
376                    for(j=0; j<10; j++)
377                        fir_filter_value += qcelp_rnd_fir_coefs[j ]
378                                          * (rnd[-j ] + rnd[-20+j]);
379
380                    fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
381                    *cdn_vector++ = tmp_gain * fir_filter_value;
382                    rnd++;
383                }
384            }
385            memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160, 20 * sizeof(float));
386        break;
387        case RATE_OCTAVE:
388            cbseed = q->first16bits;
389            for(i=0; i<8; i++)
390            {
391                tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
392                for(j=0; j<20; j++)
393                {
394                    cbseed = 521 * cbseed + 259;
395                    *cdn_vector++ = tmp_gain * (int16_t)cbseed;
396                }
397            }
398        break;
399        case I_F_Q:
400            cbseed = -44; // random codebook index
401            for(i=0; i<4; i++)
402            {
403                tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
404                for(j=0; j<40; j++)
405                    *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127];
406            }
407        break;
408        case SILENCE:
409            memset(cdn_vector, 0, 160 * sizeof(float));
410        break;
411    }
412}
413
414/**
415 * Apply generic gain control.
416 *
417 * @param v_out output vector
418 * @param v_in gain-controlled vector
419 * @param v_ref vector to control gain of
420 *
421 * TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
422 */
423static void apply_gain_ctrl(float *v_out, const float *v_ref,
424                            const float *v_in)
425{
426    int i;
427
428    for (i = 0; i < 160; i += 40)
429        ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i,
430                                                ff_dot_productf(v_ref + i,
431                                                                v_ref + i, 40),
432                                                40);
433}
434
435/**
436 * Apply filter in pitch-subframe steps.
437 *
438 * @param memory buffer for the previous state of the filter
439 *        - must be able to contain 303 elements
440 *        - the 143 first elements are from the previous state
441 *        - the next 160 are for output
442 * @param v_in input filter vector
443 * @param gain per-subframe gain array, each element is between 0.0 and 2.0
444 * @param lag per-subframe lag array, each element is
445 *        - between 16 and 143 if its corresponding pfrac is 0,
446 *        - between 16 and 139 otherwise
447 * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
448 *        otherwise
449 *
450 * @return filter output vector
451 */
452static const float *do_pitchfilter(float memory[303], const float v_in[160],
453                                   const float gain[4], const uint8_t *lag,
454                                   const uint8_t pfrac[4])
455{
456    int         i, j;
457    float       *v_lag, *v_out;
458    const float *v_len;
459
460    v_out = memory + 143; // Output vector starts at memory[143].
461
462    for(i=0; i<4; i++)
463    {
464        if(gain[i])
465        {
466            v_lag = memory + 143 + 40 * i - lag[i];
467            for(v_len=v_in+40; v_in<v_len; v_in++)
468            {
469                if(pfrac[i]) // If it is a fractional lag...
470                {
471                    for(j=0, *v_out=0.; j<4; j++)
472                        *v_out += qcelp_hammsinc_table[j] * (v_lag[j-4] + v_lag[3-j]);
473                }else
474                    *v_out = *v_lag;
475
476                *v_out = *v_in + gain[i] * *v_out;
477
478                v_lag++;
479                v_out++;
480            }
481        }else
482        {
483            memcpy(v_out, v_in, 40 * sizeof(float));
484            v_in  += 40;
485            v_out += 40;
486        }
487    }
488
489    memmove(memory, memory + 160, 143 * sizeof(float));
490    return memory + 143;
491}
492
493/**
494 * Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
495 * TIA/EIA/IS-733 2.4.5.2, 2.4.8.7.2
496 *
497 * @param q the context
498 * @param cdn_vector the scaled codebook vector
499 */
500static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
501{
502    int         i;
503    const float *v_synthesis_filtered, *v_pre_filtered;
504
505    if(q->bitrate >= RATE_HALF ||
506       q->bitrate == SILENCE ||
507       (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF)))
508    {
509
510        if(q->bitrate >= RATE_HALF)
511        {
512
513            // Compute gain & lag for the whole frame.
514            for(i=0; i<4; i++)
515            {
516                q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
517
518                q->pitch_lag[i] = q->frame.plag[i] + 16;
519            }
520        }else
521        {
522            float max_pitch_gain;
523
524            if (q->bitrate == I_F_Q)
525            {
526                  if (q->erasure_count < 3)
527                      max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
528                  else
529                      max_pitch_gain = 0.0;
530            }else
531            {
532                assert(q->bitrate == SILENCE);
533                max_pitch_gain = 1.0;
534            }
535            for(i=0; i<4; i++)
536                q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
537
538            memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
539        }
540
541        // pitch synthesis filter
542        v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
543                                              cdn_vector, q->pitch_gain,
544                                              q->pitch_lag, q->frame.pfrac);
545
546        // pitch prefilter update
547        for(i=0; i<4; i++)
548            q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
549
550        v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem,
551                                        v_synthesis_filtered,
552                                        q->pitch_gain, q->pitch_lag,
553                                        q->frame.pfrac);
554
555        apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
556    }else
557    {
558        memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17,
559               143 * sizeof(float));
560        memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
561        memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
562        memset(q->pitch_lag,  0, sizeof(q->pitch_lag));
563    }
564}
565
566/**
567 * Reconstructs LPC coefficients from the line spectral pair frequencies
568 * and performs bandwidth expansion.
