1/*
2 * IMC compatible decoder
3 * Copyright (c) 2002-2004 Maxim Poliakovski
4 * Copyright (c) 2006 Benjamin Larsson
5 * Copyright (c) 2006 Konstantin Shishkov
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/**
25 *  @file
26 *  IMC - Intel Music Coder
27 *  A mdct based codec using a 256 points large transform
28 *  divied into 32 bands with some mix of scale factors.
29 *  Only mono is supported.
30 *
31 */
32
33
34#include <math.h>
35#include <stddef.h>
36#include <stdio.h>
37
38#define ALT_BITSTREAM_READER
39#include "avcodec.h"
40#include "get_bits.h"
41#include "dsputil.h"
42#include "fft.h"
43
44#include "imcdata.h"
45
46#define IMC_BLOCK_SIZE 64
47#define IMC_FRAME_ID 0x21
48#define BANDS 32
49#define COEFFS 256
50
51typedef struct {
52    float old_floor[BANDS];
53    float flcoeffs1[BANDS];
54    float flcoeffs2[BANDS];
55    float flcoeffs3[BANDS];
56    float flcoeffs4[BANDS];
57    float flcoeffs5[BANDS];
58    float flcoeffs6[BANDS];
59    float CWdecoded[COEFFS];
60
61    /** MDCT tables */
62    //@{
63    float mdct_sine_window[COEFFS];
64    float post_cos[COEFFS];
65    float post_sin[COEFFS];
66    float pre_coef1[COEFFS];
67    float pre_coef2[COEFFS];
68    float last_fft_im[COEFFS];
69    //@}
70
71    int bandWidthT[BANDS];     ///< codewords per band
72    int bitsBandT[BANDS];      ///< how many bits per codeword in band
73    int CWlengthT[COEFFS];     ///< how many bits in each codeword
74    int levlCoeffBuf[BANDS];
75    int bandFlagsBuf[BANDS];   ///< flags for each band
76    int sumLenArr[BANDS];      ///< bits for all coeffs in band
77    int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
78    int skipFlagBits[BANDS];   ///< bits used to code skip flags
79    int skipFlagCount[BANDS];  ///< skipped coeffients per band
80    int skipFlags[COEFFS];     ///< skip coefficient decoding or not
81    int codewords[COEFFS];     ///< raw codewords read from bitstream
82    float sqrt_tab[30];
83    GetBitContext gb;
84    int decoder_reset;
85    float one_div_log2;
86
87    DSPContext dsp;
88    FFTContext fft;
89    DECLARE_ALIGNED(16, FFTComplex, samples)[COEFFS/2];
90    DECLARE_ALIGNED(16, float, out_samples)[COEFFS];
91} IMCContext;
92
93static VLC huffman_vlc[4][4];
94
95#define VLC_TABLES_SIZE 9512
96
97static const int vlc_offsets[17] = {
98    0,     640, 1156, 1732, 2308, 2852, 3396, 3924,
99    4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE};
100
101static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
102
103static av_cold int imc_decode_init(AVCodecContext * avctx)
104{
105    int i, j;
106    IMCContext *q = avctx->priv_data;
107    double r1, r2;
108
109    q->decoder_reset = 1;
110
111    for(i = 0; i < BANDS; i++)
112        q->old_floor[i] = 1.0;
113
114    /* Build mdct window, a simple sine window normalized with sqrt(2) */
115    ff_sine_window_init(q->mdct_sine_window, COEFFS);
116    for(i = 0; i < COEFFS; i++)
117        q->mdct_sine_window[i] *= sqrt(2.0);
118    for(i = 0; i < COEFFS/2; i++){
119        q->post_cos[i] = cos(i / 256.0 * M_PI);
120        q->post_sin[i] = sin(i / 256.0 * M_PI);
121
122        r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
123        r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
124
125        if (i & 0x1)
126        {
127            q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
128            q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
129        }
130        else
131        {
132            q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
133            q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
134        }
135
136        q->last_fft_im[i] = 0;
137    }
138
139    /* Generate a square root table */
140
141    for(i = 0; i < 30; i++) {
142        q->sqrt_tab[i] = sqrt(i);
143    }
144
145    /* initialize the VLC tables */
146    for(i = 0; i < 4 ; i++) {
147        for(j = 0; j < 4; j++) {
148            huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
149            huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
150            init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
151                     imc_huffman_lens[i][j], 1, 1,
152                     imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
153        }
154    }
155    q->one_div_log2 = 1/log(2);
