1/*
2 * MPEG Audio decoder
3 * Copyright (c) 2001, 2002 Fabrice Bellard
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * MPEG Audio decoder.
25 */
26
27#include "avcodec.h"
28#include "get_bits.h"
29#include "dsputil.h"
30
31/*
32 * TODO:
33 *  - in low precision mode, use more 16 bit multiplies in synth filter
34 *  - test lsf / mpeg25 extensively.
35 */
36
37#include "mpegaudio.h"
38#include "mpegaudiodecheader.h"
39
40#include "mathops.h"
41
42/* WARNING: only correct for posititive numbers */
43#define FIXR(a)   ((int)((a) * FRAC_ONE + 0.5))
44#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
45
46#define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
47
48/****************/
49
50#define HEADER_SIZE 4
51
52#include "mpegaudiodata.h"
53#include "mpegaudiodectab.h"
54
55static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
56static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
57
58/* vlc structure for decoding layer 3 huffman tables */
59static VLC huff_vlc[16];
60static VLC_TYPE huff_vlc_tables[
61  0+128+128+128+130+128+154+166+
62  142+204+190+170+542+460+662+414
63  ][2];
64static const int huff_vlc_tables_sizes[16] = {
65  0, 128, 128, 128, 130, 128, 154, 166,
66  142, 204, 190, 170, 542, 460, 662, 414
67};
68static VLC huff_quad_vlc[2];
69static VLC_TYPE huff_quad_vlc_tables[128+16][2];
70static const int huff_quad_vlc_tables_sizes[2] = {
71  128, 16
72};
73/* computed from band_size_long */
74static uint16_t band_index_long[9][23];
75#include "mpegaudio_tablegen.h"
76/* intensity stereo coef table */
77static int32_t is_table[2][16];
78static int32_t is_table_lsf[2][2][16];
79static int32_t csa_table[8][4];
80static float csa_table_float[8][4];
81static int32_t mdct_win[8][36];
82
83/* lower 2 bits: modulo 3, higher bits: shift */
84static uint16_t scale_factor_modshift[64];
85/* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
86static int32_t scale_factor_mult[15][3];
87/* mult table for layer 2 group quantization */
88
89#define SCALE_GEN(v) \
90{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
91
92static const int32_t scale_factor_mult2[3][3] = {
93    SCALE_GEN(4.0 / 3.0), /* 3 steps */
94    SCALE_GEN(4.0 / 5.0), /* 5 steps */
95    SCALE_GEN(4.0 / 9.0), /* 9 steps */
96};
97
98DECLARE_ALIGNED(16, MPA_INT, ff_mpa_synth_window)[512];
99
100/**
101 * Convert region offsets to region sizes and truncate
102 * size to big_values.
103 */
104static void ff_region_offset2size(GranuleDef *g){
105    int i, k, j=0;
106    g->region_size[2] = (576 / 2);
107    for(i=0;i<3;i++) {
108        k = FFMIN(g->region_size[i], g->big_values);
109        g->region_size[i] = k - j;
110        j = k;
111    }
112}
113
114static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
115    if (g->block_type == 2)
116        g->region_size[0] = (36 / 2);
117    else {
118        if (s->sample_rate_index <= 2)
119            g->region_size[0] = (36 / 2);
120        else if (s->sample_rate_index != 8)
121            g->region_size[0] = (54 / 2);
122        else
123            g->region_size[0] = (108 / 2);
124    }
125    g->region_size[1] = (576 / 2);
126}
127
128static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
129    int l;
130    g->region_size[0] =
131        band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
132    /* should not overflow */
133    l = FFMIN(ra1 + ra2 + 2, 22);
134    g->region_size[1] =
135        band_index_long[s->sample_rate_index][l] >> 1;
136}
137
138static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
139    if (g->block_type == 2) {
140        if (g->switch_point) {
141            /* if switched mode, we handle the 36 first samples as
142                long blocks.  For 8000Hz, we handle the 48 first
143                exponents as long blocks (XXX: check this!) */
144            if (s->sample_rate_index <= 2)
145                g->long_end = 8;
146            else if (s->sample_rate_index != 8)
147                g->long_end = 6;
148            else
149                g->long_end = 4; /* 8000 Hz */
150
151            g->short_start = 2 + (s->sample_rate_index != 8);
152        } else {
153            g->long_end = 0;
154            g->short_start = 0;
155        }
156    } else {
157        g->short_start = 13;
158        g->long_end = 22;
159    }
160}
161
162/* layer 1 unscaling */
163/* n = number of bits of the mantissa minus 1 */
164static inline int l1_unscale(int n, int mant, int scale_factor)
165{
166    int shift, mod;
167    int64_t val;
168
169    shift = scale_factor_modshift[scale_factor];
170    mod = shift & 3;
171    shift >>= 2;
172    val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
173    shift += n;
174    /* NOTE: at this point, 1 <= shift >= 21 + 15 */
175    return (int)((val + (1LL << (shift - 1))) >> shift);
176}
177
178static inline int l2_unscale_group(int steps, int mant, int scale_factor)
179{
180    int shift, mod, val;
181
182    shift = scale_factor_modshift[scale_factor];
183    mod = shift & 3;
184    shift >>= 2;
185
186    val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
187    /* NOTE: at this point, 0 <= shift <= 21 */
188    if (shift > 0)
189        val = (val + (1 << (shift - 1))) >> shift;
190    return val;
191}
192
193/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
194static inline int l3_unscale(int value, int exponent)
195{
196    unsigned int m;
197    int e;
198
199    e = table_4_3_exp  [4*value + (exponent&3)];
200    m = table_4_3_value[4*value + (exponent&3)];
201    e -= (exponent >> 2);
202    assert(e>=1);
203    if (e > 31)
204        return 0;
205    m = (m + (1 << (e-1))) >> e;
206
207    return m;
208}
209
210/* all integer n^(4/3) computation code */
211#define DEV_ORDER 13
212
213#define POW_FRAC_BITS 24
214#define POW_FRAC_ONE    (1 << POW_FRAC_BITS)
215#define POW_FIX(a)   ((int)((a) * POW_FRAC_ONE))
216#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
217
218static int dev_4_3_coefs[DEV_ORDER];
219
220#if 0 /* unused */
221static int pow_mult3[3] = {
222    POW_FIX(1.0),
223    POW_FIX(1.25992104989487316476),
224    POW_FIX(1.58740105196819947474),
225};
226#endif
227
228static av_cold void int_pow_init(void)
229{
230    int i, a;
231
232    a = POW_FIX(1.0);
233    for(i=0;i<DEV_ORDER;i++) {
234        a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
235        dev_4_3_coefs[i] = a;
236    }
237}
238
239#if 0 /* unused, remove? */
240/* return the mantissa and the binary exponent */
241static int int_pow(int i, int *exp_ptr)
242{
243    int e, er, eq, j;
244    int a, a1;
245
246    /* renormalize */
247    a = i;
248    e = POW_FRAC_BITS;
249    while (a < (1 << (POW_FRAC_BITS - 1))) {
250        a = a << 1;
251        e--;
252    }
253    a -= (1 << POW_FRAC_BITS);
254    a1 = 0;
255    for(j = DEV_ORDER - 1; j >= 0; j--)
256        a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
257    a = (1 << POW_FRAC_BITS) + a1;
258    /* exponent compute (exact) */
259    e = e * 4;
260    er = e % 3;
261    eq = e / 3;
262    a = POW_MULL(a, pow_mult3[er]);
263    while (a >= 2 * POW_FRAC_ONE) {
264        a = a >> 1;
265        eq++;
266    }
267    /* convert to float */
268    while (a < POW_FRAC_ONE) {
269        a = a << 1;
270        eq--;
271    }
272    /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
273#if POW_FRAC_BITS > FRAC_BITS
274    a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
275    /* correct overflow */
276    if (a >= 2 * (1 << FRAC_BITS)) {
277        a = a >> 1;
278        eq++;
279    }
280#endif
281    *exp_ptr = eq;
282    return a;
283}
284#endif
285
286static av_cold int decode_init(AVCodecContext * avctx)
287{
288    MPADecodeContext *s = avctx->priv_data;
289    static int init=0;
290    int i, j, k;
291
292    s->avctx = avctx;
293
294    avctx->sample_fmt= OUT_FMT;
295    s->error_recognition= avctx->error_recognition;
296
297    if(avctx->antialias_algo != FF_AA_FLOAT)
298        s->compute_antialias= compute_antialias_integer;
299    else
300        s->compute_antialias= compute_antialias_float;
301
302    if (!init && !avctx->parse_only) {
303        int offset;
304
305        /* scale factors table for layer 1/2 */
306        for(i=0;i<64;i++) {
307            int shift, mod;
308            /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
309            shift = (i / 3);
310            mod = i % 3;
311            scale_factor_modshift[i] = mod | (shift << 2);
312        }
313
314        /* scale factor multiply for layer 1 */
315        for(i=0;i<15;i++) {
316            int n, norm;
317            n = i + 2;
318            norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
319            scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
320            scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
321            scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
322            dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
323                    i, norm,
324                    scale_factor_mult[i][0],
325                    scale_factor_mult[i][1],
326                    scale_factor_mult[i][2]);
327        }
328
329        ff_mpa_synth_init(ff_mpa_synth_window);
330
331        /* huffman decode tables */
332        offset = 0;
333        for(i=1;i<16;i++) {
334            const HuffTable *h = &mpa_huff_tables[i];
335            int xsize, x, y;
336            uint8_t  tmp_bits [512];
337            uint16_t tmp_codes[512];
338
339            memset(tmp_bits , 0, sizeof(tmp_bits ));
340            memset(tmp_codes, 0, sizeof(tmp_codes));
341
342            xsize = h->xsize;
343
344            j = 0;
345            for(x=0;x<xsize;x++) {
346                for(y=0;y<xsize;y++){
347                    tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
348                    tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
349                }
350            }
351
352            /* XXX: fail test */
353            huff_vlc[i].table = huff_vlc_tables+offset;
354            huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
355            init_vlc(&huff_vlc[i], 7, 512,
356                     tmp_bits, 1, 1, tmp_codes, 2, 2,
357                     INIT_VLC_USE_NEW_STATIC);
358            offset += huff_vlc_tables_sizes[i];
359        }
360        assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
361
362        offset = 0;
363        for(i=0;i<2;i++) {
364            huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
365            huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
366            init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
367                     mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
368                     INIT_VLC_USE_NEW_STATIC);
369            offset += huff_quad_vlc_tables_sizes[i];
