1/*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21#include "avcodec.h"
22#include "get_bits.h"
23#include "put_bits.h"
24#include "bytestream.h"
25
26/**
27 * @file
28 * ADPCM codecs.
29 * First version by Francois Revol (revol@free.fr)
30 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31 *   by Mike Melanson (melanson@pcisys.net)
32 * CD-ROM XA ADPCM codec by BERO
33 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40 *
41 * Features and limitations:
42 *
43 * Reference documents:
44 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46 * http://openquicktime.sourceforge.net/plugins.htm
47 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50 *
51 * CD-ROM XA:
52 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54 * readstr http://www.geocities.co.jp/Playtown/2004/
55 */
56
57#define BLKSIZE 1024
58
59/* step_table[] and index_table[] are from the ADPCM reference source */
60/* This is the index table: */
61static const int index_table[16] = {
62    -1, -1, -1, -1, 2, 4, 6, 8,
63    -1, -1, -1, -1, 2, 4, 6, 8,
64};
65
66/**
67 * This is the step table. Note that many programs use slight deviations from
68 * this table, but such deviations are negligible:
69 */
70static const int step_table[89] = {
71    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80};
81
82/* These are for MS-ADPCM */
83/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84static const int AdaptationTable[] = {
85        230, 230, 230, 230, 307, 409, 512, 614,
86        768, 614, 512, 409, 307, 230, 230, 230
87};
88
89/** Divided by 4 to fit in 8-bit integers */
90static const uint8_t AdaptCoeff1[] = {
91        64, 128, 0, 48, 60, 115, 98
92};
93
94/** Divided by 4 to fit in 8-bit integers */
95static const int8_t AdaptCoeff2[] = {
96        0, -64, 0, 16, 0, -52, -58
97};
98
99/* These are for CD-ROM XA ADPCM */
100static const int xa_adpcm_table[5][2] = {
101   {   0,   0 },
102   {  60,   0 },
103   { 115, -52 },
104   {  98, -55 },
105   { 122, -60 }
106};
107
108static const int ea_adpcm_table[] = {
109    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111};
112
113// padded to zero where table size is less then 16
114static const int swf_index_tables[4][16] = {
115    /*2*/ { -1, 2 },
116    /*3*/ { -1, -1, 2, 4 },
117    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119};
120
121static const int yamaha_indexscale[] = {
122    230, 230, 230, 230, 307, 409, 512, 614,
123    230, 230, 230, 230, 307, 409, 512, 614
124};
125
126static const int yamaha_difflookup[] = {
127    1, 3, 5, 7, 9, 11, 13, 15,
128    -1, -3, -5, -7, -9, -11, -13, -15
129};
130
131/* end of tables */
132
133typedef struct ADPCMChannelStatus {
134    int predictor;
135    short int step_index;
136    int step;
137    /* for encoding */
138    int prev_sample;
139
140    /* MS version */
141    short sample1;
142    short sample2;
143    int coeff1;
144    int coeff2;
145    int idelta;
146} ADPCMChannelStatus;
147
148typedef struct ADPCMContext {
149    ADPCMChannelStatus status[6];
150} ADPCMContext;
151
152/* XXX: implement encoding */
153
154#if CONFIG_ENCODERS
155static av_cold int adpcm_encode_init(AVCodecContext *avctx)
156{
157    uint8_t *extradata;
158    int i;
159    if (avctx->channels > 2)
160        return -1; /* only stereo or mono =) */
161
162    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
163        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
164        return -1;
165    }
166
167    switch(avctx->codec->id) {
168    case CODEC_ID_ADPCM_IMA_WAV:
169        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
170                                                             /* and we have 4 bytes per channel overhead */
171        avctx->block_align = BLKSIZE;
172        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
173        break;
174    case CODEC_ID_ADPCM_IMA_QT:
175        avctx->frame_size = 64;
176        avctx->block_align = 34 * avctx->channels;
177        break;
178    case CODEC_ID_ADPCM_MS:
179        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
180                                                             /* and we have 7 bytes per channel overhead */
181        avctx->block_align = BLKSIZE;
182        avctx->extradata_size = 32;
183        extradata = avctx->extradata = av_malloc(avctx->extradata_size);
184        if (!extradata)
185            return AVERROR(ENOMEM);
186        bytestream_put_le16(&extradata, avctx->frame_size);
187        bytestream_put_le16(&extradata, 7); /* wNumCoef */
188        for (i = 0; i < 7; i++) {
189            bytestream_put_le16(&extradata, AdaptCoeff1[i] * 4);