156
157    ff_fft_init(&q->fft, 7, 1);
158    dsputil_init(&q->dsp, avctx);
159    avctx->sample_fmt = SAMPLE_FMT_S16;
160    avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
161    return 0;
162}
163
164static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT,
165                                float* flcoeffs3, float* flcoeffs5)
166{
167    float   workT1[BANDS];
168    float   workT2[BANDS];
169    float   workT3[BANDS];
170    float   snr_limit = 1.e-30;
171    float   accum = 0.0;
172    int i, cnt2;
173
174    for(i = 0; i < BANDS; i++) {
175        flcoeffs5[i] = workT2[i] = 0.0;
176        if (bandWidthT[i]){
177            workT1[i] = flcoeffs1[i] * flcoeffs1[i];
178            flcoeffs3[i] = 2.0 * flcoeffs2[i];
179        } else {
180            workT1[i] = 0.0;
181            flcoeffs3[i] = -30000.0;
182        }
183        workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
184        if (workT3[i] <= snr_limit)
185            workT3[i] = 0.0;
186    }
187
188    for(i = 0; i < BANDS; i++) {
189        for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
190            flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
191        workT2[cnt2-1] = workT2[cnt2-1] + workT3[i];
192    }
193
194    for(i = 1; i < BANDS; i++) {
195        accum = (workT2[i-1] + accum) * imc_weights1[i-1];
196        flcoeffs5[i] += accum;
197    }
198
199    for(i = 0; i < BANDS; i++)
200        workT2[i] = 0.0;
201
202    for(i = 0; i < BANDS; i++) {
203        for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--)
204            flcoeffs5[cnt2] += workT3[i];
205        workT2[cnt2+1] += workT3[i];
206    }
207
208    accum = 0.0;
209
210    for(i = BANDS-2; i >= 0; i--) {
211        accum = (workT2[i+1] + accum) * imc_weights2[i];
212        flcoeffs5[i] += accum;
213        //there is missing code here, but it seems to never be triggered
214    }
215}
216
217
218static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs)
219{
220    int i;
221    VLC *hufftab[4];
222    int start = 0;
223    const uint8_t *cb_sel;
224    int s;
225
226    s = stream_format_code >> 1;
227    hufftab[0] = &huffman_vlc[s][0];
228    hufftab[1] = &huffman_vlc[s][1];
229    hufftab[2] = &huffman_vlc[s][2];
230    hufftab[3] = &huffman_vlc[s][3];
231    cb_sel = imc_cb_select[s];
232
233    if(stream_format_code & 4)
234        start = 1;
235    if(start)
236        levlCoeffs[0] = get_bits(&q->gb, 7);
237    for(i = start; i < BANDS; i++){
238        levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
239        if(levlCoeffs[i] == 17)
240            levlCoeffs[i] += get_bits(&q->gb, 4);
241    }
242}
243
244static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1,
245                                         float* flcoeffs2)
246{
247    int i, level;
248    float tmp, tmp2;
249    //maybe some frequency division thingy
250
251    flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
252    flcoeffs2[0] = log(flcoeffs1[0])/log(2);
253    tmp = flcoeffs1[0];
254    tmp2 = flcoeffs2[0];
255
256    for(i = 1; i < BANDS; i++) {
257        level = levlCoeffBuf[i];
258        if (level == 16) {
259            flcoeffs1[i] = 1.0;
260            flcoeffs2[i] = 0.0;
261        } else {
262            if (level < 17)
263                level -=7;
264            else if (level <= 24)
265                level -=32;
266            else
267                level -=16;
268
269            tmp  *= imc_exp_tab[15 + level];
270            tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
271            flcoeffs1[i] = tmp;
272            flcoeffs2[i] = tmp2;
273        }
274    }
275}
276
277
278static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1,
279                                          float* flcoeffs2) {
280    int i;
281        //FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
282        //      and flcoeffs2 old scale factors
283        //      might be incomplete due to a missing table that is in the binary code
284    for(i = 0; i < BANDS; i++) {
285        flcoeffs1[i] = 0;
286        if(levlCoeffBuf[i] < 16) {
287            flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
288            flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
289        } else {
290            flcoeffs1[i] = old_floor[i];