370        }
371        assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
372
373        for(i=0;i<9;i++) {
374            k = 0;
375            for(j=0;j<22;j++) {
376                band_index_long[i][j] = k;
377                k += band_size_long[i][j];
378            }
379            band_index_long[i][22] = k;
380        }
381
382        /* compute n ^ (4/3) and store it in mantissa/exp format */
383
384        int_pow_init();
385        mpegaudio_tableinit();
386
387        for(i=0;i<7;i++) {
388            float f;
389            int v;
390            if (i != 6) {
391                f = tan((double)i * M_PI / 12.0);
392                v = FIXR(f / (1.0 + f));
393            } else {
394                v = FIXR(1.0);
395            }
396            is_table[0][i] = v;
397            is_table[1][6 - i] = v;
398        }
399        /* invalid values */
400        for(i=7;i<16;i++)
401            is_table[0][i] = is_table[1][i] = 0.0;
402
403        for(i=0;i<16;i++) {
404            double f;
405            int e, k;
406
407            for(j=0;j<2;j++) {
408                e = -(j + 1) * ((i + 1) >> 1);
409                f = pow(2.0, e / 4.0);
410                k = i & 1;
411                is_table_lsf[j][k ^ 1][i] = FIXR(f);
412                is_table_lsf[j][k][i] = FIXR(1.0);
413                dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
414                        i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
415            }
416        }
417
418        for(i=0;i<8;i++) {
419            float ci, cs, ca;
420            ci = ci_table[i];
421            cs = 1.0 / sqrt(1.0 + ci * ci);
422            ca = cs * ci;
423            csa_table[i][0] = FIXHR(cs/4);
424            csa_table[i][1] = FIXHR(ca/4);
425            csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
426            csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
427            csa_table_float[i][0] = cs;
428            csa_table_float[i][1] = ca;
429            csa_table_float[i][2] = ca + cs;
430            csa_table_float[i][3] = ca - cs;
431        }
432
433        /* compute mdct windows */
434        for(i=0;i<36;i++) {
435            for(j=0; j<4; j++){
436                double d;
437
438                if(j==2 && i%3 != 1)
439                    continue;
440
441                d= sin(M_PI * (i + 0.5) / 36.0);
442                if(j==1){
443                    if     (i>=30) d= 0;
444                    else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
445                    else if(i>=18) d= 1;
446                }else if(j==3){
447                    if     (i<  6) d= 0;
448                    else if(i< 12) d= sin(M_PI * (i -  6 + 0.5) / 12.0);
449                    else if(i< 18) d= 1;
450                }
451                //merge last stage of imdct into the window coefficients
452                d*= 0.5 / cos(M_PI*(2*i + 19)/72);
453
454                if(j==2)
455                    mdct_win[j][i/3] = FIXHR((d / (1<<5)));
456                else
457                    mdct_win[j][i  ] = FIXHR((d / (1<<5)));
458            }
459        }
460
461        /* NOTE: we do frequency inversion adter the MDCT by changing
462           the sign of the right window coefs */
463        for(j=0;j<4;j++) {
464            for(i=0;i<36;i+=2) {
465                mdct_win[j + 4][i] = mdct_win[j][i];
466                mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
467            }
468        }
469
470        init = 1;
471    }
472
473    if (avctx->codec_id == CODEC_ID_MP3ADU)
474        s->adu_mode = 1;
475    return 0;
476}
477
478/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
479
480/* cos(i*pi/64) */
481
482#define COS0_0  FIXHR(0.50060299823519630134/2)
483#define COS0_1  FIXHR(0.50547095989754365998/2)
484#define COS0_2  FIXHR(0.51544730992262454697/2)
485#define COS0_3  FIXHR(0.53104259108978417447/2)
486#define COS0_4  FIXHR(0.55310389603444452782/2)
487#define COS0_5  FIXHR(0.58293496820613387367/2)
488#define COS0_6  FIXHR(0.62250412303566481615/2)
489#define COS0_7  FIXHR(0.67480834145500574602/2)
490#define COS0_8  FIXHR(0.74453627100229844977/2)
491#define COS0_9  FIXHR(0.83934964541552703873/2)
492#define COS0_10 FIXHR(0.97256823786196069369/2)
493#define COS0_11 FIXHR(1.16943993343288495515/4)
494#define COS0_12 FIXHR(1.48416461631416627724/4)
495#define COS0_13 FIXHR(2.05778100995341155085/8)
496#define COS0_14 FIXHR(3.40760841846871878570/8)
497#define COS0_15 FIXHR(10.19000812354805681150/32)
498
499#define COS1_0 FIXHR(0.50241928618815570551/2)
500#define COS1_1 FIXHR(0.52249861493968888062/2)
501#define COS1_2 FIXHR(0.56694403481635770368/2)
502#define COS1_3 FIXHR(0.64682178335999012954/2)
503#define COS1_4 FIXHR(0.78815462345125022473/2)
504#define COS1_5 FIXHR(1.06067768599034747134/4)
505#define COS1_6 FIXHR(1.72244709823833392782/4)
506#define COS1_7 FIXHR(5.10114861868916385802/16)
507
508#define COS2_0 FIXHR(0.50979557910415916894/2)
509#define COS2_1 FIXHR(0.60134488693504528054/2)
510#define COS2_2 FIXHR(0.89997622313641570463/2)
511#define COS2_3 FIXHR(2.56291544774150617881/8)
512
513#define COS3_0 FIXHR(0.54119610014619698439/2)
514#define COS3_1 FIXHR(1.30656296487637652785/4)
515
516#define COS4_0 FIXHR(0.70710678118654752439/2)
517
518/* butterfly operator */
519#define BF(a, b, c, s)\
520{\
521    tmp0 = tab[a] + tab[b];\
522    tmp1 = tab[a] - tab[b];\
523    tab[a] = tmp0;\
524    tab[b] = MULH(tmp1<<(s), c);\
525}
526
527#define BF1(a, b, c, d)\
528{\
529    BF(a, b, COS4_0, 1);\
530    BF(c, d,-COS4_0, 1);\
531    tab[c] += tab[d];\
532}
533
534#define BF2(a, b, c, d)\
535{\
536    BF(a, b, COS4_0, 1);\
537    BF(c, d,-COS4_0, 1);\
538    tab[c] += tab[d];\
539    tab[a] += tab[c];\
540    tab[c] += tab[b];\
541    tab[b] += tab[d];\
542}
543
544#define ADD(a, b) tab[a] += tab[b]
545
546/* DCT32 without 1/sqrt(2) coef zero scaling. */
547static void dct32(int32_t *out, int32_t *tab)
548{
549    int tmp0, tmp1;
550
551    /* pass 1 */
552    BF( 0, 31, COS0_0 , 1);
553    BF(15, 16, COS0_15, 5);
554    /* pass 2 */
555    BF( 0, 15, COS1_0 , 1);
556    BF(16, 31,-COS1_0 , 1);
557    /* pass 1 */
558    BF( 7, 24, COS0_7 , 1);
559    BF( 8, 23, COS0_8 , 1);
560    /* pass 2 */
561    BF( 7,  8, COS1_7 , 4);
562    BF(23, 24,-COS1_7 , 4);
563    /* pass 3 */
564    BF( 0,  7, COS2_0 , 1);
565    BF( 8, 15,-COS2_0 , 1);
566    BF(16, 23, COS2_0 , 1);
567    BF(24, 31,-COS2_0 , 1);
568    /* pass 1 */
569    BF( 3, 28, COS0_3 , 1);
570    BF(12, 19, COS0_12, 2);
571    /* pass 2 */
572    BF( 3, 12, COS1_3 , 1);
573    BF(19, 28,-COS1_3 , 1);
574    /* pass 1 */
575    BF( 4, 27, COS0_4 , 1);
576    BF(11, 20, COS0_11, 2);
577    /* pass 2 */
578    BF( 4, 11, COS1_4 , 1);
579    BF(20, 27,-COS1_4 , 1);
580    /* pass 3 */
581    BF( 3,  4, COS2_3 , 3);
582    BF(11, 12,-COS2_3 , 3);
583    BF(19, 20, COS2_3 , 3);
584    BF(27, 28,-COS2_3 , 3);
585    /* pass 4 */
586    BF( 0,  3, COS3_0 , 1);
587    BF( 4,  7,-COS3_0 , 1);
588    BF( 8, 11, COS3_0 , 1);
589    BF(12, 15,-COS3_0 , 1);
590    BF(16, 19, COS3_0 , 1);
591    BF(20, 23,-COS3_0 , 1);
592    BF(24, 27, COS3_0 , 1);
593    BF(28, 31,-COS3_0 , 1);
594
595
596
597    /* pass 1 */
598    BF( 1, 30, COS0_1 , 1);
599    BF(14, 17, COS0_14, 3);
600    /* pass 2 */
601    BF( 1, 14, COS1_1 , 1);
602    BF(17, 30,-COS1_1 , 1);
603    /* pass 1 */
604    BF( 6, 25, COS0_6 , 1);
605    BF( 9, 22, COS0_9 , 1);
606    /* pass 2 */
607    BF( 6,  9, COS1_6 , 2);
608    BF(22, 25,-COS1_6 , 2);
609    /* pass 3 */
610    BF( 1,  6, COS2_1 , 1);
611    BF( 9, 14,-COS2_1 , 1);
612    BF(17, 22, COS2_1 , 1);
613    BF(25, 30,-COS2_1 , 1);
614
615    /* pass 1 */
616    BF( 2, 29, COS0_2 , 1);
617    BF(13, 18, COS0_13, 3);
618    /* pass 2 */
619    BF( 2, 13, COS1_2 , 1);
620    BF(18, 29,-COS1_2 , 1);
621    /* pass 1 */
622    BF( 5, 26, COS0_5 , 1);
623    BF(10, 21, COS0_10, 1);
624    /* pass 2 */
625    BF( 5, 10, COS1_5 , 2);
626    BF(21, 26,-COS1_5 , 2);
627    /* pass 3 */
628    BF( 2,  5, COS2_2 , 1);
629    BF(10, 13,-COS2_2 , 1);
630    BF(18, 21, COS2_2 , 1);
631    BF(26, 29,-COS2_2 , 1);
632    /* pass 4 */
633    BF( 1,  2, COS3_1 , 2);
634    BF( 5,  6,-COS3_1 , 2);
635    BF( 9, 10, COS3_1 , 2);
636    BF(13, 14,-COS3_1 , 2);
637    BF(17, 18, COS3_1 , 2);
638    BF(21, 22,-COS3_1 , 2);
639    BF(25, 26, COS3_1 , 2);
640    BF(29, 30,-COS3_1 , 2);
641
642    /* pass 5 */
643    BF1( 0,  1,  2,  3);
644    BF2( 4,  5,  6,  7);
645    BF1( 8,  9, 10, 11);
646    BF2(12, 13, 14, 15);
647    BF1(16, 17, 18, 19);
648    BF2(20, 21, 22, 23);
649    BF1(24, 25, 26, 27);
650    BF2(28, 29, 30, 31);
651
652    /* pass 6 */
653
654    ADD( 8, 12);
655    ADD(12, 10);
656    ADD(10, 14);
657    ADD(14,  9);
658    ADD( 9, 13);
659    ADD(13, 11);
660    ADD(11, 15);
661
662    out[ 0] = tab[0];
663    out[16] = tab[1];
664    out[ 8] = tab[2];
665    out[24] = tab[3];
666    out[ 4] = tab[4];
667    out[20] = tab[5];
668    out[12] = tab[6];
669    out[28] = tab[7];
670    out[ 2] = tab[8];
671    out[18] = tab[9];
672    out[10] = tab[10];
673    out[26] = tab[11];
674    out[ 6] = tab[12];
675    out[22] = tab[13];
676    out[14] = tab[14];
677    out[30] = tab[15];
678
679    ADD(24, 28);
680    ADD(28, 26);
681    ADD(26, 30);
682    ADD(30, 25);
683    ADD(25, 29);
684    ADD(29, 27);
685    ADD(27, 31);
686
687    out[ 1] = tab[16] + tab[24];
688    out[17] = tab[17] + tab[25];
689    out[ 9] = tab[18] + tab[26];
690    out[25] = tab[19] + tab[27];
691    out[ 5] = tab[20] + tab[28];
692    out[21] = tab[21] + tab[29];
693    out[13] = tab[22] + tab[30];
694    out[29] = tab[23] + tab[31];
695    out[ 3] = tab[24] + tab[20];
696    out[19] = tab[25] + tab[21];
697    out[11] = tab[26] + tab[22];
698    out[27] = tab[27] + tab[23];
699    out[ 7] = tab[28] + tab[18];
700    out[23] = tab[29] + tab[19];
701    out[15] = tab[30] + tab[17];
702    out[31] = tab[31];
703}
704
705#if FRAC_BITS <= 15
706
707static inline int round_sample(int *sum)
708{
709    int sum1;
710    sum1 = (*sum) >> OUT_SHIFT;
711    *sum &= (1<<OUT_SHIFT)-1;
712    return av_clip(sum1, OUT_MIN, OUT_MAX);
713}
714
715/* signed 16x16 -> 32 multiply add accumulate */
716#define MACS(rt, ra, rb) MAC16(rt, ra, rb)
717
718/* signed 16x16 -> 32 multiply */
719#define MULS(ra, rb) MUL16(ra, rb)
720
721#define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
722
723#else
724
725static inline int round_sample(int64_t *sum)
726{
727    int sum1;
728    sum1 = (int)((*sum) >> OUT_SHIFT);
729    *sum &= (1<<OUT_SHIFT)-1;
730    return av_clip(sum1, OUT_MIN, OUT_MAX);
731}
732
733#   define MULS(ra, rb) MUL64(ra, rb)
734#   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