190            bytestream_put_le16(&extradata, AdaptCoeff2[i] * 4);
191        }
192        break;
193    case CODEC_ID_ADPCM_YAMAHA:
194        avctx->frame_size = BLKSIZE * avctx->channels;
195        avctx->block_align = BLKSIZE;
196        break;
197    case CODEC_ID_ADPCM_SWF:
198        if (avctx->sample_rate != 11025 &&
199            avctx->sample_rate != 22050 &&
200            avctx->sample_rate != 44100) {
201            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
202            return -1;
203        }
204        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
205        break;
206    default:
207        return -1;
208    }
209
210    avctx->coded_frame= avcodec_alloc_frame();
211    avctx->coded_frame->key_frame= 1;
212
213    return 0;
214}
215
216static av_cold int adpcm_encode_close(AVCodecContext *avctx)
217{
218    av_freep(&avctx->coded_frame);
219
220    return 0;
221}
222
223
224static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
225{
226    int delta = sample - c->prev_sample;
227    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
228    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
229    c->prev_sample = av_clip_int16(c->prev_sample);
230    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
231    return nibble;
232}
233
234static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
235{
236    int predictor, nibble, bias;
237
238    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
239
240    nibble= sample - predictor;
241    if(nibble>=0) bias= c->idelta/2;
242    else          bias=-c->idelta/2;
243
244    nibble= (nibble + bias) / c->idelta;
245    nibble= av_clip(nibble, -8, 7)&0x0F;
246
247    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
248
249    c->sample2 = c->sample1;
250    c->sample1 = av_clip_int16(predictor);
251
252    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
253    if (c->idelta < 16) c->idelta = 16;
254
255    return nibble;
256}
257
258static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
259{
260    int nibble, delta;
261
262    if(!c->step) {
263        c->predictor = 0;
264        c->step = 127;
265    }
266
267    delta = sample - c->predictor;
268
269    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
270
271    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
272    c->predictor = av_clip_int16(c->predictor);
273    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
274    c->step = av_clip(c->step, 127, 24567);
275
276    return nibble;
277}
278
279typedef struct TrellisPath {
280    int nibble;
281    int prev;
282} TrellisPath;
283
284typedef struct TrellisNode {
285    uint32_t ssd;
286    int path;
287    int sample1;
288    int sample2;
289    int step;
290} TrellisNode;
291
292static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
293                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
294{
295#define FREEZE_INTERVAL 128
296    //FIXME 6% faster if frontier is a compile-time constant
297    const int frontier = 1 << avctx->trellis;
298    const int stride = avctx->channels;
299    const int version = avctx->codec->id;
300    const int max_paths = frontier*FREEZE_INTERVAL;
301    TrellisPath paths[max_paths], *p;
302    TrellisNode node_buf[2][frontier];
303    TrellisNode *nodep_buf[2][frontier];
304    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
305    TrellisNode **nodes_next = nodep_buf[1];
306    int pathn = 0, froze = -1, i, j, k;
307
308    assert(!(max_paths&(max_paths-1)));
309
310    memset(nodep_buf, 0, sizeof(nodep_buf));
311    nodes[0] = &node_buf[1][0];
312    nodes[0]->ssd = 0;
313    nodes[0]->path = 0;
314    nodes[0]->step = c->step_index;
315    nodes[0]->sample1 = c->sample1;
316    nodes[0]->sample2 = c->sample2;
317    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
318        nodes[0]->sample1 = c->prev_sample;
319    if(version == CODEC_ID_ADPCM_MS)
320        nodes[0]->step = c->idelta;
321    if(version == CODEC_ID_ADPCM_YAMAHA) {
322        if(c->step == 0) {
323            nodes[0]->step = 127;
324            nodes[0]->sample1 = 0;
325        } else {
326            nodes[0]->step = c->step;
327            nodes[0]->sample1 = c->predictor;
328        }
329    }
330
331    for(i=0; i<n; i++) {
332        TrellisNode *t = node_buf[i&1];
333        TrellisNode **u;
334        int sample = samples[i*stride];
335        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
336        for(j=0; j<frontier && nodes[j]; j++) {
337            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