291        }
292    }
293}
294
295/**
296 * Perform bit allocation depending on bits available
297 */
298static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) {
299    int i, j;
300    const float limit = -1.e20;
301    float highest = 0.0;
302    int indx;
303    int t1 = 0;
304    int t2 = 1;
305    float summa = 0.0;
306    int iacc = 0;
307    int summer = 0;
308    int rres, cwlen;
309    float lowest = 1.e10;
310    int low_indx = 0;
311    float workT[32];
312    int flg;
313    int found_indx = 0;
314
315    for(i = 0; i < BANDS; i++)
316        highest = FFMAX(highest, q->flcoeffs1[i]);
317
318    for(i = 0; i < BANDS-1; i++) {
319        q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
320    }
321    q->flcoeffs4[BANDS - 1] = limit;
322
323    highest = highest * 0.25;
324
325    for(i = 0; i < BANDS; i++) {
326        indx = -1;
327        if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i])
328            indx = 0;
329
330        if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i])
331            indx = 1;
332
333        if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i])
334            indx = 2;
335
336        if (indx == -1)
337            return -1;
338
339        q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
340    }
341
342    if (stream_format_code & 0x2) {
343        q->flcoeffs4[0] = limit;
344        q->flcoeffs4[1] = limit;
345        q->flcoeffs4[2] = limit;
346        q->flcoeffs4[3] = limit;
347    }
348
349    for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) {
350        iacc += q->bandWidthT[i];
351        summa += q->bandWidthT[i] * q->flcoeffs4[i];
352    }
353    q->bandWidthT[BANDS-1] = 0;
354    summa = (summa * 0.5 - freebits) / iacc;
355
356
357    for(i = 0; i < BANDS/2; i++) {
358        rres = summer - freebits;
359        if((rres >= -8) && (rres <= 8)) break;
360
361        summer = 0;
362        iacc = 0;
363
364        for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) {
365            cwlen = av_clip((int)((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
366
367            q->bitsBandT[j] = cwlen;
368            summer += q->bandWidthT[j] * cwlen;
369
370            if (cwlen > 0)
371                iacc += q->bandWidthT[j];
372        }
373
374        flg = t2;
375        t2 = 1;
376        if (freebits < summer)
377            t2 = -1;
378        if (i == 0)
379            flg = t2;
380        if(flg != t2)
381            t1++;
382
383        summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
384    }
385
386    for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) {
387        for(j = band_tab[i]; j < band_tab[i+1]; j++)
388            q->CWlengthT[j] = q->bitsBandT[i];
389    }
390
391    if (freebits > summer) {
392        for(i = 0; i < BANDS; i++) {
393            workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
394        }
395
396        highest = 0.0;
397
398        do{
399            if (highest <= -1.e20)
400                break;
401
402            found_indx = 0;
403            highest = -1.e20;
404
405            for(i = 0; i < BANDS; i++) {
406                if (workT[i] > highest) {
407                    highest = workT[i];
408                    found_indx = i;
409                }
410            }
411
412            if (highest > -1.e20) {
413                workT[found_indx] -= 2.0;
414                if (++(q->bitsBandT[found_indx]) == 6)
415                    workT[found_indx] = -1.e20;
416
417                for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){
418                    q->CWlengthT[j]++;
419                    summer++;
420                }
421            }
422        }while (freebits > summer);
423    }
424    if (freebits < summer) {
425        for(i = 0; i < BANDS; i++) {
426            workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20;
427        }
428        if (stream_format_code & 0x2) {
429            workT[0] = 1.e20;
430            workT[1] = 1.e20;
431            workT[2] = 1.e20;
432            workT[3] = 1.e20;
433        }
434        while (freebits < summer){
435            lowest = 1.e10;
436            low_indx = 0;
437            for(i = 0; i < BANDS; i++) {
438                if (workT[i] < lowest) {
439                    lowest = workT[i];