735#   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
736#endif
737
738#define SUM8(op, sum, w, p)               \
739{                                         \
740    op(sum, (w)[0 * 64], (p)[0 * 64]);    \
741    op(sum, (w)[1 * 64], (p)[1 * 64]);    \
742    op(sum, (w)[2 * 64], (p)[2 * 64]);    \
743    op(sum, (w)[3 * 64], (p)[3 * 64]);    \
744    op(sum, (w)[4 * 64], (p)[4 * 64]);    \
745    op(sum, (w)[5 * 64], (p)[5 * 64]);    \
746    op(sum, (w)[6 * 64], (p)[6 * 64]);    \
747    op(sum, (w)[7 * 64], (p)[7 * 64]);    \
748}
749
750#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
751{                                               \
752    int tmp;\
753    tmp = p[0 * 64];\
754    op1(sum1, (w1)[0 * 64], tmp);\
755    op2(sum2, (w2)[0 * 64], tmp);\
756    tmp = p[1 * 64];\
757    op1(sum1, (w1)[1 * 64], tmp);\
758    op2(sum2, (w2)[1 * 64], tmp);\
759    tmp = p[2 * 64];\
760    op1(sum1, (w1)[2 * 64], tmp);\
761    op2(sum2, (w2)[2 * 64], tmp);\
762    tmp = p[3 * 64];\
763    op1(sum1, (w1)[3 * 64], tmp);\
764    op2(sum2, (w2)[3 * 64], tmp);\
765    tmp = p[4 * 64];\
766    op1(sum1, (w1)[4 * 64], tmp);\
767    op2(sum2, (w2)[4 * 64], tmp);\
768    tmp = p[5 * 64];\
769    op1(sum1, (w1)[5 * 64], tmp);\
770    op2(sum2, (w2)[5 * 64], tmp);\
771    tmp = p[6 * 64];\
772    op1(sum1, (w1)[6 * 64], tmp);\
773    op2(sum2, (w2)[6 * 64], tmp);\
774    tmp = p[7 * 64];\
775    op1(sum1, (w1)[7 * 64], tmp);\
776    op2(sum2, (w2)[7 * 64], tmp);\
777}
778
779void av_cold ff_mpa_synth_init(MPA_INT *window)
780{
781    int i;
782
783    /* max = 18760, max sum over all 16 coefs : 44736 */
784    for(i=0;i<257;i++) {
785        int v;
786        v = ff_mpa_enwindow[i];
787#if WFRAC_BITS < 16
788        v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
789#endif
790        window[i] = v;
791        if ((i & 63) != 0)
792            v = -v;
793        if (i != 0)
794            window[512 - i] = v;
795    }
796}
797
798/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
799   32 samples. */
800/* XXX: optimize by avoiding ring buffer usage */
801void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
802                         MPA_INT *window, int *dither_state,
803                         OUT_INT *samples, int incr,
804                         int32_t sb_samples[SBLIMIT])
805{
806    register MPA_INT *synth_buf;
807    register const MPA_INT *w, *w2, *p;
808    int j, offset;
809    OUT_INT *samples2;
810#if FRAC_BITS <= 15
811    int32_t tmp[32];
812    int sum, sum2;
813#else
814    int64_t sum, sum2;
815#endif
816
817    offset = *synth_buf_offset;
818    synth_buf = synth_buf_ptr + offset;
819
820#if FRAC_BITS <= 15
821    dct32(tmp, sb_samples);
822    for(j=0;j<32;j++) {
823        /* NOTE: can cause a loss in precision if very high amplitude
824           sound */
825        synth_buf[j] = av_clip_int16(tmp[j]);
826    }
827#else
828    dct32(synth_buf, sb_samples);
829#endif
830
831    /* copy to avoid wrap */
832    memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
833
834    samples2 = samples + 31 * incr;
835    w = window;
836    w2 = window + 31;
837
838    sum = *dither_state;
839    p = synth_buf + 16;
840    SUM8(MACS, sum, w, p);
841    p = synth_buf + 48;
842    SUM8(MLSS, sum, w + 32, p);
843    *samples = round_sample(&sum);
844    samples += incr;
845    w++;
846
847    /* we calculate two samples at the same time to avoid one memory
848       access per two sample */
849    for(j=1;j<16;j++) {
850        sum2 = 0;
851        p = synth_buf + 16 + j;
852        SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
853        p = synth_buf + 48 - j;
854        SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
855
856        *samples = round_sample(&sum);
857        samples += incr;
858        sum += sum2;
859        *samples2 = round_sample(&sum);
860        samples2 -= incr;
861        w++;
862        w2--;
863    }
864
865    p = synth_buf + 32;
866    SUM8(MLSS, sum, w + 32, p);
867    *samples = round_sample(&sum);
868    *dither_state= sum;
869
870    offset = (offset - 32) & 511;
871    *synth_buf_offset = offset;
872}
873
874#define C3 FIXHR(0.86602540378443864676/2)
875
876/* 0.5 / cos(pi*(2*i+1)/36) */
877static const int icos36[9] = {
878    FIXR(0.50190991877167369479),
879    FIXR(0.51763809020504152469), //0
880    FIXR(0.55168895948124587824),
881    FIXR(0.61038729438072803416),
882    FIXR(0.70710678118654752439), //1
883    FIXR(0.87172339781054900991),
884    FIXR(1.18310079157624925896),
885    FIXR(1.93185165257813657349), //2
886    FIXR(5.73685662283492756461),
887};
888
889/* 0.5 / cos(pi*(2*i+1)/36) */
890static const int icos36h[9] = {
891    FIXHR(0.50190991877167369479/2),
892    FIXHR(0.51763809020504152469/2), //0
893    FIXHR(0.55168895948124587824/2),
894    FIXHR(0.61038729438072803416/2),
895    FIXHR(0.70710678118654752439/2), //1
896    FIXHR(0.87172339781054900991/2),
897    FIXHR(1.18310079157624925896/4),
898    FIXHR(1.93185165257813657349/4), //2
899//    FIXHR(5.73685662283492756461),
900};
901
902/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
903   cases. */
904static void imdct12(int *out, int *in)
905{
906    int in0, in1, in2, in3, in4, in5, t1, t2;
907
908    in0= in[0*3];
909    in1= in[1*3] + in[0*3];
910    in2= in[2*3] + in[1*3];
911    in3= in[3*3] + in[2*3];
912    in4= in[4*3] + in[3*3];
913    in5= in[5*3] + in[4*3];
914    in5 += in3;
915    in3 += in1;
916
917    in2= MULH(2*in2, C3);
918    in3= MULH(4*in3, C3);
919
920    t1 = in0 - in4;
921    t2 = MULH(2*(in1 - in5), icos36h[4]);
922
923    out[ 7]=
924    out[10]= t1 + t2;
925    out[ 1]=
926    out[ 4]= t1 - t2;
927
928    in0 += in4>>1;
929    in4 = in0 + in2;
930    in5 += 2*in1;
931    in1 = MULH(in5 + in3, icos36h[1]);
932    out[ 8]=
933    out[ 9]= in4 + in1;
934    out[ 2]=
935    out[ 3]= in4 - in1;
936
937    in0 -= in2;
938    in5 = MULH(2*(in5 - in3), icos36h[7]);
939    out[ 0]=
940    out[ 5]= in0 - in5;
941    out[ 6]=
942    out[11]= in0 + in5;
943}
944
945/* cos(pi*i/18) */
946#define C1 FIXHR(0.98480775301220805936/2)
947#define C2 FIXHR(0.93969262078590838405/2)
948#define C3 FIXHR(0.86602540378443864676/2)
949#define C4 FIXHR(0.76604444311897803520/2)
950#define C5 FIXHR(0.64278760968653932632/2)
951#define C6 FIXHR(0.5/2)
952#define C7 FIXHR(0.34202014332566873304/2)
953#define C8 FIXHR(0.17364817766693034885/2)
954
955
956/* using Lee like decomposition followed by hand coded 9 points DCT */
957static void imdct36(int *out, int *buf, int *in, int *win)
958{
959    int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
960    int tmp[18], *tmp1, *in1;
961
962    for(i=17;i>=1;i--)
963        in[i] += in[i-1];
964    for(i=17;i>=3;i-=2)
965        in[i] += in[i-2];
966
967    for(j=0;j<2;j++) {
968        tmp1 = tmp + j;
969        in1 = in + j;
970#if 0
971//more accurate but slower
972        int64_t t0, t1, t2, t3;
973        t2 = in1[2*4] + in1[2*8] - in1[2*2];
974
975        t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
976        t1 = in1[2*0] - in1[2*6];
977        tmp1[ 6] = t1 - (t2>>1);
978        tmp1[16] = t1 + t2;
979
980        t0 = MUL64(2*(in1[2*2] + in1[2*4]),    C2);
981        t1 = MUL64(   in1[2*4] - in1[2*8] , -2*C8);
982        t2 = MUL64(2*(in1[2*2] + in1[2*8]),   -C4);
983
984        tmp1[10] = (t3 - t0 - t2) >> 32;
985        tmp1[ 2] = (t3 + t0 + t1) >> 32;
986        tmp1[14] = (t3 + t2 - t1) >> 32;
987
988        tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
989        t2 = MUL64(2*(in1[2*1] + in1[2*5]),    C1);
990        t3 = MUL64(   in1[2*5] - in1[2*7] , -2*C7);
991        t0 = MUL64(2*in1[2*3], C3);
992
993        t1 = MUL64(2*(in1[2*1] + in1[2*7]),   -C5);
994
995        tmp1[ 0] = (t2 + t3 + t0) >> 32;
996        tmp1[12] = (t2 + t1 - t0) >> 32;
997        tmp1[ 8] = (t3 - t1 - t0) >> 32;
998#else
999        t2 = in1[2*4] + in1[2*8] - in1[2*2];
1000
1001        t3 = in1[2*0] + (in1[2*6]>>1);
1002        t1 = in1[2*0] - in1[2*6];
1003        tmp1[ 6] = t1 - (t2>>1);
1004        tmp1[16] = t1 + t2;
1005
1006        t0 = MULH(2*(in1[2*2] + in1[2*4]),    C2);
1007        t1 = MULH(   in1[2*4] - in1[2*8] , -2*C8);
1008        t2 = MULH(2*(in1[2*2] + in1[2*8]),   -C4);
1009
1010        tmp1[10] = t3 - t0 - t2;
1011        tmp1[ 2] = t3 + t0 + t1;
1012        tmp1[14] = t3 + t2 - t1;
1013
1014        tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1015        t2 = MULH(2*(in1[2*1] + in1[2*5]),    C1);
1016        t3 = MULH(   in1[2*5] - in1[2*7] , -2*C7);
1017        t0 = MULH(2*in1[2*3], C3);
1018
1019        t1 = MULH(2*(in1[2*1] + in1[2*7]),   -C5);
1020
1021        tmp1[ 0] = t2 + t3 + t0;
1022        tmp1[12] = t2 + t1 - t0;
1023        tmp1[ 8] = t3 - t1 - t0;
1024#endif
1025    }
1026
1027    i = 0;
1028    for(j=0;j<4;j++) {
1029        t0 = tmp[i];
1030        t1 = tmp[i + 2];
1031        s0 = t1 + t0;
1032        s2 = t1 - t0;
1033
1034        t2 = tmp[i + 1];
1035        t3 = tmp[i + 3];
1036        s1 = MULH(2*(t3 + t2), icos36h[j]);
1037        s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
1038
1039        t0 = s0 + s1;
1040        t1 = s0 - s1;
1041        out[(9 + j)*SBLIMIT] =  MULH(t1, win[9 + j]) + buf[9 + j];
1042        out[(8 - j)*SBLIMIT] =  MULH(t1, win[8 - j]) + buf[8 - j];
1043        buf[9 + j] = MULH(t0, win[18 + 9 + j]);
1044        buf[8 - j] = MULH(t0, win[18 + 8 - j]);
1045
1046        t0 = s2 + s3;
1047        t1 = s2 - s3;
1048        out[(9 + 8 - j)*SBLIMIT] =  MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
1049        out[(        j)*SBLIMIT] =  MULH(t1, win[        j]) + buf[        j];
1050        buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
1051        buf[      + j] = MULH(t0, win[18         + j]);
1052        i += 4;
1053    }
1054
1055    s0 = tmp[16];
1056    s1 = MULH(2*tmp[17], icos36h[4]);
1057    t0 = s0 + s1;
1058    t1 = s0 - s1;
1059    out[(9 + 4)*SBLIMIT] =  MULH(t1, win[9 + 4]) + buf[9 + 4];
1060    out[(8 - 4)*SBLIMIT] =  MULH(t1, win[8 - 4]) + buf[8 - 4];
1061    buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
1062    buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
1063}
1064
1065/* return the number of decoded frames */
1066static int mp_decode_layer1(MPADecodeContext *s)
1067{
1068    int bound, i, v, n, ch, j, mant;
1069    uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
1070    uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1071
1072    if (s->mode == MPA_JSTEREO)
1073        bound = (s->mode_ext + 1) * 4;
1074    else
1075        bound = SBLIMIT;
1076
1077    /* allocation bits */
1078    for(i=0;i<bound;i++) {
1079        for(ch=0;ch<s->nb_channels;ch++) {
1080            allocation[ch][i] = get_bits(&s->gb, 4);
1081        }
1082    }
1083    for(i=bound;i<SBLIMIT;i++) {
