1/*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28#ifndef AVCODEC_H264_H
29#define AVCODEC_H264_H
30
31#include "libavutil/intreadwrite.h"
32#include "dsputil.h"
33#include "cabac.h"
34#include "mpegvideo.h"
35#include "h264dsp.h"
36#include "h264pred.h"
37#include "rectangle.h"
38
39#define interlaced_dct interlaced_dct_is_a_bad_name
40#define mb_intra mb_intra_is_not_initialized_see_mb_type
41
42#define LUMA_DC_BLOCK_INDEX   25
43#define CHROMA_DC_BLOCK_INDEX 26
44
45#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46#define COEFF_TOKEN_VLC_BITS           8
47#define TOTAL_ZEROS_VLC_BITS           9
48#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49#define RUN_VLC_BITS                   3
50#define RUN7_VLC_BITS                  6
51
52#define MAX_SPS_COUNT 32
53#define MAX_PPS_COUNT 256
54
55#define MAX_MMCO_COUNT 66
56
57#define MAX_DELAYED_PIC_COUNT 16
58
59/* Compiling in interlaced support reduces the speed
60 * of progressive decoding by about 2%. */
61#define ALLOW_INTERLACE
62
63#define ALLOW_NOCHROMA
64
65#define FMO 0
66
67/**
68 * The maximum number of slices supported by the decoder.
69 * must be a power of 2
70 */
71#define MAX_SLICES 16
72
73#ifdef ALLOW_INTERLACE
74#define MB_MBAFF h->mb_mbaff
75#define MB_FIELD h->mb_field_decoding_flag
76#define FRAME_MBAFF h->mb_aff_frame
77#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
78#else
79#define MB_MBAFF 0
80#define MB_FIELD 0
81#define FRAME_MBAFF 0
82#define FIELD_PICTURE 0
83#undef  IS_INTERLACED
84#define IS_INTERLACED(mb_type) 0
85#endif
86#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
87
88#ifdef ALLOW_NOCHROMA
89#define CHROMA h->sps.chroma_format_idc
90#else
91#define CHROMA 1
92#endif
93
94#ifndef CABAC
95#define CABAC h->pps.cabac
96#endif
97
98#define EXTENDED_SAR          255
99
100#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
101#define MB_TYPE_8x8DCT     0x01000000
102#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
103#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
104
105/**
106 * Value of Picture.reference when Picture is not a reference picture, but
107 * is held for delayed output.
108 */
109#define DELAYED_PIC_REF 4
110
111
112/* NAL unit types */
113enum {
114    NAL_SLICE=1,
115    NAL_DPA,
116    NAL_DPB,
117    NAL_DPC,
118    NAL_IDR_SLICE,
119    NAL_SEI,
120    NAL_SPS,
121    NAL_PPS,
122    NAL_AUD,
123    NAL_END_SEQUENCE,
124    NAL_END_STREAM,
125    NAL_FILLER_DATA,
126    NAL_SPS_EXT,
127    NAL_AUXILIARY_SLICE=19
128};
129
130/**
131 * SEI message types
132 */
133typedef enum {
134    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
135    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
136    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
137    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
138} SEI_Type;
139
140/**
141 * pic_struct in picture timing SEI message
142 */
143typedef enum {
144    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
145    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
146    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
147    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
148    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
149    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
150    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
151    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
152    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
153} SEI_PicStructType;
154
155/**
156 * Sequence parameter set
157 */
158typedef struct SPS{
159
160    int profile_idc;
161    int level_idc;
162    int chroma_format_idc;
163    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
164    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
165    int poc_type;                      ///< pic_order_cnt_type
166    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
167    int delta_pic_order_always_zero_flag;
168    int offset_for_non_ref_pic;
169    int offset_for_top_to_bottom_field;
170    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
171    int ref_frame_count;               ///< num_ref_frames
172    int gaps_in_frame_num_allowed_flag;
173    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
174    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
175    int frame_mbs_only_flag;
176    int mb_aff;                        ///<mb_adaptive_frame_field_flag
177    int direct_8x8_inference_flag;
178    int crop;                   ///< frame_cropping_flag
179    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
180    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
181    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
182    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
183    int vui_parameters_present_flag;
184    AVRational sar;
185    int video_signal_type_present_flag;
186    int full_range;
187    int colour_description_present_flag;
188    enum AVColorPrimaries color_primaries;
189    enum AVColorTransferCharacteristic color_trc;
190    enum AVColorSpace colorspace;
191    int timing_info_present_flag;
192    uint32_t num_units_in_tick;
193    uint32_t time_scale;
194    int fixed_frame_rate_flag;
195    short offset_for_ref_frame[256]; //FIXME dyn aloc?