440                    low_indx = i;
441                }
442            }
443            //if(lowest >= 1.e10) break;
444            workT[low_indx] = lowest + 2.0;
445
446            if (!(--q->bitsBandT[low_indx]))
447                workT[low_indx] = 1.e20;
448
449            for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){
450                if(q->CWlengthT[j] > 0){
451                    q->CWlengthT[j]--;
452                    summer--;
453                }
454            }
455        }
456    }
457    return 0;
458}
459
460static void imc_get_skip_coeff(IMCContext* q) {
461    int i, j;
462
463    memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
464    memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
465    for(i = 0; i < BANDS; i++) {
466        if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
467            continue;
468
469        if (!q->skipFlagRaw[i]) {
470            q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
471
472            for(j = band_tab[i]; j < band_tab[i+1]; j++) {
473                if ((q->skipFlags[j] = get_bits1(&q->gb)))
474                    q->skipFlagCount[i]++;
475            }
476        } else {
477            for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) {
478                if(!get_bits1(&q->gb)){//0
479                    q->skipFlagBits[i]++;
480                    q->skipFlags[j]=1;
481                    q->skipFlags[j+1]=1;
482                    q->skipFlagCount[i] += 2;
483                }else{
484                    if(get_bits1(&q->gb)){//11
485                        q->skipFlagBits[i] +=2;
486                        q->skipFlags[j]=0;
487                        q->skipFlags[j+1]=1;
488                        q->skipFlagCount[i]++;
489                    }else{
490                        q->skipFlagBits[i] +=3;
491                        q->skipFlags[j+1]=0;
492                        if(!get_bits1(&q->gb)){//100
493                            q->skipFlags[j]=1;
494                            q->skipFlagCount[i]++;
495                        }else{//101
496                            q->skipFlags[j]=0;
497                        }
498                    }
499                }
500            }
501
502            if (j < band_tab[i+1]) {
503                q->skipFlagBits[i]++;
504                if ((q->skipFlags[j] = get_bits1(&q->gb)))
505                    q->skipFlagCount[i]++;
506            }
507        }
508    }
509}
510
511/**
512 * Increase highest' band coefficient sizes as some bits won't be used
513 */
514static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
515    float workT[32];
516    int corrected = 0;
517    int i, j;
518    float highest = 0;
519    int found_indx=0;
520
521    for(i = 0; i < BANDS; i++) {
522        workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
523    }
524
525    while (corrected < summer) {
526        if(highest <= -1.e20)
527            break;
528
529        highest = -1.e20;
530
531        for(i = 0; i < BANDS; i++) {
532            if (workT[i] > highest) {
533                highest = workT[i];
534                found_indx = i;
535            }
536        }
537
538        if (highest > -1.e20) {
539            workT[found_indx] -= 2.0;
540            if (++(q->bitsBandT[found_indx]) == 6)
541                workT[found_indx] = -1.e20;
542
543            for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
544                if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
545                    q->CWlengthT[j]++;
546                    corrected++;
547                }
548            }
549        }
550    }
551}
552
553static void imc_imdct256(IMCContext *q) {
554    int i;
555    float re, im;
556
557    /* prerotation */
558    for(i=0; i < COEFFS/2; i++){
559        q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) -
560                           (q->pre_coef2[i] * q->CWdecoded[i*2]);
561        q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) -
562                           (q->pre_coef1[i] * q->CWdecoded[i*2]);
563    }
564
565    /* FFT */
566    ff_fft_permute(&q->fft, q->samples);
567    ff_fft_calc (&q->fft, q->samples);
568
569    /* postrotation, window and reorder */
570    for(i = 0; i < COEFFS/2; i++){
571        re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