1084        allocation[0][i] = get_bits(&s->gb, 4);
1085    }
1086
1087    /* scale factors */
1088    for(i=0;i<bound;i++) {
1089        for(ch=0;ch<s->nb_channels;ch++) {
1090            if (allocation[ch][i])
1091                scale_factors[ch][i] = get_bits(&s->gb, 6);
1092        }
1093    }
1094    for(i=bound;i<SBLIMIT;i++) {
1095        if (allocation[0][i]) {
1096            scale_factors[0][i] = get_bits(&s->gb, 6);
1097            scale_factors[1][i] = get_bits(&s->gb, 6);
1098        }
1099    }
1100
1101    /* compute samples */
1102    for(j=0;j<12;j++) {
1103        for(i=0;i<bound;i++) {
1104            for(ch=0;ch<s->nb_channels;ch++) {
1105                n = allocation[ch][i];
1106                if (n) {
1107                    mant = get_bits(&s->gb, n + 1);
1108                    v = l1_unscale(n, mant, scale_factors[ch][i]);
1109                } else {
1110                    v = 0;
1111                }
1112                s->sb_samples[ch][j][i] = v;
1113            }
1114        }
1115        for(i=bound;i<SBLIMIT;i++) {
1116            n = allocation[0][i];
1117            if (n) {
1118                mant = get_bits(&s->gb, n + 1);
1119                v = l1_unscale(n, mant, scale_factors[0][i]);
1120                s->sb_samples[0][j][i] = v;
1121                v = l1_unscale(n, mant, scale_factors[1][i]);
1122                s->sb_samples[1][j][i] = v;
1123            } else {
1124                s->sb_samples[0][j][i] = 0;
1125                s->sb_samples[1][j][i] = 0;
1126            }
1127        }
1128    }
1129    return 12;
1130}
1131
1132static int mp_decode_layer2(MPADecodeContext *s)
1133{
1134    int sblimit; /* number of used subbands */
1135    const unsigned char *alloc_table;
1136    int table, bit_alloc_bits, i, j, ch, bound, v;
1137    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
1138    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
1139    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
1140    int scale, qindex, bits, steps, k, l, m, b;
1141
1142    /* select decoding table */
1143    table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
1144                            s->sample_rate, s->lsf);
1145    sblimit = ff_mpa_sblimit_table[table];
1146    alloc_table = ff_mpa_alloc_tables[table];
1147
1148    if (s->mode == MPA_JSTEREO)
1149        bound = (s->mode_ext + 1) * 4;
1150    else
1151        bound = sblimit;
1152
1153    dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
1154
1155    /* sanity check */
1156    if( bound > sblimit ) bound = sblimit;
1157
1158    /* parse bit allocation */
1159    j = 0;
1160    for(i=0;i<bound;i++) {
1161        bit_alloc_bits = alloc_table[j];
1162        for(ch=0;ch<s->nb_channels;ch++) {
1163            bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1164        }
1165        j += 1 << bit_alloc_bits;
1166    }
1167    for(i=bound;i<sblimit;i++) {
1168        bit_alloc_bits = alloc_table[j];
1169        v = get_bits(&s->gb, bit_alloc_bits);
1170        bit_alloc[0][i] = v;
1171        bit_alloc[1][i] = v;
1172        j += 1 << bit_alloc_bits;
1173    }
1174
1175    /* scale codes */
1176    for(i=0;i<sblimit;i++) {
1177        for(ch=0;ch<s->nb_channels;ch++) {
1178            if (bit_alloc[ch][i])
1179                scale_code[ch][i] = get_bits(&s->gb, 2);
1180        }
1181    }
1182
1183    /* scale factors */
1184    for(i=0;i<sblimit;i++) {
1185        for(ch=0;ch<s->nb_channels;ch++) {
1186            if (bit_alloc[ch][i]) {
1187                sf = scale_factors[ch][i];
1188                switch(scale_code[ch][i]) {
1189                default:
1190                case 0:
1191                    sf[0] = get_bits(&s->gb, 6);
1192                    sf[1] = get_bits(&s->gb, 6);
1193                    sf[2] = get_bits(&s->gb, 6);
1194                    break;
1195                case 2:
1196                    sf[0] = get_bits(&s->gb, 6);
1197                    sf[1] = sf[0];
1198                    sf[2] = sf[0];
1199                    break;
1200                case 1:
1201                    sf[0] = get_bits(&s->gb, 6);
1202                    sf[2] = get_bits(&s->gb, 6);
1203                    sf[1] = sf[0];
1204                    break;
1205                case 3:
1206                    sf[0] = get_bits(&s->gb, 6);
1207                    sf[2] = get_bits(&s->gb, 6);
1208                    sf[1] = sf[2];
1209                    break;
1210                }
1211            }
1212        }
1213    }
1214
1215    /* samples */
1216    for(k=0;k<3;k++) {
1217        for(l=0;l<12;l+=3) {
1218            j = 0;
1219            for(i=0;i<bound;i++) {
1220                bit_alloc_bits = alloc_table[j];
1221                for(ch=0;ch<s->nb_channels;ch++) {
1222                    b = bit_alloc[ch][i];
1223                    if (b) {
1224                        scale = scale_factors[ch][i][k];
1225                        qindex = alloc_table[j+b];
1226                        bits = ff_mpa_quant_bits[qindex];
1227                        if (bits < 0) {
1228                            /* 3 values at the same time */
1229                            v = get_bits(&s->gb, -bits);
1230                            steps = ff_mpa_quant_steps[qindex];
1231                            s->sb_samples[ch][k * 12 + l + 0][i] =
1232                                l2_unscale_group(steps, v % steps, scale);
1233                            v = v / steps;
1234                            s->sb_samples[ch][k * 12 + l + 1][i] =
1235                                l2_unscale_group(steps, v % steps, scale);
1236                            v = v / steps;
1237                            s->sb_samples[ch][k * 12 + l + 2][i] =
1238                                l2_unscale_group(steps, v, scale);
1239                        } else {
1240                            for(m=0;m<3;m++) {
1241                                v = get_bits(&s->gb, bits);
1242                                v = l1_unscale(bits - 1, v, scale);
1243                                s->sb_samples[ch][k * 12 + l + m][i] = v;
1244                            }
1245                        }
1246                    } else {
1247                        s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1248                        s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1249                        s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1250                    }
1251                }
1252                /* next subband in alloc table */
1253                j += 1 << bit_alloc_bits;
1254            }
1255            /* XXX: find a way to avoid this duplication of code */
1256            for(i=bound;i<sblimit;i++) {
1257                bit_alloc_bits = alloc_table[j];
1258                b = bit_alloc[0][i];
1259                if (b) {
1260                    int mant, scale0, scale1;
1261                    scale0 = scale_factors[0][i][k];
1262                    scale1 = scale_factors[1][i][k];
1263                    qindex = alloc_table[j+b];
1264                    bits = ff_mpa_quant_bits[qindex];
1265                    if (bits < 0) {
1266                        /* 3 values at the same time */
1267                        v = get_bits(&s->gb, -bits);
1268                        steps = ff_mpa_quant_steps[qindex];
1269                        mant = v % steps;
1270                        v = v / steps;
1271                        s->sb_samples[0][k * 12 + l + 0][i] =
1272                            l2_unscale_group(steps, mant, scale0);
1273                        s->sb_samples[1][k * 12 + l + 0][i] =
1274                            l2_unscale_group(steps, mant, scale1);
1275                        mant = v % steps;
1276                        v = v / steps;
1277                        s->sb_samples[0][k * 12 + l + 1][i] =
1278                            l2_unscale_group(steps, mant, scale0);
1279                        s->sb_samples[1][k * 12 + l + 1][i] =
1280                            l2_unscale_group(steps, mant, scale1);
1281                        s->sb_samples[0][k * 12 + l + 2][i] =
1282                            l2_unscale_group(steps, v, scale0);
1283                        s->sb_samples[1][k * 12 + l + 2][i] =
1284                            l2_unscale_group(steps, v, scale1);
1285                    } else {
1286                        for(m=0;m<3;m++) {
1287                            mant = get_bits(&s->gb, bits);
1288                            s->sb_samples[0][k * 12 + l + m][i] =
1289                                l1_unscale(bits - 1, mant, scale0);
1290                            s->sb_samples[1][k * 12 + l + m][i] =
1291                                l1_unscale(bits - 1, mant, scale1);
1292                        }
1293                    }
1294                } else {
1295                    s->sb_samples[0][k * 12 + l + 0][i] = 0;
1296                    s->sb_samples[0][k * 12 + l + 1][i] = 0;
1297                    s->sb_samples[0][k * 12 + l + 2][i] = 0;
1298                    s->sb_samples[1][k * 12 + l + 0][i] = 0;
1299                    s->sb_samples[1][k * 12 + l + 1][i] = 0;
1300                    s->sb_samples[1][k * 12 + l + 2][i] = 0;
1301                }
1302                /* next subband in alloc table */
1303                j += 1 << bit_alloc_bits;
1304            }
1305            /* fill remaining samples to zero */
1306            for(i=sblimit;i<SBLIMIT;i++) {
1307                for(ch=0;ch<s->nb_channels;ch++) {
1308                    s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1309                    s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1310                    s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1311                }
1312            }
1313        }
1314    }
1315    return 3 * 12;
1316}
1317
1318#define SPLIT(dst,sf,n)\
1319    if(n==3){\
1320        int m= (sf*171)>>9;\
1321        dst= sf - 3*m;\
1322        sf=m;\
1323    }else if(n==4){\
1324        dst= sf&3;\
1325        sf>>=2;\
1326    }else if(n==5){\
1327        int m= (sf*205)>>10;\
1328        dst= sf - 5*m;\
1329        sf=m;\
1330    }else if(n==6){\
1331        int m= (sf*171)>>10;\
1332        dst= sf - 6*m;\
1333        sf=m;\
1334    }else{\
1335        dst=0;\
1336    }
1337
1338static av_always_inline void lsf_sf_expand(int *slen,
1339                                 int sf, int n1, int n2, int n3)
1340{
1341    SPLIT(slen[3], sf, n3)
1342    SPLIT(slen[2], sf, n2)
1343    SPLIT(slen[1], sf, n1)
1344    slen[0] = sf;
1345}
1346
1347static void exponents_from_scale_factors(MPADecodeContext *s,
1348                                         GranuleDef *g,
1349                                         int16_t *exponents)
1350{