569 *
570 * @param lspf line spectral pair frequencies
571 * @param lpc linear predictive coding coefficients
572 *
573 * @note: bandwidth_expansion_coeff could be precalculated into a table
574 *        but it seems to be slower on x86
575 *
576 * TIA/EIA/IS-733 2.4.3.3.5
577 */
578static void lspf2lpc(const float *lspf, float *lpc)
579{
580    double lsp[10];
581    double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
582    int   i;
583
584    for (i=0; i<10; i++)
585        lsp[i] = cos(M_PI * lspf[i]);
586
587    ff_acelp_lspd2lpc(lsp, lpc, 5);
588
589    for (i=0; i<10; i++)
590    {
591        lpc[i] *= bandwidth_expansion_coeff;
592        bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
593    }
594}
595
596/**
597 * Interpolates LSP frequencies and computes LPC coefficients
598 * for a given bitrate & pitch subframe.
599 *
600 * TIA/EIA/IS-733 2.4.3.3.4, 2.4.8.7.2
601 *
602 * @param q the context
603 * @param curr_lspf LSP frequencies vector of the current frame
604 * @param lpc float vector for the resulting LPC
605 * @param subframe_num frame number in decoded stream
606 */
607static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
608                            float *lpc, const int subframe_num)
609{
610    float interpolated_lspf[10];
611    float weight;
612
613    if(q->bitrate >= RATE_QUARTER)
614        weight = 0.25 * (subframe_num + 1);
615    else if(q->bitrate == RATE_OCTAVE && !subframe_num)
616        weight = 0.625;
617    else
618        weight = 1.0;
619
620    if(weight != 1.0)
621    {
622        ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
623                                weight, 1.0 - weight, 10);
624        lspf2lpc(interpolated_lspf, lpc);
625    }else if(q->bitrate >= RATE_QUARTER ||
626             (q->bitrate == I_F_Q && !subframe_num))
627        lspf2lpc(curr_lspf, lpc);
628    else if(q->bitrate == SILENCE && !subframe_num)
629        lspf2lpc(q->prev_lspf, lpc);
630}
631
632static qcelp_packet_rate buf_size2bitrate(const int buf_size)
633{
634    switch(buf_size)
635    {
636        case 35: return RATE_FULL;
637        case 17: return RATE_HALF;
638        case  8: return RATE_QUARTER;
639        case  4: return RATE_OCTAVE;
640        case  1: return SILENCE;
641    }
642
643    return I_F_Q;
644}
645
646/**
647 * Determine the bitrate from the frame size and/or the first byte of the frame.
648 *
649 * @param avctx the AV codec context
650 * @param buf_size length of the buffer
651 * @param buf the bufffer
652 *
653 * @return the bitrate on success,
654 *         I_F_Q  if the bitrate cannot be satisfactorily determined
655 *
656 * TIA/EIA/IS-733 2.4.8.7.1
657 */
658static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx, const int buf_size,
659                             const uint8_t **buf)
660{
661    qcelp_packet_rate bitrate;
662
663    if((bitrate = buf_size2bitrate(buf_size)) >= 0)
664    {
665        if(bitrate > **buf)
666        {
667            QCELPContext *q = avctx->priv_data;
668            if (!q->warned_buf_mismatch_bitrate)
669            {
670            av_log(avctx, AV_LOG_WARNING,
671                   "Claimed bitrate and buffer size mismatch.\n");
672                q->warned_buf_mismatch_bitrate = 1;
673            }
674            bitrate = **buf;
675        }else if(bitrate < **buf)
676        {
677            av_log(avctx, AV_LOG_ERROR,
678                   "Buffer is too small for the claimed bitrate.\n");
679            return I_F_Q;
680        }
681        (*buf)++;
682    }else if((bitrate = buf_size2bitrate(buf_size + 1)) >= 0)
683    {
684        av_log(avctx, AV_LOG_WARNING,
685               "Bitrate byte is missing, guessing the bitrate from packet size.\n");
686    }else
687        return I_F_Q;
688
689    if(bitrate == SILENCE)
690    {
691        //FIXME: Remove experimental warning when tested with samples.
