1/*
2 * jfdctint.c
3 *
4 * This file is part of the Independent JPEG Group's software.
5 *
6 * The authors make NO WARRANTY or representation, either express or implied,
7 * with respect to this software, its quality, accuracy, merchantability, or
8 * fitness for a particular purpose.  This software is provided "AS IS", and
9 * you, its user, assume the entire risk as to its quality and accuracy.
10 *
11 * This software is copyright (C) 1991-1996, Thomas G. Lane.
12 * All Rights Reserved except as specified below.
13 *
14 * Permission is hereby granted to use, copy, modify, and distribute this
15 * software (or portions thereof) for any purpose, without fee, subject to
16 * these conditions:
17 * (1) If any part of the source code for this software is distributed, then
18 * this README file must be included, with this copyright and no-warranty
19 * notice unaltered; and any additions, deletions, or changes to the original
20 * files must be clearly indicated in accompanying documentation.
21 * (2) If only executable code is distributed, then the accompanying
22 * documentation must state that "this software is based in part on the work
23 * of the Independent JPEG Group".
24 * (3) Permission for use of this software is granted only if the user accepts
25 * full responsibility for any undesirable consequences; the authors accept
26 * NO LIABILITY for damages of any kind.
27 *
28 * These conditions apply to any software derived from or based on the IJG
29 * code, not just to the unmodified library.  If you use our work, you ought
30 * to acknowledge us.
31 *
32 * Permission is NOT granted for the use of any IJG author's name or company
33 * name in advertising or publicity relating to this software or products
34 * derived from it.  This software may be referred to only as "the Independent
35 * JPEG Group's software".
36 *
37 * We specifically permit and encourage the use of this software as the basis
38 * of commercial products, provided that all warranty or liability claims are
39 * assumed by the product vendor.
40 *
41 * This file contains a slow-but-accurate integer implementation of the
42 * forward DCT (Discrete Cosine Transform).
43 *
44 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
45 * on each column.  Direct algorithms are also available, but they are
46 * much more complex and seem not to be any faster when reduced to code.
47 *
48 * This implementation is based on an algorithm described in
49 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
50 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
51 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
52 * The primary algorithm described there uses 11 multiplies and 29 adds.
53 * We use their alternate method with 12 multiplies and 32 adds.
54 * The advantage of this method is that no data path contains more than one
55 * multiplication; this allows a very simple and accurate implementation in
56 * scaled fixed-point arithmetic, with a minimal number of shifts.
57 */
58
59/**
60 * @file
61 * Independent JPEG Group's slow & accurate dct.
62 */
63
64#include <stdlib.h>
65#include <stdio.h>
66#include "libavutil/common.h"
67#include "dsputil.h"
68
69#define DCTSIZE 8
70#define BITS_IN_JSAMPLE 8
71#define GLOBAL(x) x
72#define RIGHT_SHIFT(x, n) ((x) >> (n))
73#define MULTIPLY16C16(var,const) ((var)*(const))
74
75#if 1 //def USE_ACCURATE_ROUNDING
76#define DESCALE(x,n)  RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
77#else
78#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
79#endif
80
81
82/*
83 * This module is specialized to the case DCTSIZE = 8.
84 */
85
86#if DCTSIZE != 8
87  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
88#endif
89
90
91/*
92 * The poop on this scaling stuff is as follows:
93 *
94 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
95 * larger than the true DCT outputs.  The final outputs are therefore
96 * a factor of N larger than desired; since N=8 this can be cured by
97 * a simple right shift at the end of the algorithm.  The advantage of
98 * this arrangement is that we save two multiplications per 1-D DCT,
99 * because the y0 and y4 outputs need not be divided by sqrt(N).
100 * In the IJG code, this factor of 8 is removed by the quantization step
101 * (in jcdctmgr.c), NOT in this module.
102 *
103 * We have to do addition and subtraction of the integer inputs, which
104 * is no problem, and multiplication by fractional constants, which is
105 * a problem to do in integer arithmetic.  We multiply all the constants
106 * by CONST_SCALE and convert them to integer constants (thus retaining
107 * CONST_BITS bits of precision in the constants).  After doing a
108 * multiplication we have to divide the product by CONST_SCALE, with proper
109 * rounding, to produce the correct output.  This division can be done
110 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
111 * as long as possible so that partial sums can be added together with
112 * full fractional precision.