196    int bitstream_restriction_flag;
197    int num_reorder_frames;
198    int scaling_matrix_present;
199    uint8_t scaling_matrix4[6][16];
200    uint8_t scaling_matrix8[2][64];
201    int nal_hrd_parameters_present_flag;
202    int vcl_hrd_parameters_present_flag;
203    int pic_struct_present_flag;
204    int time_offset_length;
205    int cpb_cnt;                       ///< See H.264 E.1.2
206    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
207    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
208    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
209    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
210    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
211    int residual_color_transform_flag; ///< residual_colour_transform_flag
212}SPS;
213
214/**
215 * Picture parameter set
216 */
217typedef struct PPS{
218    unsigned int sps_id;
219    int cabac;                  ///< entropy_coding_mode_flag
220    int pic_order_present;      ///< pic_order_present_flag
221    int slice_group_count;      ///< num_slice_groups_minus1 + 1
222    int mb_slice_group_map_type;
223    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
224    int weighted_pred;          ///< weighted_pred_flag
225    int weighted_bipred_idc;
226    int init_qp;                ///< pic_init_qp_minus26 + 26
227    int init_qs;                ///< pic_init_qs_minus26 + 26
228    int chroma_qp_index_offset[2];
229    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
230    int constrained_intra_pred; ///< constrained_intra_pred_flag
231    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
232    int transform_8x8_mode;     ///< transform_8x8_mode_flag
233    uint8_t scaling_matrix4[6][16];
234    uint8_t scaling_matrix8[2][64];
235    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
236    int chroma_qp_diff;
237}PPS;
238
239/**
240 * Memory management control operation opcode.
241 */
242typedef enum MMCOOpcode{
243    MMCO_END=0,
244    MMCO_SHORT2UNUSED,
245    MMCO_LONG2UNUSED,
246    MMCO_SHORT2LONG,
247    MMCO_SET_MAX_LONG,
248    MMCO_RESET,
249    MMCO_LONG,
250} MMCOOpcode;
251
252/**
253 * Memory management control operation.
254 */
255typedef struct MMCO{
256    MMCOOpcode opcode;
257    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
258    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
259} MMCO;
260
261/**
262 * H264Context
263 */
264typedef struct H264Context{
265    MpegEncContext s;
266    H264DSPContext h264dsp;
267    int chroma_qp[2]; //QPc
268
269    int qp_thresh;      ///< QP threshold to skip loopfilter
270
271    int prev_mb_skipped;
272    int next_mb_skipped;
273
274    //prediction stuff
275    int chroma_pred_mode;
276    int intra16x16_pred_mode;
277
278    int topleft_mb_xy;
279    int top_mb_xy;
280    int topright_mb_xy;
281    int left_mb_xy[2];
282
283    int topleft_type;
284    int top_type;
285    int topright_type;
286    int left_type[2];
287
288    const uint8_t * left_block;
289    int topleft_partition;
290
291    int8_t intra4x4_pred_mode_cache[5*8];
292    int8_t (*intra4x4_pred_mode);
293    H264PredContext hpc;
294    unsigned int topleft_samples_available;
295    unsigned int top_samples_available;
296    unsigned int topright_samples_available;
297    unsigned int left_samples_available;
298    uint8_t (*top_borders[2])[16+2*8];
299
300    /**
301     * non zero coeff count cache.
302     * is 64 if not available.
303     */
304    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
305
306    /*
307    .UU.YYYY
308    .UU.YYYY
309    .vv.YYYY
310    .VV.YYYY
311    */
312    uint8_t (*non_zero_count)[32];
313
314    /**
315     * Motion vector cache.
316     */
317    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
318    DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
319#define LIST_NOT_USED -1 //FIXME rename?
320#define PART_NOT_AVAILABLE -2
321
322    /**
323     * is 1 if the specific list MV&references are set to 0,0,-2.