338            const int range = (j < frontier/2) ? 1 : 0;
339            const int step = nodes[j]->step;
340            int nidx;
341            if(version == CODEC_ID_ADPCM_MS) {
342                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
343                const int div = (sample - predictor) / step;
344                const int nmin = av_clip(div-range, -8, 6);
345                const int nmax = av_clip(div+range, -7, 7);
346                for(nidx=nmin; nidx<=nmax; nidx++) {
347                    const int nibble = nidx & 0xf;
348                    int dec_sample = predictor + nidx * step;
349#define STORE_NODE(NAME, STEP_INDEX)\
350                    int d;\
351                    uint32_t ssd;\
352                    dec_sample = av_clip_int16(dec_sample);\
353                    d = sample - dec_sample;\
354                    ssd = nodes[j]->ssd + d*d;\
355                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
356                        continue;\
357                    /* Collapse any two states with the same previous sample value. \
358                     * One could also distinguish states by step and by 2nd to last
359                     * sample, but the effects of that are negligible. */\
360                    for(k=0; k<frontier && nodes_next[k]; k++) {\
361                        if(dec_sample == nodes_next[k]->sample1) {\
362                            assert(ssd >= nodes_next[k]->ssd);\
363                            goto next_##NAME;\
364                        }\
365                    }\
366                    for(k=0; k<frontier; k++) {\
367                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
368                            TrellisNode *u = nodes_next[frontier-1];\
369                            if(!u) {\
370                                assert(pathn < max_paths);\
371                                u = t++;\
372                                u->path = pathn++;\
373                            }\
374                            u->ssd = ssd;\
375                            u->step = STEP_INDEX;\
376                            u->sample2 = nodes[j]->sample1;\
377                            u->sample1 = dec_sample;\
378                            paths[u->path].nibble = nibble;\
379                            paths[u->path].prev = nodes[j]->path;\
380                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
381                            nodes_next[k] = u;\
382                            break;\
383                        }\
384                    }\
385                    next_##NAME:;
386                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
387                }
388            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
389#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
390                const int predictor = nodes[j]->sample1;\
391                const int div = (sample - predictor) * 4 / STEP_TABLE;\
392                int nmin = av_clip(div-range, -7, 6);\
393                int nmax = av_clip(div+range, -6, 7);\
394                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
395                if(nmax<0) nmax--;\
396                for(nidx=nmin; nidx<=nmax; nidx++) {\
397                    const int nibble = nidx<0 ? 7-nidx : nidx;\
398                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
399                    STORE_NODE(NAME, STEP_INDEX);\
400                }
401                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
402            } else { //CODEC_ID_ADPCM_YAMAHA
403                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
404#undef LOOP_NODES
405#undef STORE_NODE
406            }
407        }
408
409        u = nodes;
410        nodes = nodes_next;
411        nodes_next = u;
412
413        // prevent overflow
414        if(nodes[0]->ssd > (1<<28)) {
415            for(j=1; j<frontier && nodes[j]; j++)
416                nodes[j]->ssd -= nodes[0]->ssd;
417            nodes[0]->ssd = 0;
418        }
419
420        // merge old paths to save memory
421        if(i == froze + FREEZE_INTERVAL) {
422            p = &paths[nodes[0]->path];
423            for(k=i; k>froze; k--) {
424                dst[k] = p->nibble;
425                p = &paths[p->prev];
426            }
427            froze = i;
428            pathn = 0;
429            // other nodes might use paths that don't coincide with the frozen one.
430            // checking which nodes do so is too slow, so just kill them all.
431            // this also slightly improves quality, but I don't know why.