113 *
114 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
115 * they are represented to better-than-integral precision.  These outputs
116 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
117 * with the recommended scaling.  (For 12-bit sample data, the intermediate
118 * array is int32_t anyway.)
119 *
120 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
121 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
122 * shows that the values given below are the most effective.
123 */
124
125#if BITS_IN_JSAMPLE == 8
126#define CONST_BITS  13
127#define PASS1_BITS  4   /* set this to 2 if 16x16 multiplies are faster */
128#else
129#define CONST_BITS  13
130#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
131#endif
132
133/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
134 * causing a lot of useless floating-point operations at run time.
135 * To get around this we use the following pre-calculated constants.
136 * If you change CONST_BITS you may want to add appropriate values.
137 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
138 */
139
140#if CONST_BITS == 13
141#define FIX_0_298631336  ((int32_t)  2446)      /* FIX(0.298631336) */
142#define FIX_0_390180644  ((int32_t)  3196)      /* FIX(0.390180644) */
143#define FIX_0_541196100  ((int32_t)  4433)      /* FIX(0.541196100) */
144#define FIX_0_765366865  ((int32_t)  6270)      /* FIX(0.765366865) */
145#define FIX_0_899976223  ((int32_t)  7373)      /* FIX(0.899976223) */
146#define FIX_1_175875602  ((int32_t)  9633)      /* FIX(1.175875602) */
147#define FIX_1_501321110  ((int32_t)  12299)     /* FIX(1.501321110) */
148#define FIX_1_847759065  ((int32_t)  15137)     /* FIX(1.847759065) */
149#define FIX_1_961570560  ((int32_t)  16069)     /* FIX(1.961570560) */
150#define FIX_2_053119869  ((int32_t)  16819)     /* FIX(2.053119869) */
151#define FIX_2_562915447  ((int32_t)  20995)     /* FIX(2.562915447) */
152#define FIX_3_072711026  ((int32_t)  25172)     /* FIX(3.072711026) */
153#else
154#define FIX_0_298631336  FIX(0.298631336)
155#define FIX_0_390180644  FIX(0.390180644)
156#define FIX_0_541196100  FIX(0.541196100)
157#define FIX_0_765366865  FIX(0.765366865)
158#define FIX_0_899976223  FIX(0.899976223)
159#define FIX_1_175875602  FIX(1.175875602)
160#define FIX_1_501321110  FIX(1.501321110)
161#define FIX_1_847759065  FIX(1.847759065)
162#define FIX_1_961570560  FIX(1.961570560)
163#define FIX_2_053119869  FIX(2.053119869)
164#define FIX_2_562915447  FIX(2.562915447)
165#define FIX_3_072711026  FIX(3.072711026)
166#endif
167
168
169/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
170 * For 8-bit samples with the recommended scaling, all the variable
171 * and constant values involved are no more than 16 bits wide, so a
172 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
173 * For 12-bit samples, a full 32-bit multiplication will be needed.
174 */
175
176#if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
177#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
178#else
179#define MULTIPLY(var,const)  ((var) * (const))
180#endif
181
182
183static av_always_inline void row_fdct(DCTELEM * data){
184  int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
185  int_fast32_t tmp10, tmp11, tmp12, tmp13;
186  int_fast32_t z1, z2, z3, z4, z5;
187  DCTELEM *dataptr;
188  int ctr;
189
190  /* Pass 1: process rows. */
191  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
192  /* furthermore, we scale the results by 2**PASS1_BITS. */
193
194  dataptr = data;
195  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
196    tmp0 = dataptr[0] + dataptr[7];
197    tmp7 = dataptr[0] - dataptr[7];
198    tmp1 = dataptr[1] + dataptr[6];
199    tmp6 = dataptr[1] - dataptr[6];
200    tmp2 = dataptr[2] + dataptr[5];
201    tmp5 = dataptr[2] - dataptr[5];
202    tmp3 = dataptr[3] + dataptr[4];
203    tmp4 = dataptr[3] - dataptr[4];
204
205    /* Even part per LL&M figure 1 --- note that published figure is faulty;
206     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
207     */
208
209    tmp10 = tmp0 + tmp3;
210    tmp13 = tmp0 - tmp3;
211    tmp11 = tmp1 + tmp2;
212    tmp12 = tmp1 - tmp2;
213
214    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
215    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
216
217    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
218    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
219                                   CONST_BITS-PASS1_BITS);
220    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
221                                   CONST_BITS-PASS1_BITS);
222
223    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
224     * cK represents cos(K*pi/16).