324     */
325    int mv_cache_clean[2];
326
327    /**
328     * number of neighbors (top and/or left) that used 8x8 dct
329     */
330    int neighbor_transform_size;
331
332    /**
333     * block_offset[ 0..23] for frame macroblocks
334     * block_offset[24..47] for field macroblocks
335     */
336    int block_offset[2*(16+8)];
337
338    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
339    uint32_t *mb2br_xy;
340    int b_stride; //FIXME use s->b4_stride
341
342    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
343    int mb_uvlinesize;
344
345    int emu_edge_width;
346    int emu_edge_height;
347
348    SPS sps; ///< current sps
349
350    /**
351     * current pps
352     */
353    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
354
355    uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
356    uint32_t dequant8_buffer[2][52][64];
357    uint32_t (*dequant4_coeff[6])[16];
358    uint32_t (*dequant8_coeff[2])[64];
359
360    int slice_num;
361    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
362    int slice_type;
363    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
364    int slice_type_fixed;
365
366    //interlacing specific flags
367    int mb_aff_frame;
368    int mb_field_decoding_flag;
369    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
370
371    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
372
373    //Weighted pred stuff
374    int use_weight;
375    int use_weight_chroma;
376    int luma_log2_weight_denom;
377    int chroma_log2_weight_denom;
378    //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
379    int luma_weight[48][2][2];
380    int chroma_weight[48][2][2][2];
381    int implicit_weight[48][48][2];
382
383    int direct_spatial_mv_pred;
384    int col_parity;
385    int col_fieldoff;
386    int dist_scale_factor[16];
387    int dist_scale_factor_field[2][32];
388    int map_col_to_list0[2][16+32];
389    int map_col_to_list0_field[2][2][16+32];
390
391    /**
392     * num_ref_idx_l0/1_active_minus1 + 1
393     */
394    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
395    unsigned int list_count;
396    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
397    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
398                                          Reordered version of default_ref_list
399                                          according to picture reordering in slice header */
400    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
401
402    //data partitioning
403    GetBitContext intra_gb;
404    GetBitContext inter_gb;
405    GetBitContext *intra_gb_ptr;
406    GetBitContext *inter_gb_ptr;
407
408    DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
409    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
410
411    /**
412     * Cabac
413     */
414    CABACContext cabac;
415    uint8_t      cabac_state[460];
416
417    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
418    uint16_t     *cbp_table;
419    int cbp;
420    int top_cbp;
421    int left_cbp;
422    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
423    uint8_t     *chroma_pred_mode_table;
424    int         last_qscale_diff;
425    uint8_t     (*mvd_table[2])[2];
426    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
427    uint8_t     *direct_table;
428    uint8_t     direct_cache[5*8];
429
430    uint8_t zigzag_scan[16];
431    uint8_t zigzag_scan8x8[64];
432    uint8_t zigzag_scan8x8_cavlc[64];
433    uint8_t field_scan[16];
434    uint8_t field_scan8x8[64];
435    uint8_t field_scan8x8_cavlc[64];
436    const uint8_t *zigzag_scan_q0;
437    const uint8_t *zigzag_scan8x8_q0;
438    const uint8_t *zigzag_scan8x8_cavlc_q0;
439    const uint8_t *field_scan_q0;
440    const uint8_t *field_scan8x8_q0;
441    const uint8_t *field_scan8x8_cavlc_q0;
442
443    int x264_build;
444
445    int mb_xy;
446
447    int is_complex;
448
449    //deblock
450    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
451    int slice_alpha_c0_offset;
452    int slice_beta_offset;
453
454//=============================================================
455    //Things below are not used in the MB or more inner code
456
457    int nal_ref_idc;
458    int nal_unit_type;
459    uint8_t *rbsp_buffer[2];
460    unsigned int rbsp_buffer_size[2];
461
462    /**
463     * Used to parse AVC variant of h264
464     */
465    int is_avc; ///< this flag is != 0 if codec is avc1
466    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
467
468    SPS *sps_buffers[MAX_SPS_COUNT];
469    PPS *pps_buffers[MAX_PPS_COUNT];
470
471    int dequant_coeff_pps;     ///< reinit tables when pps changes
472
473    uint16_t *slice_table_base;
474
475
476    //POC stuff
477    int poc_lsb;
478    int poc_msb;
479    int delta_poc_bottom;
480    int delta_poc[2];
481    int frame_num;
482    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
483    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
484    int frame_num_offset;         ///< for POC type 2
485    int prev_frame_num_offset;    ///< for POC type 2
486    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
487
488    /**
489     * frame_num for frames or 2*frame_num+1 for field pics.