432            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
433        }
434    }
435
436    p = &paths[nodes[0]->path];
437    for(i=n-1; i>froze; i--) {
438        dst[i] = p->nibble;
439        p = &paths[p->prev];
440    }
441
442    c->predictor = nodes[0]->sample1;
443    c->sample1 = nodes[0]->sample1;
444    c->sample2 = nodes[0]->sample2;
445    c->step_index = nodes[0]->step;
446    c->step = nodes[0]->step;
447    c->idelta = nodes[0]->step;
448}
449
450static int adpcm_encode_frame(AVCodecContext *avctx,
451                            unsigned char *frame, int buf_size, void *data)
452{
453    int n, i, st;
454    short *samples;
455    unsigned char *dst;
456    ADPCMContext *c = avctx->priv_data;
457
458    dst = frame;
459    samples = (short *)data;
460    st= avctx->channels == 2;
461/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
462
463    switch(avctx->codec->id) {
464    case CODEC_ID_ADPCM_IMA_WAV:
465        n = avctx->frame_size / 8;
466            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
467/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
468            bytestream_put_le16(&dst, c->status[0].prev_sample);
469            *dst++ = (unsigned char)c->status[0].step_index;
470            *dst++ = 0; /* unknown */
471            samples++;
472            if (avctx->channels == 2) {
473                c->status[1].prev_sample = (signed short)samples[0];
474/*                c->status[1].step_index = 0; */
475                bytestream_put_le16(&dst, c->status[1].prev_sample);
476                *dst++ = (unsigned char)c->status[1].step_index;
477                *dst++ = 0;
478                samples++;
479            }
480
481            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
482            if(avctx->trellis > 0) {
483                uint8_t buf[2][n*8];
484                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
485                if(avctx->channels == 2)
486                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
487                for(i=0; i<n; i++) {
488                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
489                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
490                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
491                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
492                    if (avctx->channels == 2) {
493                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
494                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
495                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
496                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
497                    }
498                }
499            } else
500            for (; n>0; n--) {
501                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
502                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
503                dst++;
504                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
505                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
506                dst++;
507                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
508                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
509                dst++;
510                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
511                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
512                dst++;
513                /* right channel */
514                if (avctx->channels == 2) {
515                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
516                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
517                    dst++;
518                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
519                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
520                    dst++;
521                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
522                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
523                    dst++;
524                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
525                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
526                    dst++;
527                }
528                samples += 8 * avctx->channels;
529            }
530        break;
531    case CODEC_ID_ADPCM_IMA_QT:
532    {
533        int ch, i;
534        PutBitContext pb;
535        init_put_bits(&pb, dst, buf_size*8);
536
537        for(ch=0; ch<avctx->channels; ch++){
538            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
539            put_bits(&pb, 7, c->status[ch].step_index);
540            if(avctx->trellis > 0) {
541                uint8_t buf[64];
542                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
543                for(i=0; i<64; i++)
544                    put_bits(&pb, 4, buf[i^1]);
545                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
546            } else {
547                for (i=0; i<64; i+=2){
548                    int t1, t2;
549                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
550                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
551                    put_bits(&pb, 4, t2);
552                    put_bits(&pb, 4, t1);
553                }
554                c->status[ch].prev_sample &= ~0x7F;