692        av_log_ask_for_sample(avctx, "'Blank frame handling is experimental.");
693    }
694    return bitrate;
695}
696
697static void warn_insufficient_frame_quality(AVCodecContext *avctx,
698                                            const char *message)
699{
700    av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n", avctx->frame_number,
701           message);
702}
703
704static void postfilter(QCELPContext *q, float *samples, float *lpc)
705{
706    static const float pow_0_775[10] = {
707        0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
708        0.216676, 0.167924, 0.130141, 0.100859, 0.078166
709    }, pow_0_625[10] = {
710        0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
711        0.059605, 0.037253, 0.023283, 0.014552, 0.009095
712    };
713    float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
714    int n;
715
716    for (n = 0; n < 10; n++) {
717        lpc_s[n] = lpc[n] * pow_0_625[n];
718        lpc_p[n] = lpc[n] * pow_0_775[n];
719    }
720
721    ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
722                                      q->formant_mem + 10, 160, 10);
723    memcpy(pole_out, q->postfilter_synth_mem,       sizeof(float) * 10);
724    ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
725    memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
726
727    ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
728
729    ff_adaptive_gain_control(samples, pole_out + 10,
730        ff_dot_productf(q->formant_mem + 10, q->formant_mem + 10, 160),
731        160, 0.9375, &q->postfilter_agc_mem);
732}
733
734static int qcelp_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
735                              AVPacket *avpkt)
736{
737    const uint8_t *buf = avpkt->data;
738    int buf_size = avpkt->size;
739    QCELPContext *q = avctx->priv_data;
740    float *outbuffer = data;
741    int   i;
742    float quantized_lspf[10], lpc[10];
743    float gain[16];
744    float *formant_mem;
745
746    if((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q)
747    {
748        warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
749        goto erasure;
750    }
751
752    if(q->bitrate == RATE_OCTAVE &&
753       (q->first16bits = AV_RB16(buf)) == 0xFFFF)
754    {
755        warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
756        goto erasure;
757    }
758
759    if(q->bitrate > SILENCE)
760    {
761        const QCELPBitmap *bitmaps     = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
762        const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate]
763                                       + qcelp_unpacking_bitmaps_lengths[q->bitrate];
764        uint8_t           *unpacked_data = (uint8_t *)&q->frame;
765
766        init_get_bits(&q->gb, buf, 8*buf_size);
767
768        memset(&q->frame, 0, sizeof(QCELPFrame));
769
770        for(; bitmaps < bitmaps_end; bitmaps++)
771            unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
772
773        // Check for erasures/blanks on rates 1, 1/4 and 1/8.
774        if(q->frame.reserved)
775        {
776            warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
777            goto erasure;
778        }
779        if(q->bitrate == RATE_QUARTER &&
780           codebook_sanity_check_for_rate_quarter(q->frame.cbgain))
781        {
782            warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
783            goto erasure;
784        }
785
786        if(q->bitrate >= RATE_HALF)
787        {
788            for(i=0; i<4; i++)
789            {
790                if(q->frame.pfrac[i] && q->frame.plag[i] >= 124)
791                {
792                    warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
793                    goto erasure;
794                }
795            }
796        }
797    }
798
799    decode_gain_and_index(q, gain);
800    compute_svector(q, gain, outbuffer);
801
802    if(decode_lspf(q, quantized_lspf) < 0)
803    {
804        warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
805        goto erasure;
806    }
807
808
809    apply_pitch_filters(q, outbuffer);
810
811    if(q->bitrate == I_F_Q)
812    {
813erasure:
814        q->bitrate = I_F_Q;
815        q->erasure_count++;
816        decode_gain_and_index(q, gain);
817        compute_svector(q, gain, outbuffer);
818        decode_lspf(q, quantized_lspf);
819        apply_pitch_filters(q, outbuffer);
820    }else
821        q->erasure_count = 0;
822
823    formant_mem = q->formant_mem + 10;
824    for(i=0; i<4; i++)
825    {
826        interpolate_lpc(q, quantized_lspf, lpc, i);
827        ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40,
828                                     10);
829        formant_mem += 40;
830    }
831
832    // postfilter, as per TIA/EIA/IS-733 2.4.8.6
833    postfilter(q, outbuffer, lpc);
834
835    memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
836
837    memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
838    q->prev_bitrate = q->bitrate;
839
840    *data_size = 160 * sizeof(*outbuffer);
841
842    return *data_size;
843}
844
845AVCodec qcelp_decoder =
846{
847    .name   = "qcelp",
848    .type   = AVMEDIA_TYPE_AUDIO,
849    .id     = CODEC_ID_QCELP,
850    .init   = qcelp_decode_init,
851    .decode = qcelp_decode_frame,
852    .priv_data_size = sizeof(QCELPContext),
853    .long_name = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
854};
855