490     */
491    int curr_pic_num;
492
493    /**
494     * max_frame_num or 2*max_frame_num for field pics.
495     */
496    int max_pic_num;
497
498    int redundant_pic_count;
499
500    Picture *short_ref[32];
501    Picture *long_ref[32];
502    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
503    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
504    int outputed_poc;
505
506    /**
507     * memory management control operations buffer.
508     */
509    MMCO mmco[MAX_MMCO_COUNT];
510    int mmco_index;
511
512    int long_ref_count;  ///< number of actual long term references
513    int short_ref_count; ///< number of actual short term references
514
515    int          cabac_init_idc;
516
517    /**
518     * @defgroup multithreading Members for slice based multithreading
519     * @{
520     */
521    struct H264Context *thread_context[MAX_THREADS];
522
523    /**
524     * current slice number, used to initalize slice_num of each thread/context
525     */
526    int current_slice;
527
528    /**
529     * Max number of threads / contexts.
530     * This is equal to AVCodecContext.thread_count unless
531     * multithreaded decoding is impossible, in which case it is
532     * reduced to 1.
533     */
534    int max_contexts;
535
536    /**
537     *  1 if the single thread fallback warning has already been
538     *  displayed, 0 otherwise.
539     */
540    int single_decode_warning;
541
542    int last_slice_type;
543    /** @} */
544
545    /**
546     * pic_struct in picture timing SEI message
547     */
548    SEI_PicStructType sei_pic_struct;
549
550    /**
551     * Complement sei_pic_struct
552     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
553     * However, soft telecined frames may have these values.
554     * This is used in an attempt to flag soft telecine progressive.
555     */
556    int prev_interlaced_frame;
557
558    /**
559     * Bit set of clock types for fields/frames in picture timing SEI message.
560     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
561     * interlaced).
562     */
563    int sei_ct_type;
564
565    /**
566     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
567     */
568    int sei_dpb_output_delay;
569
570    /**
571     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
572     */
573    int sei_cpb_removal_delay;
574
575    /**
576     * recovery_frame_cnt from SEI message
577     *
578     * Set to -1 if no recovery point SEI message found or to number of frames
579     * before playback synchronizes. Frames having recovery point are key
580     * frames.
581     */
582    int sei_recovery_frame_cnt;
583
584    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
585    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
586
587    // Timestamp stuff
588    int sei_buffering_period_present;  ///< Buffering period SEI flag
589    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
590
591    //SVQ3 specific fields
592    int halfpel_flag;
593    int thirdpel_flag;
594    int unknown_svq3_flag;
595    int next_slice_index;
596    uint32_t svq3_watermark_key;
597}H264Context;
598
599
600extern const uint8_t ff_h264_chroma_qp[52];
601
602void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
603
604void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
605
606/**
607 * Decode SEI
608 */
609int ff_h264_decode_sei(H264Context *h);
610
611/**
612 * Decode SPS
613 */
614int ff_h264_decode_seq_parameter_set(H264Context *h);
615
616/**
617 * Decode PPS
618 */
619int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
620
621/**
622 * Decodes a network abstraction layer unit.
623 * @param consumed is the number of bytes used as input
624 * @param length is the length of the array
625 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
626 * @return decoded bytes, might be src+1 if no escapes
627 */
628const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
629
630/**
631 * identifies the exact end of the bitstream
632 * @return the length of the trailing, or 0 if damaged
633 */
634int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
635
636/**
637 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
638 */
639av_cold void ff_h264_free_context(H264Context *h);
640
641/**
642 * reconstructs bitstream slice_type.
643 */
644int ff_h264_get_slice_type(const H264Context *h);
645
646/**
647 * allocates tables.
648 * needs width/height
649 */
650int ff_h264_alloc_tables(H264Context *h);
651
652/**
653 * fills the default_ref_list.
654 */
655int ff_h264_fill_default_ref_list(H264Context *h);
656
657int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
658void ff_h264_fill_mbaff_ref_list(H264Context *h);
659void ff_h264_remove_all_refs(H264Context *h);
660
661/**
662 * Executes the reference picture marking (memory management control operations).