555            }
556        }
557
558        dst += put_bits_count(&pb)>>3;
559        break;
560    }
561    case CODEC_ID_ADPCM_SWF:
562    {
563        int i;
564        PutBitContext pb;
565        init_put_bits(&pb, dst, buf_size*8);
566
567        n = avctx->frame_size-1;
568
569        //Store AdpcmCodeSize
570        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
571
572        //Init the encoder state
573        for(i=0; i<avctx->channels; i++){
574            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
575            put_sbits(&pb, 16, samples[i]);
576            put_bits(&pb, 6, c->status[i].step_index);
577            c->status[i].prev_sample = (signed short)samples[i];
578        }
579
580        if(avctx->trellis > 0) {
581            uint8_t buf[2][n];
582            adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
583            if (avctx->channels == 2)
584                adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
585            for(i=0; i<n; i++) {
586                put_bits(&pb, 4, buf[0][i]);
587                if (avctx->channels == 2)
588                    put_bits(&pb, 4, buf[1][i]);
589            }
590        } else {
591            for (i=1; i<avctx->frame_size; i++) {
592                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
593                if (avctx->channels == 2)
594                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
595            }
596        }
597        flush_put_bits(&pb);
598        dst += put_bits_count(&pb)>>3;
599        break;
600    }
601    case CODEC_ID_ADPCM_MS:
602        for(i=0; i<avctx->channels; i++){
603            int predictor=0;
604
605            *dst++ = predictor;
606            c->status[i].coeff1 = AdaptCoeff1[predictor];
607            c->status[i].coeff2 = AdaptCoeff2[predictor];
608        }
609        for(i=0; i<avctx->channels; i++){
610            if (c->status[i].idelta < 16)
611                c->status[i].idelta = 16;
612
613            bytestream_put_le16(&dst, c->status[i].idelta);
614        }
615        for(i=0; i<avctx->channels; i++){
616            c->status[i].sample2= *samples++;
617        }
618        for(i=0; i<avctx->channels; i++){
619            c->status[i].sample1= *samples++;
620
621            bytestream_put_le16(&dst, c->status[i].sample1);
622        }
623        for(i=0; i<avctx->channels; i++)
624            bytestream_put_le16(&dst, c->status[i].sample2);
625
626        if(avctx->trellis > 0) {
627            int n = avctx->block_align - 7*avctx->channels;
628            uint8_t buf[2][n];
629            if(avctx->channels == 1) {
630                n *= 2;
631                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
632                for(i=0; i<n; i+=2)
633                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
634            } else {
635                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
636                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
637                for(i=0; i<n; i++)
638                    *dst++ = (buf[0][i] << 4) | buf[1][i];
639            }
640        } else
641        for(i=7*avctx->channels; i<avctx->block_align; i++) {
642            int nibble;
643            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
644            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
645            *dst++ = nibble;
646        }
647        break;
648    case CODEC_ID_ADPCM_YAMAHA:
649        n = avctx->frame_size / 2;
650        if(avctx->trellis > 0) {
651            uint8_t buf[2][n*2];
652            n *= 2;
653            if(avctx->channels == 1) {
654                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
655                for(i=0; i<n; i+=2)
656                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
657            } else {
658                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
659                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
660                for(i=0; i<n; i++)
661                    *dst++ = buf[0][i] | (buf[1][i] << 4);
662            }
663        } else
664            for (n *= avctx->channels; n>0; n--) {
665                int nibble;
666                nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
667                nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
668                *dst++ = nibble;
669            }
670        break;
671    default:
672        return -1;
673    }
674    return dst - frame;
675}
676#endif //CONFIG_ENCODERS
677
678static av_cold int adpcm_decode_init(AVCodecContext * avctx)
679{
680    ADPCMContext *c = avctx->priv_data;
681    unsigned int max_channels = 2;
682
683    switch(avctx->codec->id) {
684    case CODEC_ID_ADPCM_EA_R1:
685    case CODEC_ID_ADPCM_EA_R2:
686    case CODEC_ID_ADPCM_EA_R3:
687        max_channels = 6;
688        break;
689    }
690    if(avctx->channels > max_channels){
691        return -1;
692    }
693
694    switch(avctx->codec->id) {
695    case CODEC_ID_ADPCM_CT:
696        c->status[0].step = c->status[1].step = 511;
697        break;
698    case CODEC_ID_ADPCM_IMA_WS:
699        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
700            c->status[0].predictor = AV_RL32(avctx->extradata);
701            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
702        }
703        break;
704    default:
705        break;
706    }
707    avctx->sample_fmt = SAMPLE_FMT_S16;