225     * i0..i3 in the paper are tmp4..tmp7 here.
226     */
227
228    z1 = tmp4 + tmp7;
229    z2 = tmp5 + tmp6;
230    z3 = tmp4 + tmp6;
231    z4 = tmp5 + tmp7;
232    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
233
234    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
235    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
236    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
237    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
238    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
239    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
240    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
241    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
242
243    z3 += z5;
244    z4 += z5;
245
246    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
247    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
248    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
249    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
250
251    dataptr += DCTSIZE;         /* advance pointer to next row */
252  }
253}
254
255/*
256 * Perform the forward DCT on one block of samples.
257 */
258
259GLOBAL(void)
260ff_jpeg_fdct_islow (DCTELEM * data)
261{
262  int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
263  int_fast32_t tmp10, tmp11, tmp12, tmp13;
264  int_fast32_t z1, z2, z3, z4, z5;
265  DCTELEM *dataptr;
266  int ctr;
267
268  row_fdct(data);
269
270  /* Pass 2: process columns.
271   * We remove the PASS1_BITS scaling, but leave the results scaled up
272   * by an overall factor of 8.
273   */
274
275  dataptr = data;
276  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
277    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
278    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
279    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
280    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
281    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
282    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
283    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
284    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
285
286    /* Even part per LL&M figure 1 --- note that published figure is faulty;
287     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
288     */
289
290    tmp10 = tmp0 + tmp3;
291    tmp13 = tmp0 - tmp3;
292    tmp11 = tmp1 + tmp2;
293    tmp12 = tmp1 - tmp2;
294
295    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
296    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
297
298    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
299    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
300                                           CONST_BITS+PASS1_BITS);
301    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
302                                           CONST_BITS+PASS1_BITS);
303
304    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
305     * cK represents cos(K*pi/16).
306     * i0..i3 in the paper are tmp4..tmp7 here.
307     */
308
309    z1 = tmp4 + tmp7;
310    z2 = tmp5 + tmp6;
311    z3 = tmp4 + tmp6;
312    z4 = tmp5 + tmp7;
313    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
314
315    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
316    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
317    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
318    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
319    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
320    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
321    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
322    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
323
324    z3 += z5;
325    z4 += z5;
326
327    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
328                                           CONST_BITS+PASS1_BITS);
329    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
330                                           CONST_BITS+PASS1_BITS);
331    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
332                                           CONST_BITS+PASS1_BITS);
333    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
334                                           CONST_BITS+PASS1_BITS);
335
336    dataptr++;                  /* advance pointer to next column */
337  }
338}
339
340/*
341 * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
342 * on the rows and then, instead of doing even and odd, part on the colums
343 * you do even part two times.
344 */
345GLOBAL(void)
346ff_fdct248_islow (DCTELEM * data)
347{
348  int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
349  int_fast32_t tmp10, tmp11, tmp12, tmp13;
350  int_fast32_t z1;
351  DCTELEM *dataptr;
352  int ctr;
353
354  row_fdct(data);
355
356  /* Pass 2: process columns.
357   * We remove the PASS1_BITS scaling, but leave the results scaled up
358   * by an overall factor of 8.
359   */
360
361  dataptr = data;
362  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
363     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
364     tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
365     tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
366     tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
367     tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
368     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
369     tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
370     tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
371
372     tmp10 = tmp0 + tmp3;
373     tmp11 = tmp1 + tmp2;
374     tmp12 = tmp1 - tmp2;
375     tmp13 = tmp0 - tmp3;
376
377     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
378     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
379
380     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
381     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
382                                            CONST_BITS+PASS1_BITS);
383     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
384                                            CONST_BITS+PASS1_BITS);
385
386     tmp10 = tmp4 + tmp7;
387     tmp11 = tmp5 + tmp6;
388     tmp12 = tmp5 - tmp6;
389     tmp13 = tmp4 - tmp7;
390
391     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
392     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
393
394     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
395     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
396                                            CONST_BITS+PASS1_BITS);
397     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
398                                            CONST_BITS+PASS1_BITS);
399
400     dataptr++;                 /* advance pointer to next column */
401  }
402}
403