663 */
664int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
665
666int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
667
668
669/**
670 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
671 */
672int ff_h264_check_intra4x4_pred_mode(H264Context *h);
673
674/**
675 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
676 */
677int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
678
679void ff_h264_write_back_intra_pred_mode(H264Context *h);
680void ff_h264_hl_decode_mb(H264Context *h);
681int ff_h264_frame_start(H264Context *h);
682av_cold int ff_h264_decode_init(AVCodecContext *avctx);
683av_cold int ff_h264_decode_end(AVCodecContext *avctx);
684av_cold void ff_h264_decode_init_vlc(void);
685
686/**
687 * decodes a macroblock
688 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
689 */
690int ff_h264_decode_mb_cavlc(H264Context *h);
691
692/**
693 * decodes a CABAC coded macroblock
694 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
695 */
696int ff_h264_decode_mb_cabac(H264Context *h);
697
698void ff_h264_init_cabac_states(H264Context *h);
699
700void ff_h264_direct_dist_scale_factor(H264Context * const h);
701void ff_h264_direct_ref_list_init(H264Context * const h);
702void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
703
704void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
705void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
706
707/**
708 * Reset SEI values at the beginning of the frame.
709 *
710 * @param h H.264 context.
711 */
712void ff_h264_reset_sei(H264Context *h);
713
714
715/*
716o-o o-o
717 / / /
718o-o o-o
719 ,---'
720o-o o-o
721 / / /
722o-o o-o
723*/
724//This table must be here because scan8[constant] must be known at compiletime
725static const uint8_t scan8[16 + 2*4]={
726 4+1*8, 5+1*8, 4+2*8, 5+2*8,
727 6+1*8, 7+1*8, 6+2*8, 7+2*8,
728 4+3*8, 5+3*8, 4+4*8, 5+4*8,
729 6+3*8, 7+3*8, 6+4*8, 7+4*8,
730 1+1*8, 2+1*8,
731 1+2*8, 2+2*8,
732 1+4*8, 2+4*8,
733 1+5*8, 2+5*8,
734};
735
736static av_always_inline uint32_t pack16to32(int a, int b){
737#if HAVE_BIGENDIAN
738   return (b&0xFFFF) + (a<<16);
739#else
740   return (a&0xFFFF) + (b<<16);
741#endif
742}
743
744static av_always_inline uint16_t pack8to16(int a, int b){
745#if HAVE_BIGENDIAN
746   return (b&0xFF) + (a<<8);
747#else
748   return (a&0xFF) + (b<<8);
749#endif
750}
751
752/**
753 * gets the chroma qp.
754 */
755static inline int get_chroma_qp(H264Context *h, int t, int qscale){
756    return h->pps.chroma_qp_table[t][qscale];
757}
758
759static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
760
761static void fill_decode_neighbors(H264Context *h, int mb_type){
762    MpegEncContext * const s = &h->s;
763    const int mb_xy= h->mb_xy;
764    int topleft_xy, top_xy, topright_xy, left_xy[2];
765    static const uint8_t left_block_options[4][16]={
766        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
767        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
768        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
769        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
770    };
771
772    h->topleft_partition= -1;
773
774    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
775
776    /* Wow, what a mess, why didn't they simplify the interlacing & intra
777     * stuff, I can't imagine that these complex rules are worth it. */
778
779    topleft_xy = top_xy - 1;
780    topright_xy= top_xy + 1;
781    left_xy[1] = left_xy[0] = mb_xy-1;
782    h->left_block = left_block_options[0];
783    if(FRAME_MBAFF){
784        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
785        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
786        if(s->mb_y&1){
787            if (left_mb_field_flag != curr_mb_field_flag) {
788                left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
789                if (curr_mb_field_flag) {
790                    left_xy[1] += s->mb_stride;
791                    h->left_block = left_block_options[3];
792                } else {
793                    topleft_xy += s->mb_stride;
794                    // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
795                    h->topleft_partition = 0;
796                    h->left_block = left_block_options[1];
797                }
798            }
799        }else{
800            if(curr_mb_field_flag){
801                topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
802                topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
803                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
804            }
805            if (left_mb_field_flag != curr_mb_field_flag) {
806                if (curr_mb_field_flag) {
807                    left_xy[1] += s->mb_stride;
808                    h->left_block = left_block_options[3];
809                } else {
810                    h->left_block = left_block_options[2];
811                }
812            }
813        }
814    }
815
816    h->topleft_mb_xy = topleft_xy;
817    h->top_mb_xy     = top_xy;
818    h->topright_mb_xy= topright_xy;
819    h->left_mb_xy[0] = left_xy[0];
820    h->left_mb_xy[1] = left_xy[1];
821    //FIXME do we need all in the context?