708    return 0;
709}
710
711static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
712{
713    int step_index;
714    int predictor;
715    int sign, delta, diff, step;
716
717    step = step_table[c->step_index];
718    step_index = c->step_index + index_table[(unsigned)nibble];
719    if (step_index < 0) step_index = 0;
720    else if (step_index > 88) step_index = 88;
721
722    sign = nibble & 8;
723    delta = nibble & 7;
724    /* perform direct multiplication instead of series of jumps proposed by
725     * the reference ADPCM implementation since modern CPUs can do the mults
726     * quickly enough */
727    diff = ((2 * delta + 1) * step) >> shift;
728    predictor = c->predictor;
729    if (sign) predictor -= diff;
730    else predictor += diff;
731
732    c->predictor = av_clip_int16(predictor);
733    c->step_index = step_index;
734
735    return (short)c->predictor;
736}
737
738static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
739{
740    int predictor;
741
742    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
743    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
744
745    c->sample2 = c->sample1;
746    c->sample1 = av_clip_int16(predictor);
747    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
748    if (c->idelta < 16) c->idelta = 16;
749
750    return c->sample1;
751}
752
753static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
754{
755    int sign, delta, diff;
756    int new_step;
757
758    sign = nibble & 8;
759    delta = nibble & 7;
760    /* perform direct multiplication instead of series of jumps proposed by
761     * the reference ADPCM implementation since modern CPUs can do the mults
762     * quickly enough */
763    diff = ((2 * delta + 1) * c->step) >> 3;
764    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
765    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
766    c->predictor = av_clip_int16(c->predictor);
767    /* calculate new step and clamp it to range 511..32767 */
768    new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
769    c->step = av_clip(new_step, 511, 32767);
770
771    return (short)c->predictor;
772}
773
774static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
775{
776    int sign, delta, diff;
777
778    sign = nibble & (1<<(size-1));
779    delta = nibble & ((1<<(size-1))-1);
780    diff = delta << (7 + c->step + shift);
781
782    /* clamp result */
783    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
784
785    /* calculate new step */
786    if (delta >= (2*size - 3) && c->step < 3)
787        c->step++;
788    else if (delta == 0 && c->step > 0)
789        c->step--;
790
791    return (short) c->predictor;
792}
793
794static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
795{
796    if(!c->step) {
797        c->predictor = 0;
798        c->step = 127;
799    }
800
801    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
802    c->predictor = av_clip_int16(c->predictor);
803    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
804    c->step = av_clip(c->step, 127, 24567);
805    return c->predictor;
806}
807
808static void xa_decode(short *out, const unsigned char *in,
809    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
810{
811    int i, j;
812    int shift,filter,f0,f1;
813    int s_1,s_2;
814    int d,s,t;
815
816    for(i=0;i<4;i++) {
817
818        shift  = 12 - (in[4+i*2] & 15);
819        filter = in[4+i*2] >> 4;
820        f0 = xa_adpcm_table[filter][0];
821        f1 = xa_adpcm_table[filter][1];
822
823        s_1 = left->sample1;
824        s_2 = left->sample2;
825
826        for(j=0;j<28;j++) {
827            d = in[16+i+j*4];
828
829            t = (signed char)(d<<4)>>4;
830            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
831            s_2 = s_1;
832            s_1 = av_clip_int16(s);
833            *out = s_1;
834            out += inc;
835        }
836
837        if (inc==2) { /* stereo */
838            left->sample1 = s_1;
839            left->sample2 = s_2;
840            s_1 = right->sample1;
841            s_2 = right->sample2;
842            out = out + 1 - 28*2;
843        }
844
845        shift  = 12 - (in[5+i*2] & 15);
846        filter = in[5+i*2] >> 4;
847
848        f0 = xa_adpcm_table[filter][0];
849        f1 = xa_adpcm_table[filter][1];
850
851        for(j=0;j<28;j++) {
852            d = in[16+i+j*4];
853
854            t = (signed char)d >> 4;
855            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
856            s_2 = s_1;
857            s_1 = av_clip_int16(s);
858            *out = s_1;
859            out += inc;
860        }
861
862        if (inc==2) { /* stereo */
863            right->sample1 = s_1;
864            right->sample2 = s_2;
865            out -= 1;
866        } else {
867            left->sample1 = s_1;
868            left->sample2 = s_2;
869        }
870    }
871}
872
873
874/* DK3 ADPCM support macro */
875#define DK3_GET_NEXT_NIBBLE() \
876    if (decode_top_nibble_next) \
877    { \
878        nibble = last_byte >> 4; \
879        decode_top_nibble_next = 0; \
880    } \
881    else \
882    { \
883        last_byte = *src++; \
884        if (src >= buf + buf_size) break; \
885        nibble = last_byte & 0x0F; \
886        decode_top_nibble_next = 1; \
887    }
888
889static int adpcm_decode_frame(AVCodecContext *avctx,
890                            void *data, int *data_size,