1351    const uint8_t *bstab, *pretab;
1352    int len, i, j, k, l, v0, shift, gain, gains[3];
1353    int16_t *exp_ptr;
1354
1355    exp_ptr = exponents;
1356    gain = g->global_gain - 210;
1357    shift = g->scalefac_scale + 1;
1358
1359    bstab = band_size_long[s->sample_rate_index];
1360    pretab = mpa_pretab[g->preflag];
1361    for(i=0;i<g->long_end;i++) {
1362        v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
1363        len = bstab[i];
1364        for(j=len;j>0;j--)
1365            *exp_ptr++ = v0;
1366    }
1367
1368    if (g->short_start < 13) {
1369        bstab = band_size_short[s->sample_rate_index];
1370        gains[0] = gain - (g->subblock_gain[0] << 3);
1371        gains[1] = gain - (g->subblock_gain[1] << 3);
1372        gains[2] = gain - (g->subblock_gain[2] << 3);
1373        k = g->long_end;
1374        for(i=g->short_start;i<13;i++) {
1375            len = bstab[i];
1376            for(l=0;l<3;l++) {
1377                v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
1378                for(j=len;j>0;j--)
1379                *exp_ptr++ = v0;
1380            }
1381        }
1382    }
1383}
1384
1385/* handle n = 0 too */
1386static inline int get_bitsz(GetBitContext *s, int n)
1387{
1388    if (n == 0)
1389        return 0;
1390    else
1391        return get_bits(s, n);
1392}
1393
1394
1395static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
1396    if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
1397        s->gb= s->in_gb;
1398        s->in_gb.buffer=NULL;
1399        assert((get_bits_count(&s->gb) & 7) == 0);
1400        skip_bits_long(&s->gb, *pos - *end_pos);
1401        *end_pos2=
1402        *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
1403        *pos= get_bits_count(&s->gb);
1404    }
1405}
1406
1407static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1408                          int16_t *exponents, int end_pos2)
1409{
1410    int s_index;
1411    int i;
1412    int last_pos, bits_left;
1413    VLC *vlc;
1414    int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
1415
1416    /* low frequencies (called big values) */
1417    s_index = 0;
1418    for(i=0;i<3;i++) {
1419        int j, k, l, linbits;
1420        j = g->region_size[i];
1421        if (j == 0)
1422            continue;
1423        /* select vlc table */
1424        k = g->table_select[i];
1425        l = mpa_huff_data[k][0];
1426        linbits = mpa_huff_data[k][1];
1427        vlc = &huff_vlc[l];
1428
1429        if(!l){
1430            memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
1431            s_index += 2*j;
1432            continue;
1433        }
1434
1435        /* read huffcode and compute each couple */
1436        for(;j>0;j--) {
1437            int exponent, x, y, v;
1438            int pos= get_bits_count(&s->gb);
1439
1440            if (pos >= end_pos){
1441//                av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1442                switch_buffer(s, &pos, &end_pos, &end_pos2);
1443//                av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
1444                if(pos >= end_pos)
1445                    break;
1446            }
1447            y = get_vlc2(&s->gb, vlc->table, 7, 3);
1448
1449            if(!y){
1450                g->sb_hybrid[s_index  ] =
1451                g->sb_hybrid[s_index+1] = 0;
1452                s_index += 2;
1453                continue;
1454            }
1455
1456            exponent= exponents[s_index];
1457
1458            dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
1459                    i, g->region_size[i] - j, x, y, exponent);
1460            if(y&16){
1461                x = y >> 5;
1462                y = y & 0x0f;
1463                if (x < 15){
1464                    v = expval_table[ exponent ][ x ];
1465//                      v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
1466                }else{
1467                    x += get_bitsz(&s->gb, linbits);
1468                    v = l3_unscale(x, exponent);
1469                }
1470                if (get_bits1(&s->gb))
1471                    v = -v;
1472                g->sb_hybrid[s_index] = v;
1473                if (y < 15){
1474                    v = expval_table[ exponent ][ y ];
1475                }else{
1476                    y += get_bitsz(&s->gb, linbits);
1477                    v = l3_unscale(y, exponent);
1478                }
1479                if (get_bits1(&s->gb))
1480                    v = -v;
1481                g->sb_hybrid[s_index+1] = v;
1482            }else{
1483                x = y >> 5;
1484                y = y & 0x0f;
1485                x += y;
1486                if (x < 15){
1487                    v = expval_table[ exponent ][ x ];
1488                }else{
1489                    x += get_bitsz(&s->gb, linbits);
1490                    v = l3_unscale(x, exponent);
1491                }
1492                if (get_bits1(&s->gb))
1493                    v = -v;
1494                g->sb_hybrid[s_index+!!y] = v;
1495                g->sb_hybrid[s_index+ !y] = 0;
1496            }
1497            s_index+=2;
1498        }
1499    }
1500
1501    /* high frequencies */
1502    vlc = &huff_quad_vlc[g->count1table_select];
1503    last_pos=0;
1504    while (s_index <= 572) {
1505        int pos, code;
1506        pos = get_bits_count(&s->gb);
1507        if (pos >= end_pos) {
1508            if (pos > end_pos2 && last_pos){
1509                /* some encoders generate an incorrect size for this
1510                   part. We must go back into the data */
1511                s_index -= 4;
1512                skip_bits_long(&s->gb, last_pos - pos);
1513                av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
1514                if(s->error_recognition >= FF_ER_COMPLIANT)
1515                    s_index=0;
1516                break;
1517            }
1518//                av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1519            switch_buffer(s, &pos, &end_pos, &end_pos2);
1520//                av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
1521            if(pos >= end_pos)
1522                break;
1523        }
1524        last_pos= pos;
1525
1526        code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
1527        dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
1528        g->sb_hybrid[s_index+0]=
1529        g->sb_hybrid[s_index+1]=
1530        g->sb_hybrid[s_index+2]=
1531        g->sb_hybrid[s_index+3]= 0;
1532        while(code){
1533            static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
1534            int v;
1535            int pos= s_index+idxtab[code];
1536            code ^= 8>>idxtab[code];
1537            v = exp_table[ exponents[pos] ];
1538//            v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
1539            if(get_bits1(&s->gb))
1540                v = -v;
1541            g->sb_hybrid[pos] = v;
1542        }
1543        s_index+=4;
1544    }
1545    /* skip extension bits */
1546    bits_left = end_pos2 - get_bits_count(&s->gb);
1547//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
1548    if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
1549        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1550        s_index=0;
1551    }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
1552        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1553        s_index=0;
1554    }
1555    memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
1556    skip_bits_long(&s->gb, bits_left);
1557
1558    i= get_bits_count(&s->gb);
1559    switch_buffer(s, &i, &end_pos, &end_pos2);
1560
1561    return 0;
1562}
1563
1564/* Reorder short blocks from bitstream order to interleaved order. It
1565   would be faster to do it in parsing, but the code would be far more
1566   complicated */
1567static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1568{
1569    int i, j, len;
1570    int32_t *ptr, *dst, *ptr1;
1571    int32_t tmp[576];
1572
1573    if (g->block_type != 2)
1574        return;
1575
1576    if (g->switch_point) {
1577        if (s->sample_rate_index != 8) {
1578            ptr = g->sb_hybrid + 36;
1579        } else {
1580            ptr = g->sb_hybrid + 48;
1581        }
1582    } else {
1583        ptr = g->sb_hybrid;
1584    }
1585
1586    for(i=g->short_start;i<13;i++) {
1587        len = band_size_short[s->sample_rate_index][i];
1588        ptr1 = ptr;
1589        dst = tmp;
1590        for(j=len;j>0;j--) {
1591            *dst++ = ptr[0*len];
1592            *dst++ = ptr[1*len];
1593            *dst++ = ptr[2*len];
1594            ptr++;
1595        }
1596        ptr+=2*len;
1597        memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1598    }
1599}
1600
1601#define ISQRT2 FIXR(0.70710678118654752440)
1602
1603static void compute_stereo(MPADecodeContext *s,
1604                           GranuleDef *g0, GranuleDef *g1)
1605{
1606    int i, j, k, l;
1607    int32_t v1, v2;
1608    int sf_max, tmp0, tmp1, sf, len, non_zero_found;
1609    int32_t (*is_tab)[16];
1610    int32_t *tab0, *tab1;
1611    int non_zero_found_short[3];
1612
1613    /* intensity stereo */
1614    if (s->mode_ext & MODE_EXT_I_STEREO) {
1615        if (!s->lsf) {
1616            is_tab = is_table;
1617            sf_max = 7;
1618        } else {
1619            is_tab = is_table_lsf[g1->scalefac_compress & 1];
1620            sf_max = 16;
1621        }
1622
1623        tab0 = g0->sb_hybrid + 576;
1624        tab1 = g1->sb_hybrid + 576;
1625
1626        non_zero_found_short[0] = 0;
1627        non_zero_found_short[1] = 0;
1628        non_zero_found_short[2] = 0;
1629        k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1630        for(i = 12;i >= g1->short_start;i--) {
1631            /* for last band, use previous scale factor */
1632            if (i != 11)
1633                k -= 3;
1634            len = band_size_short[s->sample_rate_index][i];
1635            for(l=2;l>=0;l--) {
1636                tab0 -= len;
1637                tab1 -= len;
1638                if (!non_zero_found_short[l]) {
1639                    /* test if non zero band. if so, stop doing i-stereo */
1640                    for(j=0;j<len;j++) {
1641                        if (tab1[j] != 0) {
1642                            non_zero_found_short[l] = 1;
1643                            goto found1;
1644                        }
1645                    }
1646                    sf = g1->scale_factors[k + l];
1647                    if (sf >= sf_max)
1648                        goto found1;
1649
1650                    v1 = is_tab[0][sf];
1651                    v2 = is_tab[1][sf];
1652                    for(j=0;j<len;j++) {
1653                        tmp0 = tab0[j];