822
823    h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
824    h->top_type     = s->current_picture.mb_type[top_xy]     ;
825    h->topright_type= s->current_picture.mb_type[topright_xy];
826    h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
827    h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
828
829    if(FMO){
830    if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
831    if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
832    if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
833    }else{
834        if(h->slice_table[topleft_xy ] != h->slice_num){
835            h->topleft_type = 0;
836            if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
837            if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
838        }
839    }
840    if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
841}
842
843static void fill_decode_caches(H264Context *h, int mb_type){
844    MpegEncContext * const s = &h->s;
845    int topleft_xy, top_xy, topright_xy, left_xy[2];
846    int topleft_type, top_type, topright_type, left_type[2];
847    const uint8_t * left_block= h->left_block;
848    int i;
849
850    topleft_xy   = h->topleft_mb_xy ;
851    top_xy       = h->top_mb_xy     ;
852    topright_xy  = h->topright_mb_xy;
853    left_xy[0]   = h->left_mb_xy[0] ;
854    left_xy[1]   = h->left_mb_xy[1] ;
855    topleft_type = h->topleft_type  ;
856    top_type     = h->top_type      ;
857    topright_type= h->topright_type ;
858    left_type[0] = h->left_type[0]  ;
859    left_type[1] = h->left_type[1]  ;
860
861    if(!IS_SKIP(mb_type)){
862        if(IS_INTRA(mb_type)){
863            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
864            h->topleft_samples_available=
865            h->top_samples_available=
866            h->left_samples_available= 0xFFFF;
867            h->topright_samples_available= 0xEEEA;
868
869            if(!(top_type & type_mask)){
870                h->topleft_samples_available= 0xB3FF;
871                h->top_samples_available= 0x33FF;
872                h->topright_samples_available= 0x26EA;
873            }
874            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
875                if(IS_INTERLACED(mb_type)){
876                    if(!(left_type[0] & type_mask)){
877                        h->topleft_samples_available&= 0xDFFF;
878                        h->left_samples_available&= 0x5FFF;
879                    }
880                    if(!(left_type[1] & type_mask)){
881                        h->topleft_samples_available&= 0xFF5F;
882                        h->left_samples_available&= 0xFF5F;
883                    }
884                }else{
885                    int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
886
887                    assert(left_xy[0] == left_xy[1]);
888                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
889                        h->topleft_samples_available&= 0xDF5F;
890                        h->left_samples_available&= 0x5F5F;
891                    }
892                }
893            }else{
894                if(!(left_type[0] & type_mask)){
895                    h->topleft_samples_available&= 0xDF5F;
896                    h->left_samples_available&= 0x5F5F;
897                }
898            }
899
900            if(!(topleft_type & type_mask))
901                h->topleft_samples_available&= 0x7FFF;
902
903            if(!(topright_type & type_mask))
904                h->topright_samples_available&= 0xFBFF;
905
906            if(IS_INTRA4x4(mb_type)){
907                if(IS_INTRA4x4(top_type)){
908                    AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
909                }else{
910                    h->intra4x4_pred_mode_cache[4+8*0]=
911                    h->intra4x4_pred_mode_cache[5+8*0]=
912                    h->intra4x4_pred_mode_cache[6+8*0]=
913                    h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
914                }
915                for(i=0; i<2; i++){
916                    if(IS_INTRA4x4(left_type[i])){
917                        int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
918                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
919                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
920                    }else{
921                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
922                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
923                    }
924                }
925            }
926        }
927
928
929/*
9300 . T T. T T T T
9311 L . .L . . . .
9322 L . .L . . . .
9333 . T TL . . . .