891                            AVPacket *avpkt)
892{
893    const uint8_t *buf = avpkt->data;
894    int buf_size = avpkt->size;
895    ADPCMContext *c = avctx->priv_data;
896    ADPCMChannelStatus *cs;
897    int n, m, channel, i;
898    int block_predictor[2];
899    short *samples;
900    short *samples_end;
901    const uint8_t *src;
902    int st; /* stereo */
903
904    /* DK3 ADPCM accounting variables */
905    unsigned char last_byte = 0;
906    unsigned char nibble;
907    int decode_top_nibble_next = 0;
908    int diff_channel;
909
910    /* EA ADPCM state variables */
911    uint32_t samples_in_chunk;
912    int32_t previous_left_sample, previous_right_sample;
913    int32_t current_left_sample, current_right_sample;
914    int32_t next_left_sample, next_right_sample;
915    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
916    uint8_t shift_left, shift_right;
917    int count1, count2;
918    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
919
920    if (!buf_size)
921        return 0;
922
923    //should protect all 4bit ADPCM variants
924    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
925    //
926    if(*data_size/4 < buf_size + 8)
927        return -1;
928
929    samples = data;
930    samples_end= samples + *data_size/2;
931    *data_size= 0;
932    src = buf;
933
934    st = avctx->channels == 2 ? 1 : 0;
935
936    switch(avctx->codec->id) {
937    case CODEC_ID_ADPCM_IMA_QT:
938        n = buf_size - 2*avctx->channels;
939        for (channel = 0; channel < avctx->channels; channel++) {
940            cs = &(c->status[channel]);
941            /* (pppppp) (piiiiiii) */
942
943            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
944            cs->predictor = (*src++) << 8;
945            cs->predictor |= (*src & 0x80);
946            cs->predictor &= 0xFF80;
947
948            /* sign extension */
949            if(cs->predictor & 0x8000)
950                cs->predictor -= 0x10000;
951
952            cs->predictor = av_clip_int16(cs->predictor);
953
954            cs->step_index = (*src++) & 0x7F;
955
956            if (cs->step_index > 88){
957                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
958                cs->step_index = 88;
959            }
960
961            cs->step = step_table[cs->step_index];
962
963            samples = (short*)data + channel;
964
965            for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
966                *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
967                samples += avctx->channels;
968                *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
969                samples += avctx->channels;
970                src ++;
971            }
972        }
973        if (st)
974            samples--;
975        break;
976    case CODEC_ID_ADPCM_IMA_WAV:
977        if (avctx->block_align != 0 && buf_size > avctx->block_align)
978            buf_size = avctx->block_align;
979
980//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
981
982        for(i=0; i<avctx->channels; i++){
983            cs = &(c->status[i]);
984            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
985
986            cs->step_index = *src++;
987            if (cs->step_index > 88){
988                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
989                cs->step_index = 88;
990            }
991            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
992        }
993
994        while(src < buf + buf_size){
995            for(m=0; m<4; m++){
996                for(i=0; i<=st; i++)
997                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
998                for(i=0; i<=st; i++)
999                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
1000                src++;
1001            }
1002            src += 4*st;
1003        }
1004        break;
1005    case CODEC_ID_ADPCM_4XM:
1006        cs = &(c->status[0]);
1007        c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1008        if(st){
1009            c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1010        }
1011        c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1012        if(st){
1013            c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1014        }
1015        if (cs->step_index < 0) cs->step_index = 0;
1016        if (cs->step_index > 88) cs->step_index = 88;
1017
1018        m= (buf_size - (src - buf))>>st;
1019        for(i=0; i<m; i++) {
1020            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1021            if (st)
1022                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1023            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1024            if (st)
1025                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1026        }
1027
1028        src += m<<st;
1029
1030        break;
1031    case CODEC_ID_ADPCM_MS:
1032        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1033            buf_size = avctx->block_align;
1034        n = buf_size - 7 * avctx->channels;
1035        if (n < 0)
1036            return -1;
1037        block_predictor[0] = av_clip(*src++, 0, 6);
1038        block_predictor[1] = 0;
1039        if (st)
1040            block_predictor[1] = av_clip(*src++, 0, 6);
1041        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1042        if (st){
1043            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1044        }