572        im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]);
573        q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re);
574        q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re);
575        q->last_fft_im[i] = im;
576    }
577}
578
579static int inverse_quant_coeff (IMCContext* q, int stream_format_code) {
580    int i, j;
581    int middle_value, cw_len, max_size;
582    const float* quantizer;
583
584    for(i = 0; i < BANDS; i++) {
585        for(j = band_tab[i]; j < band_tab[i+1]; j++) {
586            q->CWdecoded[j] = 0;
587            cw_len = q->CWlengthT[j];
588
589            if (cw_len <= 0 || q->skipFlags[j])
590                continue;
591
592            max_size = 1 << cw_len;
593            middle_value = max_size >> 1;
594
595            if (q->codewords[j] >= max_size || q->codewords[j] < 0)
596                return -1;
597
598            if (cw_len >= 4){
599                quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
600                if (q->codewords[j] >= middle_value)
601                    q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
602                else
603                    q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
604            }else{
605                quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
606                if (q->codewords[j] >= middle_value)
607                    q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
608                else
609                    q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
610            }
611        }
612    }
613    return 0;
614}
615
616
617static int imc_get_coeffs (IMCContext* q) {
618    int i, j, cw_len, cw;
619
620    for(i = 0; i < BANDS; i++) {
621        if(!q->sumLenArr[i]) continue;
622        if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
623            for(j = band_tab[i]; j < band_tab[i+1]; j++) {
624                cw_len = q->CWlengthT[j];
625                cw = 0;
626
627                if (get_bits_count(&q->gb) + cw_len > 512){
628//av_log(NULL,0,"Band %i coeff %i cw_len %i\n",i,j,cw_len);
629                    return -1;
630                }
631
632                if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
633                    cw = get_bits(&q->gb, cw_len);
634
635                q->codewords[j] = cw;
636            }
637        }
638    }
639    return 0;
640}
641
642static int imc_decode_frame(AVCodecContext * avctx,
643                            void *data, int *data_size,
644                            AVPacket *avpkt)
645{
646    const uint8_t *buf = avpkt->data;
647    int buf_size = avpkt->size;
648
649    IMCContext *q = avctx->priv_data;
650
651    int stream_format_code;
652    int imc_hdr, i, j;
653    int flag;
654    int bits, summer;
655    int counter, bitscount;
656    uint16_t buf16[IMC_BLOCK_SIZE / 2];
657
658    if (buf_size < IMC_BLOCK_SIZE) {
659        av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
660        return -1;
661    }
662    for(i = 0; i < IMC_BLOCK_SIZE / 2; i++)
663        buf16[i] = bswap_16(((const uint16_t*)buf)[i]);
664
665    init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
666
667    /* Check the frame header */
668    imc_hdr = get_bits(&q->gb, 9);
669    if (imc_hdr != IMC_FRAME_ID) {
670        av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
671        av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
672        return -1;
673    }
674    stream_format_code = get_bits(&q->gb, 3);
675
676    if(stream_format_code & 1){
677        av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
678        return -1;
679    }
680
681//    av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
682
683    if (stream_format_code & 0x04)
684        q->decoder_reset = 1;
685
686    if(q->decoder_reset) {
687        memset(q->out_samples, 0, sizeof(q->out_samples));
688        for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0;
689        for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0;
690        q->decoder_reset = 0;
691    }
692
693    flag = get_bits1(&q->gb);
694    imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
695
696    if (stream_format_code & 0x4)
697        imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2);