9344 L . .L . . . .
9355 L . .. . . . .
936*/
937//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
938    if(top_type){
939        AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
940            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
941            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
942
943            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
944            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
945    }else {
946            h->non_zero_count_cache[1+8*0]=
947            h->non_zero_count_cache[2+8*0]=
948
949            h->non_zero_count_cache[1+8*3]=
950            h->non_zero_count_cache[2+8*3]=
951            AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
952    }
953
954    for (i=0; i<2; i++) {
955        if(left_type[i]){
956            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
957            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
958                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
959                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
960        }else{
961                h->non_zero_count_cache[3+8*1 + 2*8*i]=
962                h->non_zero_count_cache[3+8*2 + 2*8*i]=
963                h->non_zero_count_cache[0+8*1 +   8*i]=
964                h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
965        }
966    }
967
968    if( CABAC ) {
969        // top_cbp
970        if(top_type) {
971            h->top_cbp = h->cbp_table[top_xy];
972        } else {
973            h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
974        }
975        // left_cbp
976        if (left_type[0]) {
977            h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
978                        |  ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
979                        | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
980        } else {
981            h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
982        }
983    }
984    }
985
986#if 1
987    if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
988        int list;
989        for(list=0; list<h->list_count; list++){
990            if(!USES_LIST(mb_type, list)){
991                /*if(!h->mv_cache_clean[list]){
992                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
993                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
994                    h->mv_cache_clean[list]= 1;
995                }*/
996                continue;
997            }
998            assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
999
1000            h->mv_cache_clean[list]= 0;
1001
1002            if(USES_LIST(top_type, list)){
1003                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1004                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1005                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
1006                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
1007                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
1008                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
1009            }else{
1010                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1011                AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
1012            }
1013
1014            if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
1015            for(i=0; i<2; i++){
1016                int cache_idx = scan8[0] - 1 + i*2*8;
1017                if(USES_LIST(left_type[i], list)){
1018                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1019                    const int b8_xy= 4*left_xy[i] + 1;
1020                    AV_COPY32(h->mv_cache[list][cache_idx  ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
1021                    AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
1022                        h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
1023                        h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
1024                }else{
1025                    AV_ZERO32(h->mv_cache [list][cache_idx  ]);
1026                    AV_ZERO32(h->mv_cache [list][cache_idx+8]);
1027                    h->ref_cache[list][cache_idx  ]=
1028                    h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1029                }
1030            }
1031            }else{
1032                if(USES_LIST(left_type[0], list)){
1033                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1034                    const int b8_xy= 4*left_xy[0] + 1;
1035                    AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
1036                    h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
1037                }else{
1038                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
1039                    h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1040                }
1041            }
1042
1043            if(USES_LIST(topright_type, list)){
1044                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1045                AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
1046                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
1047            }else{
1048                AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
1049                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1050            }
1051            if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
1052                if(USES_LIST(topleft_type, list)){
1053                    const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
1054                    const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
1055                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
1056                    h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1057                }else{
1058                    AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
1059                    h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1060                }
1061            }
1062
1063            if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
1064                continue;
1065
1066            if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
1067            h->ref_cache[list][scan8[4 ]] =
1068            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1069            AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
1070            AV_ZERO32(h->mv_cache [list][scan8[12]]);
1071
1072            if( CABAC ) {
1073                /* XXX beurk, Load mvd */
1074                if(USES_LIST(top_type, list)){
1075                    const int b_xy= h->mb2br_xy[top_xy];
1076                    AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1077                }else{
1078                    AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1079                }
1080                if(USES_LIST(left_type[0], list)){
1081                    const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
1082                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
1083                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
1084                }else{
1085                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
1086                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
1087                }
1088                if(USES_LIST(left_type[1], list)){
1089                    const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
1090                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
1091                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
1092                }else{
1093                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
1094                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
1095                }
1096                AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
1097                AV_ZERO16(h->mvd_cache [list][scan8[12]]);
1098                if(h->slice_type_nos == FF_B_TYPE){
1099                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
1100
1101                    if(IS_DIRECT(top_type)){
1102                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
1103                    }else if(IS_8X8(top_type)){
1104                        int b8_xy = 4*top_xy;
1105                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
1106                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
1107                    }else{
1108                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
1109                    }
1110
1111                    if(IS_DIRECT(left_type[0]))
1112                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
1113                    else if(IS_8X8(left_type[0]))
1114                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
1115                    else
1116                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
1117
1118                    if(IS_DIRECT(left_type[1]))
1119                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
1120                    else if(IS_8X8(left_type[1]))
1121                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
1122                    else
1123                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
1124                }
1125            }
1126            }
1127            if(FRAME_MBAFF){
1128#define MAP_MVS\
1129                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1130                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1131                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1132                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1133                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1134                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1135                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1136                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1137                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1138                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1139                if(MB_FIELD){
1140#define MAP_F2F(idx, mb_type)\
1141                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1142                        h->ref_cache[list][idx] <<= 1;\
1143                        h->mv_cache[list][idx][1] /= 2;\
1144                        h->mvd_cache[list][idx][1] >>=1;\
1145                    }
1146                    MAP_MVS
1147#undef MAP_F2F
1148                }else{
1149#define MAP_F2F(idx, mb_type)\
1150                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1151                        h->ref_cache[list][idx] >>= 1;\
1152                        h->mv_cache[list][idx][1] <<= 1;\
1153                        h->mvd_cache[list][idx][1] <<= 1;\
1154                    }
1155                    MAP_MVS
1156#undef MAP_F2F
1157                }
1158            }
1159        }
1160    }
1161#endif
1162
1163        h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1164}
1165
1166/**
1167 * gets the predicted intra4x4 prediction mode.