1654                        tab0[j] = MULL(tmp0, v1, FRAC_BITS);
1655                        tab1[j] = MULL(tmp0, v2, FRAC_BITS);
1656                    }
1657                } else {
1658                found1:
1659                    if (s->mode_ext & MODE_EXT_MS_STEREO) {
1660                        /* lower part of the spectrum : do ms stereo
1661                           if enabled */
1662                        for(j=0;j<len;j++) {
1663                            tmp0 = tab0[j];
1664                            tmp1 = tab1[j];
1665                            tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1666                            tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1667                        }
1668                    }
1669                }
1670            }
1671        }
1672
1673        non_zero_found = non_zero_found_short[0] |
1674            non_zero_found_short[1] |
1675            non_zero_found_short[2];
1676
1677        for(i = g1->long_end - 1;i >= 0;i--) {
1678            len = band_size_long[s->sample_rate_index][i];
1679            tab0 -= len;
1680            tab1 -= len;
1681            /* test if non zero band. if so, stop doing i-stereo */
1682            if (!non_zero_found) {
1683                for(j=0;j<len;j++) {
1684                    if (tab1[j] != 0) {
1685                        non_zero_found = 1;
1686                        goto found2;
1687                    }
1688                }
1689                /* for last band, use previous scale factor */
1690                k = (i == 21) ? 20 : i;
1691                sf = g1->scale_factors[k];
1692                if (sf >= sf_max)
1693                    goto found2;
1694                v1 = is_tab[0][sf];
1695                v2 = is_tab[1][sf];
1696                for(j=0;j<len;j++) {
1697                    tmp0 = tab0[j];
1698                    tab0[j] = MULL(tmp0, v1, FRAC_BITS);
1699                    tab1[j] = MULL(tmp0, v2, FRAC_BITS);
1700                }
1701            } else {
1702            found2:
1703                if (s->mode_ext & MODE_EXT_MS_STEREO) {
1704                    /* lower part of the spectrum : do ms stereo
1705                       if enabled */
1706                    for(j=0;j<len;j++) {
1707                        tmp0 = tab0[j];
1708                        tmp1 = tab1[j];
1709                        tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1710                        tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1711                    }
1712                }
1713            }
1714        }
1715    } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1716        /* ms stereo ONLY */
1717        /* NOTE: the 1/sqrt(2) normalization factor is included in the
1718           global gain */
1719        tab0 = g0->sb_hybrid;
1720        tab1 = g1->sb_hybrid;
1721        for(i=0;i<576;i++) {
1722            tmp0 = tab0[i];
1723            tmp1 = tab1[i];
1724            tab0[i] = tmp0 + tmp1;
1725            tab1[i] = tmp0 - tmp1;
1726        }
1727    }
1728}
1729
1730static void compute_antialias_integer(MPADecodeContext *s,
1731                              GranuleDef *g)
1732{
1733    int32_t *ptr, *csa;
1734    int n, i;
1735
1736    /* we antialias only "long" bands */
1737    if (g->block_type == 2) {
1738        if (!g->switch_point)
1739            return;
1740        /* XXX: check this for 8000Hz case */
1741        n = 1;
1742    } else {
1743        n = SBLIMIT - 1;
1744    }
1745
1746    ptr = g->sb_hybrid + 18;
1747    for(i = n;i > 0;i--) {
1748        int tmp0, tmp1, tmp2;
1749        csa = &csa_table[0][0];
1750#define INT_AA(j) \
1751            tmp0 = ptr[-1-j];\
1752            tmp1 = ptr[   j];\
1753            tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
1754            ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
1755            ptr[   j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
1756
1757        INT_AA(0)
1758        INT_AA(1)
1759        INT_AA(2)
1760        INT_AA(3)
1761        INT_AA(4)
1762        INT_AA(5)
1763        INT_AA(6)
1764        INT_AA(7)
1765
1766        ptr += 18;
1767    }
1768}
1769
1770static void compute_antialias_float(MPADecodeContext *s,
1771                              GranuleDef *g)
1772{
1773    int32_t *ptr;
1774    int n, i;
1775
1776    /* we antialias only "long" bands */
1777    if (g->block_type == 2) {
1778        if (!g->switch_point)
1779            return;
1780        /* XXX: check this for 8000Hz case */
1781        n = 1;
1782    } else {
1783        n = SBLIMIT - 1;
1784    }
1785
1786    ptr = g->sb_hybrid + 18;
1787    for(i = n;i > 0;i--) {
1788        float tmp0, tmp1;
1789        float *csa = &csa_table_float[0][0];
1790#define FLOAT_AA(j)\
1791        tmp0= ptr[-1-j];\
1792        tmp1= ptr[   j];\
1793        ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
1794        ptr[   j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
1795
1796        FLOAT_AA(0)
1797        FLOAT_AA(1)
1798        FLOAT_AA(2)
1799        FLOAT_AA(3)
1800        FLOAT_AA(4)
1801        FLOAT_AA(5)
1802        FLOAT_AA(6)
1803        FLOAT_AA(7)
1804
1805        ptr += 18;
1806    }
1807}
1808
1809static void compute_imdct(MPADecodeContext *s,
1810                          GranuleDef *g,
1811                          int32_t *sb_samples,
1812                          int32_t *mdct_buf)
1813{
1814    int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
1815    int32_t out2[12];
1816    int i, j, mdct_long_end, v, sblimit;
1817
1818    /* find last non zero block */
1819    ptr = g->sb_hybrid + 576;
1820    ptr1 = g->sb_hybrid + 2 * 18;
1821    while (ptr >= ptr1) {
1822        ptr -= 6;
1823        v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
1824        if (v != 0)
1825            break;
1826    }
1827    sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1828
1829    if (g->block_type == 2) {
1830        /* XXX: check for 8000 Hz */
1831        if (g->switch_point)
1832            mdct_long_end = 2;
1833        else
1834            mdct_long_end = 0;
1835    } else {
1836        mdct_long_end = sblimit;
1837    }
1838
1839    buf = mdct_buf;
1840    ptr = g->sb_hybrid;
1841    for(j=0;j<mdct_long_end;j++) {
1842        /* apply window & overlap with previous buffer */
1843        out_ptr = sb_samples + j;
1844        /* select window */
1845        if (g->switch_point && j < 2)
1846            win1 = mdct_win[0];
1847        else
1848            win1 = mdct_win[g->block_type];
1849        /* select frequency inversion */
1850        win = win1 + ((4 * 36) & -(j & 1));
1851        imdct36(out_ptr, buf, ptr, win);
1852        out_ptr += 18*SBLIMIT;
1853        ptr += 18;
1854        buf += 18;
1855    }
1856    for(j=mdct_long_end;j<sblimit;j++) {
1857        /* select frequency inversion */
1858        win = mdct_win[2] + ((4 * 36) & -(j & 1));
1859        out_ptr = sb_samples + j;
1860
1861        for(i=0; i<6; i++){
1862            *out_ptr = buf[i];
1863            out_ptr += SBLIMIT;
1864        }
1865        imdct12(out2, ptr + 0);
1866        for(i=0;i<6;i++) {
1867            *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
1868            buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
1869            out_ptr += SBLIMIT;
1870        }
1871        imdct12(out2, ptr + 1);
1872        for(i=0;i<6;i++) {
1873            *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
1874            buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
1875            out_ptr += SBLIMIT;
1876        }
1877        imdct12(out2, ptr + 2);
1878        for(i=0;i<6;i++) {
1879            buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
1880            buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
1881            buf[i + 6*2] = 0;
1882        }
1883        ptr += 18;
1884        buf += 18;
1885    }
1886    /* zero bands */
1887    for(j=sblimit;j<SBLIMIT;j++) {
1888        /* overlap */
1889        out_ptr = sb_samples + j;
1890        for(i=0;i<18;i++) {
1891            *out_ptr = buf[i];
1892            buf[i] = 0;
1893            out_ptr += SBLIMIT;
1894        }
1895        buf += 18;
1896    }
1897}
1898
1899/* main layer3 decoding function */
1900static int mp_decode_layer3(MPADecodeContext *s)
1901{
1902    int nb_granules, main_data_begin, private_bits;
1903    int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1904    GranuleDef *g;
1905    int16_t exponents[576];
1906
1907    /* read side info */
1908    if (s->lsf) {
1909        main_data_begin = get_bits(&s->gb, 8);
1910        private_bits = get_bits(&s->gb, s->nb_channels);
1911        nb_granules = 1;
1912    } else {
1913        main_data_begin = get_bits(&s->gb, 9);
1914        if (s->nb_channels == 2)
1915            private_bits = get_bits(&s->gb, 3);
1916        else
1917            private_bits = get_bits(&s->gb, 5);
1918        nb_granules = 2;
1919        for(ch=0;ch<s->nb_channels;ch++) {
1920            s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
1921            s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
1922        }
1923    }
1924
1925    for(gr=0;gr<nb_granules;gr++) {
1926        for(ch=0;ch<s->nb_channels;ch++) {
1927            dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1928            g = &s->granules[ch][gr];
1929            g->part2_3_length = get_bits(&s->gb, 12);
1930            g->big_values = get_bits(&s->gb, 9);
1931            if(g->big_values > 288){
1932                av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1933                return -1;
1934            }
1935
1936            g->global_gain = get_bits(&s->gb, 8);
1937            /* if MS stereo only is selected, we precompute the
1938               1/sqrt(2) renormalization factor */
1939            if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1940                MODE_EXT_MS_STEREO)
1941                g->global_gain -= 2;
1942            if (s->lsf)
1943                g->scalefac_compress = get_bits(&s->gb, 9);
1944            else
1945                g->scalefac_compress = get_bits(&s->gb, 4);
1946            blocksplit_flag = get_bits1(&s->gb);
1947            if (blocksplit_flag) {
1948                g->block_type = get_bits(&s->gb, 2);
1949                if (g->block_type == 0){
1950                    av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1951                    return -1;
1952                }
1953                g->switch_point = get_bits1(&s->gb);
1954                for(i=0;i<2;i++)
1955                    g->table_select[i] = get_bits(&s->gb, 5);
1956                for(i=0;i<3;i++)
1957                    g->subblock_gain[i] = get_bits(&s->gb, 3);
1958                ff_init_short_region(s, g);