698    else
699        imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2);
700
701    memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
702
703    counter = 0;
704    for (i=0 ; i<BANDS ; i++) {
705        if (q->levlCoeffBuf[i] == 16) {
706            q->bandWidthT[i] = 0;
707            counter++;
708        } else
709            q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
710    }
711    memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
712    for(i = 0; i < BANDS-1; i++) {
713        if (q->bandWidthT[i])
714            q->bandFlagsBuf[i] = get_bits1(&q->gb);
715    }
716
717    imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5);
718
719    bitscount = 0;
720    /* first 4 bands will be assigned 5 bits per coefficient */
721    if (stream_format_code & 0x2) {
722        bitscount += 15;
723
724        q->bitsBandT[0] = 5;
725        q->CWlengthT[0] = 5;
726        q->CWlengthT[1] = 5;
727        q->CWlengthT[2] = 5;
728        for(i = 1; i < 4; i++){
729            bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
730            q->bitsBandT[i] = bits;
731            for(j = band_tab[i]; j < band_tab[i+1]; j++) {
732                q->CWlengthT[j] = bits;
733                bitscount += bits;
734            }
735        }
736    }
737
738    if(bit_allocation (q, stream_format_code, 512 - bitscount - get_bits_count(&q->gb), flag) < 0) {
739        av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
740        q->decoder_reset = 1;
741        return -1;
742    }
743
744    for(i = 0; i < BANDS; i++) {
745        q->sumLenArr[i] = 0;
746        q->skipFlagRaw[i] = 0;
747        for(j = band_tab[i]; j < band_tab[i+1]; j++)
748            q->sumLenArr[i] += q->CWlengthT[j];
749        if (q->bandFlagsBuf[i])
750            if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
751                q->skipFlagRaw[i] = 1;
752    }
753
754    imc_get_skip_coeff(q);
755
756    for(i = 0; i < BANDS; i++) {
757        q->flcoeffs6[i] = q->flcoeffs1[i];
758        /* band has flag set and at least one coded coefficient */
759        if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){
760                q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
761                                   q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
762        }
763    }
764
765    /* calculate bits left, bits needed and adjust bit allocation */
766    bits = summer = 0;
767
768    for(i = 0; i < BANDS; i++) {
769        if (q->bandFlagsBuf[i]) {
770            for(j = band_tab[i]; j < band_tab[i+1]; j++) {
771                if(q->skipFlags[j]) {
772                    summer += q->CWlengthT[j];
773                    q->CWlengthT[j] = 0;
774                }
775            }
776            bits += q->skipFlagBits[i];
777            summer -= q->skipFlagBits[i];
778        }
779    }
780    imc_adjust_bit_allocation(q, summer);
781
782    for(i = 0; i < BANDS; i++) {
783        q->sumLenArr[i] = 0;
784
785        for(j = band_tab[i]; j < band_tab[i+1]; j++)
786            if (!q->skipFlags[j])
787                q->sumLenArr[i] += q->CWlengthT[j];
788    }
789
790    memset(q->codewords, 0, sizeof(q->codewords));
791
792    if(imc_get_coeffs(q) < 0) {
793        av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
794        q->decoder_reset = 1;
795        return 0;
796    }
797
798    if(inverse_quant_coeff(q, stream_format_code) < 0) {
799        av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
800        q->decoder_reset = 1;
801        return 0;
802    }
803
804    memset(q->skipFlags, 0, sizeof(q->skipFlags));
805
806    imc_imdct256(q);
807
808    q->dsp.float_to_int16(data, q->out_samples, COEFFS);
809
810    *data_size = COEFFS * sizeof(int16_t);
811
812    return IMC_BLOCK_SIZE;
813}
814
815
816static av_cold int imc_decode_close(AVCodecContext * avctx)
817{
818    IMCContext *q = avctx->priv_data;
819
820    ff_fft_end(&q->fft);
821    return 0;
822}
823
824
825AVCodec imc_decoder = {
826    .name = "imc",
827    .type = AVMEDIA_TYPE_AUDIO,
828    .id = CODEC_ID_IMC,
829    .priv_data_size = sizeof(IMCContext),
830    .init = imc_decode_init,
831    .close = imc_decode_close,
832    .decode = imc_decode_frame,
833    .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
834};
835