1168 */
1169static inline int pred_intra_mode(H264Context *h, int n){
1170    const int index8= scan8[n];
1171    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1172    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1173    const int min= FFMIN(left, top);
1174
1175    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1176
1177    if(min<0) return DC_PRED;
1178    else      return min;
1179}
1180
1181static inline void write_back_non_zero_count(H264Context *h){
1182    const int mb_xy= h->mb_xy;
1183
1184    AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1185    AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1186    AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
1187    AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
1188    AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1189}
1190
1191static inline void write_back_motion(H264Context *h, int mb_type){
1192    MpegEncContext * const s = &h->s;
1193    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
1194    const int b8_xy= 4*h->mb_xy;
1195    int list;
1196
1197    if(!USES_LIST(mb_type, 0))
1198        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
1199
1200    for(list=0; list<h->list_count; list++){
1201        int y, b_stride;
1202        int16_t (*mv_dst)[2];
1203        int16_t (*mv_src)[2];
1204
1205        if(!USES_LIST(mb_type, list))
1206            continue;
1207
1208        b_stride = h->b_stride;
1209        mv_dst   = &s->current_picture.motion_val[list][b_xy];
1210        mv_src   = &h->mv_cache[list][scan8[0]];
1211        for(y=0; y<4; y++){
1212            AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1213        }
1214        if( CABAC ) {
1215            uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
1216            uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1217            if(IS_SKIP(mb_type))
1218                AV_ZERO128(mvd_dst);
1219            else{
1220            AV_COPY64(mvd_dst, mvd_src + 8*3);
1221                AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
1222                AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
1223                AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
1224            }
1225        }
1226
1227        {
1228            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1229            ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
1230            ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
1231            ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
1232            ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
1233        }
1234    }
1235
1236    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1237        if(IS_8X8(mb_type)){
1238            uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
1239            direct_table[1] = h->sub_mb_type[1]>>1;
1240            direct_table[2] = h->sub_mb_type[2]>>1;
1241            direct_table[3] = h->sub_mb_type[3]>>1;
1242        }
1243    }
1244}
1245
1246static inline int get_dct8x8_allowed(H264Context *h){
1247    if(h->sps.direct_8x8_inference_flag)
1248        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1249    else
1250        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1251}
1252
1253/**
1254 * decodes a P_SKIP or B_SKIP macroblock
1255 */
1256static void decode_mb_skip(H264Context *h){
1257    MpegEncContext * const s = &h->s;
1258    const int mb_xy= h->mb_xy;
1259    int mb_type=0;
1260
1261    memset(h->non_zero_count[mb_xy], 0, 32);
1262    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1263
1264    if(MB_FIELD)
1265        mb_type|= MB_TYPE_INTERLACED;
1266
1267    if( h->slice_type_nos == FF_B_TYPE )
1268    {
1269        // just for fill_caches. pred_direct_motion will set the real mb_type
1270        mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1271        if(h->direct_spatial_mv_pred){
1272            fill_decode_neighbors(h, mb_type);
1273        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1274        }
1275        ff_h264_pred_direct_motion(h, &mb_type);
1276        mb_type|= MB_TYPE_SKIP;
1277    }
1278    else
1279    {
1280        int mx, my;
1281        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1282
1283        fill_decode_neighbors(h, mb_type);
1284        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1285        pred_pskip_motion(h, &mx, &my);
1286        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1287        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1288    }
1289
1290    write_back_motion(h, mb_type);
1291    s->current_picture.mb_type[mb_xy]= mb_type;
1292    s->current_picture.qscale_table[mb_xy]= s->qscale;
1293    h->slice_table[ mb_xy ]= h->slice_num;
1294    h->prev_mb_skipped= 1;
1295}
1296
1297#include "h264_mvpred.h" //For pred_pskip_motion()
1298
1299#endif /* AVCODEC_H264_H */
1300