1959            } else {
1960                int region_address1, region_address2;
1961                g->block_type = 0;
1962                g->switch_point = 0;
1963                for(i=0;i<3;i++)
1964                    g->table_select[i] = get_bits(&s->gb, 5);
1965                /* compute huffman coded region sizes */
1966                region_address1 = get_bits(&s->gb, 4);
1967                region_address2 = get_bits(&s->gb, 3);
1968                dprintf(s->avctx, "region1=%d region2=%d\n",
1969                        region_address1, region_address2);
1970                ff_init_long_region(s, g, region_address1, region_address2);
1971            }
1972            ff_region_offset2size(g);
1973            ff_compute_band_indexes(s, g);
1974
1975            g->preflag = 0;
1976            if (!s->lsf)
1977                g->preflag = get_bits1(&s->gb);
1978            g->scalefac_scale = get_bits1(&s->gb);
1979            g->count1table_select = get_bits1(&s->gb);
1980            dprintf(s->avctx, "block_type=%d switch_point=%d\n",
1981                    g->block_type, g->switch_point);
1982        }
1983    }
1984
1985  if (!s->adu_mode) {
1986    const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
1987    assert((get_bits_count(&s->gb) & 7) == 0);
1988    /* now we get bits from the main_data_begin offset */
1989    dprintf(s->avctx, "seekback: %d\n", main_data_begin);
1990//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
1991
1992    memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
1993    s->in_gb= s->gb;
1994        init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
1995        skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
1996  }
1997
1998    for(gr=0;gr<nb_granules;gr++) {
1999        for(ch=0;ch<s->nb_channels;ch++) {
2000            g = &s->granules[ch][gr];
2001            if(get_bits_count(&s->gb)<0){
2002                av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
2003                                            main_data_begin, s->last_buf_size, gr);
2004                skip_bits_long(&s->gb, g->part2_3_length);
2005                memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
2006                if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
2007                    skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
2008                    s->gb= s->in_gb;
2009                    s->in_gb.buffer=NULL;
2010                }
2011                continue;
2012            }
2013
2014            bits_pos = get_bits_count(&s->gb);
2015
2016            if (!s->lsf) {
2017                uint8_t *sc;
2018                int slen, slen1, slen2;
2019
2020                /* MPEG1 scale factors */
2021                slen1 = slen_table[0][g->scalefac_compress];
2022                slen2 = slen_table[1][g->scalefac_compress];
2023                dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
2024                if (g->block_type == 2) {
2025                    n = g->switch_point ? 17 : 18;
2026                    j = 0;
2027                    if(slen1){
2028                        for(i=0;i<n;i++)
2029                            g->scale_factors[j++] = get_bits(&s->gb, slen1);
2030                    }else{
2031                        for(i=0;i<n;i++)
2032                            g->scale_factors[j++] = 0;
2033                    }
2034                    if(slen2){
2035                        for(i=0;i<18;i++)
2036                            g->scale_factors[j++] = get_bits(&s->gb, slen2);
2037                        for(i=0;i<3;i++)
2038                            g->scale_factors[j++] = 0;
2039                    }else{
2040                        for(i=0;i<21;i++)
2041                            g->scale_factors[j++] = 0;
2042                    }
2043                } else {
2044                    sc = s->granules[ch][0].scale_factors;
2045                    j = 0;
2046                    for(k=0;k<4;k++) {
2047                        n = (k == 0 ? 6 : 5);
2048                        if ((g->scfsi & (0x8 >> k)) == 0) {
2049                            slen = (k < 2) ? slen1 : slen2;
2050                            if(slen){
2051                                for(i=0;i<n;i++)
2052                                    g->scale_factors[j++] = get_bits(&s->gb, slen);
2053                            }else{
2054                                for(i=0;i<n;i++)
2055                                    g->scale_factors[j++] = 0;
2056                            }
2057                        } else {
2058                            /* simply copy from last granule */
2059                            for(i=0;i<n;i++) {
2060                                g->scale_factors[j] = sc[j];
2061                                j++;
2062                            }
2063                        }
2064                    }
2065                    g->scale_factors[j++] = 0;
2066                }
2067            } else {
2068                int tindex, tindex2, slen[4], sl, sf;
2069
2070                /* LSF scale factors */
2071                if (g->block_type == 2) {
2072                    tindex = g->switch_point ? 2 : 1;
2073                } else {
2074                    tindex = 0;
2075                }
2076                sf = g->scalefac_compress;
2077                if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
2078                    /* intensity stereo case */
2079                    sf >>= 1;
2080                    if (sf < 180) {
2081                        lsf_sf_expand(slen, sf, 6, 6, 0);
2082                        tindex2 = 3;
2083                    } else if (sf < 244) {
2084                        lsf_sf_expand(slen, sf - 180, 4, 4, 0);
2085                        tindex2 = 4;
2086                    } else {
2087                        lsf_sf_expand(slen, sf - 244, 3, 0, 0);
2088                        tindex2 = 5;
2089                    }
2090                } else {
2091                    /* normal case */
2092                    if (sf < 400) {
2093                        lsf_sf_expand(slen, sf, 5, 4, 4);
2094                        tindex2 = 0;
2095                    } else if (sf < 500) {
2096                        lsf_sf_expand(slen, sf - 400, 5, 4, 0);
2097                        tindex2 = 1;
2098                    } else {
2099                        lsf_sf_expand(slen, sf - 500, 3, 0, 0);
2100                        tindex2 = 2;
2101                        g->preflag = 1;
2102                    }
2103                }
2104
2105                j = 0;
2106                for(k=0;k<4;k++) {
2107                    n = lsf_nsf_table[tindex2][tindex][k];
2108                    sl = slen[k];
2109                    if(sl){
2110                        for(i=0;i<n;i++)
2111                            g->scale_factors[j++] = get_bits(&s->gb, sl);
2112                    }else{
2113                        for(i=0;i<n;i++)
2114                            g->scale_factors[j++] = 0;
2115                    }
2116                }
2117                /* XXX: should compute exact size */
2118                for(;j<40;j++)
2119                    g->scale_factors[j] = 0;
2120            }
2121
2122            exponents_from_scale_factors(s, g, exponents);
2123
2124            /* read Huffman coded residue */
2125            huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
2126        } /* ch */
2127
2128        if (s->nb_channels == 2)
2129            compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
2130
2131        for(ch=0;ch<s->nb_channels;ch++) {
2132            g = &s->granules[ch][gr];
2133
2134            reorder_block(s, g);
2135            s->compute_antialias(s, g);
2136            compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
2137        }
2138    } /* gr */
2139    if(get_bits_count(&s->gb)<0)
2140        skip_bits_long(&s->gb, -get_bits_count(&s->gb));
2141    return nb_granules * 18;
2142}
2143
2144static int mp_decode_frame(MPADecodeContext *s,
2145                           OUT_INT *samples, const uint8_t *buf, int buf_size)
2146{
2147    int i, nb_frames, ch;
2148    OUT_INT *samples_ptr;
2149
2150    init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
2151
2152    /* skip error protection field */
2153    if (s->error_protection)
2154        skip_bits(&s->gb, 16);
2155
2156    dprintf(s->avctx, "frame %d:\n", s->frame_count);
2157    switch(s->layer) {
2158    case 1:
2159        s->avctx->frame_size = 384;
2160        nb_frames = mp_decode_layer1(s);
2161        break;
2162    case 2:
2163        s->avctx->frame_size = 1152;
2164        nb_frames = mp_decode_layer2(s);
2165        break;
2166    case 3:
2167        s->avctx->frame_size = s->lsf ? 576 : 1152;
2168    default:
2169        nb_frames = mp_decode_layer3(s);
2170
2171        s->last_buf_size=0;
2172        if(s->in_gb.buffer){
2173            align_get_bits(&s->gb);
2174            i= get_bits_left(&s->gb)>>3;
2175            if(i >= 0 && i <= BACKSTEP_SIZE){
2176                memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
2177                s->last_buf_size=i;
2178            }else
2179                av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
2180            s->gb= s->in_gb;
2181            s->in_gb.buffer= NULL;
2182        }
2183
2184        align_get_bits(&s->gb);
2185        assert((get_bits_count(&s->gb) & 7) == 0);
2186        i= get_bits_left(&s->gb)>>3;
2187
2188        if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
2189            if(i<0)
2190                av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
2191            i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
2192        }
2193        assert(i <= buf_size - HEADER_SIZE && i>= 0);
2194        memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
2195        s->last_buf_size += i;
2196
2197        break;
2198    }
2199
2200    /* apply the synthesis filter */
2201    for(ch=0;ch<s->nb_channels;ch++) {
2202        samples_ptr = samples + ch;
2203        for(i=0;i<nb_frames;i++) {
2204            ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
2205                         ff_mpa_synth_window, &s->dither_state,
2206                         samples_ptr, s->nb_channels,
2207                         s->sb_samples[ch][i]);
2208            samples_ptr += 32 * s->nb_channels;
2209        }
2210    }
2211
2212    return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
2213}
2214
2215static int decode_frame(AVCodecContext * avctx,
2216                        void *data, int *data_size,
2217                        AVPacket *avpkt)
2218{
2219    const uint8_t *buf = avpkt->data;
2220    int buf_size = avpkt->size;
2221    MPADecodeContext *s = avctx->priv_data;
2222    uint32_t header;
2223    int out_size;
2224    OUT_INT *out_samples = data;
2225
2226    if(buf_size < HEADER_SIZE)
2227        return -1;
2228
2229    header = AV_RB32(buf);
2230    if(ff_mpa_check_header(header) < 0){
2231        av_log(avctx, AV_LOG_ERROR, "Header missing\n");
2232        return -1;
2233    }
2234
2235    if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
2236        /* free format: prepare to compute frame size */
2237        s->frame_size = -1;
2238        return -1;
2239    }
2240    /* update codec info */
2241    avctx->channels = s->nb_channels;
2242    avctx->bit_rate = s->bit_rate;
2243    avctx->sub_id = s->layer;
2244
2245    if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
2246        return -1;
2247    *data_size = 0;
2248
2249    if(s->frame_size<=0 || s->frame_size > buf_size){
2250        av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
2251        return -1;
2252    }else if(s->frame_size < buf_size){
2253        av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
2254        buf_size= s->frame_size;
2255    }
2256
2257    out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2258    if(out_size>=0){
2259        *data_size = out_size;
2260        avctx->sample_rate = s->sample_rate;
2261        //FIXME maybe move the other codec info stuff from above here too
2262    }else
2263        av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
2264    s->frame_size = 0;
2265    return buf_size;
2266}
2267
2268static void flush(AVCodecContext *avctx){
2269    MPADecodeContext *s = avctx->priv_data;
2270    memset(s->synth_buf, 0, sizeof(s->synth_buf));
2271    s->last_buf_size= 0;
2272}
2273
2274#if CONFIG_MP3ADU_DECODER
2275static int decode_frame_adu(AVCodecContext * avctx,
2276                        void *data, int *data_size,
2277                        AVPacket *avpkt)
2278{
2279    const uint8_t *buf = avpkt->data;
2280    int buf_size = avpkt->size;
2281    MPADecodeContext *s = avctx->priv_data;
2282    uint32_t header;
2283    int len, out_size;
2284    OUT_INT *out_samples = data;
2285
2286    len = buf_size;
2287
2288    // Discard too short frames
2289    if (buf_size < HEADER_SIZE) {
2290        *data_size = 0;
2291        return buf_size;
2292    }
2293
2294
2295    if (len > MPA_MAX_CODED_FRAME_SIZE)
2296        len = MPA_MAX_CODED_FRAME_SIZE;
2297
2298    // Get header and restore sync word
2299    header = AV_RB32(buf) | 0xffe00000;
2300
2301    if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
2302        *data_size = 0;
2303        return buf_size;
2304    }
2305
2306    ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
2307    /* update codec info */
2308    avctx->sample_rate = s->sample_rate;
2309    avctx->channels = s->nb_channels;
2310    avctx->bit_rate = s->bit_rate;
2311    avctx->sub_id = s->layer;
2312
2313    s->frame_size = len;
2314
2315    if (avctx->parse_only) {
2316        out_size = buf_size;
2317    } else {
2318        out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2319    }
2320
2321    *data_size = out_size;
2322    return buf_size;
2323}
2324#endif /* CONFIG_MP3ADU_DECODER */
2325
2326#if CONFIG_MP3ON4_DECODER
2327
2328/**
2329 * Context for MP3On4 decoder
2330 */
2331typedef struct MP3On4DecodeContext {
2332    int frames;   ///< number of mp3 frames per block (number of mp3 decoder instances)
2333    int syncword; ///< syncword patch
2334    const uint8_t *coff; ///< channels offsets in output buffer
2335    MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
2336} MP3On4DecodeContext;
2337
2338#include "mpeg4audio.h"
2339
2340/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
2341static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5};   /* number of mp3 decoder instances */
2342/* offsets into output buffer, assume output order is FL FR BL BR C LFE */
2343static const uint8_t chan_offset[8][5] = {
2344    {0},
2345    {0},            // C
2346    {0},            // FLR
2347    {2,0},          // C FLR
2348    {2,0,3},        // C FLR BS
2349    {4,0,2},        // C FLR BLRS
2350    {4,0,2,5},      // C FLR BLRS LFE
2351    {4,0,2,6,5},    // C FLR BLRS BLR LFE
2352};
2353
2354
2355static int decode_init_mp3on4(AVCodecContext * avctx)
2356{
2357    MP3On4DecodeContext *s = avctx->priv_data;
2358    MPEG4AudioConfig cfg;
2359    int i;
2360
2361    if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
2362        av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
2363        return -1;
2364    }
2365
2366    ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
2367    if (!cfg.chan_config || cfg.chan_config > 7) {
2368        av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
2369        return -1;
2370    }
2371    s->frames = mp3Frames[cfg.chan_config];
2372    s->coff = chan_offset[cfg.chan_config];
2373    avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
2374
2375    if (cfg.sample_rate < 16000)
2376        s->syncword = 0xffe00000;
2377    else
2378        s->syncword = 0xfff00000;
2379
2380    /* Init the first mp3 decoder in standard way, so that all tables get builded
2381     * We replace avctx->priv_data with the context of the first decoder so that
2382     * decode_init() does not have to be changed.
2383     * Other decoders will be initialized here copying data from the first context
2384     */
2385    // Allocate zeroed memory for the first decoder context
2386    s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
2387    // Put decoder context in place to make init_decode() happy
2388    avctx->priv_data = s->mp3decctx[0];
2389    decode_init(avctx);
2390    // Restore mp3on4 context pointer
2391    avctx->priv_data = s;
2392    s->mp3decctx[0]->adu_mode = 1; // Set adu mode
2393
2394    /* Create a separate codec/context for each frame (first is already ok).
2395     * Each frame is 1 or 2 channels - up to 5 frames allowed
2396     */
2397    for (i = 1; i < s->frames; i++) {
2398        s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
2399        s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
2400        s->mp3decctx[i]->adu_mode = 1;
2401        s->mp3decctx[i]->avctx = avctx;
2402    }
2403
2404    return 0;
2405}
2406
2407
2408static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
2409{
2410    MP3On4DecodeContext *s = avctx->priv_data;
2411    int i;
2412
2413    for (i = 0; i < s->frames; i++)
2414        if (s->mp3decctx[i])
2415            av_free(s->mp3decctx[i]);
2416
2417    return 0;
2418}
2419
2420
2421static int decode_frame_mp3on4(AVCodecContext * avctx,
2422                        void *data, int *data_size,
2423                        AVPacket *avpkt)
2424{
2425    const uint8_t *buf = avpkt->data;
2426    int buf_size = avpkt->size;
2427    MP3On4DecodeContext *s = avctx->priv_data;
2428    MPADecodeContext *m;
2429    int fsize, len = buf_size, out_size = 0;
2430    uint32_t header;
2431    OUT_INT *out_samples = data;
2432    OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
2433    OUT_INT *outptr, *bp;
2434    int fr, j, n;
2435
2436    if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
2437        return -1;
2438
2439    *data_size = 0;
2440    // Discard too short frames
2441    if (buf_size < HEADER_SIZE)
2442        return -1;
2443
2444    // If only one decoder interleave is not needed
2445    outptr = s->frames == 1 ? out_samples : decoded_buf;
2446
2447    avctx->bit_rate = 0;
2448
2449    for (fr = 0; fr < s->frames; fr++) {
2450        fsize = AV_RB16(buf) >> 4;
2451        fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
2452        m = s->mp3decctx[fr];
2453        assert (m != NULL);
2454
2455        header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
2456
2457        if (ff_mpa_check_header(header) < 0) // Bad header, discard block
2458            break;
2459
2460        ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
2461        out_size += mp_decode_frame(m, outptr, buf, fsize);
2462        buf += fsize;
2463        len -= fsize;
2464
2465        if(s->frames > 1) {
2466            n = m->avctx->frame_size*m->nb_channels;
2467            /* interleave output data */
2468            bp = out_samples + s->coff[fr];
2469            if(m->nb_channels == 1) {
2470                for(j = 0; j < n; j++) {
2471                    *bp = decoded_buf[j];
2472                    bp += avctx->channels;
2473                }
2474            } else {
2475                for(j = 0; j < n; j++) {
2476                    bp[0] = decoded_buf[j++];
2477                    bp[1] = decoded_buf[j];
2478                    bp += avctx->channels;
2479                }
2480            }
2481        }
2482        avctx->bit_rate += m->bit_rate;
2483    }
2484
2485    /* update codec info */
2486    avctx->sample_rate = s->mp3decctx[0]->sample_rate;
2487
2488    *data_size = out_size;
2489    return buf_size;
2490}
2491#endif /* CONFIG_MP3ON4_DECODER */
2492
2493#if CONFIG_MP1_DECODER
2494AVCodec mp1_decoder =
2495{
2496    "mp1",
2497    AVMEDIA_TYPE_AUDIO,
2498    CODEC_ID_MP1,
2499    sizeof(MPADecodeContext),
2500    decode_init,
2501    NULL,
2502    NULL,
2503    decode_frame,
2504    CODEC_CAP_PARSE_ONLY,
2505    .flush= flush,
2506    .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
2507};
2508#endif
2509#if CONFIG_MP2_DECODER
2510AVCodec mp2_decoder =
2511{
2512    "mp2",
2513    AVMEDIA_TYPE_AUDIO,
2514    CODEC_ID_MP2,
2515    sizeof(MPADecodeContext),
2516    decode_init,
2517    NULL,
2518    NULL,
2519    decode_frame,
2520    CODEC_CAP_PARSE_ONLY,
2521    .flush= flush,
2522    .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
2523};
2524#endif
2525#if CONFIG_MP3_DECODER
2526AVCodec mp3_decoder =
2527{
2528    "mp3",
2529    AVMEDIA_TYPE_AUDIO,
2530    CODEC_ID_MP3,
2531    sizeof(MPADecodeContext),
2532    decode_init,
2533    NULL,
2534    NULL,
2535    decode_frame,
2536    CODEC_CAP_PARSE_ONLY,
2537    .flush= flush,
2538    .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
2539};
2540#endif
2541#if CONFIG_MP3ADU_DECODER
2542AVCodec mp3adu_decoder =
2543{
2544    "mp3adu",
2545    AVMEDIA_TYPE_AUDIO,
2546    CODEC_ID_MP3ADU,
2547    sizeof(MPADecodeContext),
2548    decode_init,
2549    NULL,
2550    NULL,
2551    decode_frame_adu,
2552    CODEC_CAP_PARSE_ONLY,
2553    .flush= flush,
2554    .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
2555};
2556#endif
2557#if CONFIG_MP3ON4_DECODER
2558AVCodec mp3on4_decoder =
2559{
2560    "mp3on4",
2561    AVMEDIA_TYPE_AUDIO,
2562    CODEC_ID_MP3ON4,
2563    sizeof(MP3On4DecodeContext),
2564    decode_init_mp3on4,
2565    NULL,
2566    decode_close_mp3on4,
2567    decode_frame_mp3on4,
2568    .flush= flush,
2569    .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
2570};
2571#endif
2572