1045        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1046        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1047        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1048        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1049
1050        c->status[0].sample1 = bytestream_get_le16(&src);
1051        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1052        c->status[0].sample2 = bytestream_get_le16(&src);
1053        if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1054
1055        *samples++ = c->status[0].sample2;
1056        if (st) *samples++ = c->status[1].sample2;
1057        *samples++ = c->status[0].sample1;
1058        if (st) *samples++ = c->status[1].sample1;
1059        for(;n>0;n--) {
1060            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1061            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1062            src ++;
1063        }
1064        break;
1065    case CODEC_ID_ADPCM_IMA_DK4:
1066        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1067            buf_size = avctx->block_align;
1068
1069        c->status[0].predictor  = (int16_t)bytestream_get_le16(&src);
1070        c->status[0].step_index = *src++;
1071        src++;
1072        *samples++ = c->status[0].predictor;
1073        if (st) {
1074            c->status[1].predictor  = (int16_t)bytestream_get_le16(&src);
1075            c->status[1].step_index = *src++;
1076            src++;
1077            *samples++ = c->status[1].predictor;
1078        }
1079        while (src < buf + buf_size) {
1080
1081            /* take care of the top nibble (always left or mono channel) */
1082            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1083                src[0] >> 4, 3);
1084
1085            /* take care of the bottom nibble, which is right sample for
1086             * stereo, or another mono sample */
1087            if (st)
1088                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1089                    src[0] & 0x0F, 3);
1090            else
1091                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1092                    src[0] & 0x0F, 3);
1093
1094            src++;
1095        }
1096        break;
1097    case CODEC_ID_ADPCM_IMA_DK3:
1098        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1099            buf_size = avctx->block_align;
1100
1101        if(buf_size + 16 > (samples_end - samples)*3/8)
1102            return -1;
1103
1104        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
1105        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
1106        c->status[0].step_index = src[14];
1107        c->status[1].step_index = src[15];
1108        /* sign extend the predictors */
1109        src += 16;
1110        diff_channel = c->status[1].predictor;
1111
1112        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1113         * the buffer is consumed */
1114        while (1) {
1115
1116            /* for this algorithm, c->status[0] is the sum channel and
1117             * c->status[1] is the diff channel */
1118
1119            /* process the first predictor of the sum channel */
1120            DK3_GET_NEXT_NIBBLE();
1121            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1122
1123            /* process the diff channel predictor */
1124            DK3_GET_NEXT_NIBBLE();
1125            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1126
1127            /* process the first pair of stereo PCM samples */
1128            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1129            *samples++ = c->status[0].predictor + c->status[1].predictor;
1130            *samples++ = c->status[0].predictor - c->status[1].predictor;
1131
1132            /* process the second predictor of the sum channel */
1133            DK3_GET_NEXT_NIBBLE();
1134            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1135
1136            /* process the second pair of stereo PCM samples */
1137            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1138            *samples++ = c->status[0].predictor + c->status[1].predictor;
1139            *samples++ = c->status[0].predictor - c->status[1].predictor;
1140        }
1141        break;
1142    case CODEC_ID_ADPCM_IMA_ISS:
1143        c->status[0].predictor  = (int16_t)AV_RL16(src + 0);
1144        c->status[0].step_index = src[2];
1145        src += 4;
1146        if(st) {
1147            c->status[1].predictor  = (int16_t)AV_RL16(src + 0);
1148            c->status[1].step_index = src[2];
1149            src += 4;
1150        }
1151
1152        while (src < buf + buf_size) {
1153
1154            if (st) {
1155                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1156                    src[0] >> 4  , 3);
1157                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1158                    src[0] & 0x0F, 3);
1159            } else {
1160                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1161                    src[0] & 0x0F, 3);
1162                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1163                    src[0] >> 4  , 3);
1164            }
1165
1166            src++;
1167        }
1168        break;
1169    case CODEC_ID_ADPCM_IMA_WS:
1170        /* no per-block initialization; just start decoding the data */
1171        while (src < buf + buf_size) {
1172
1173            if (st) {
1174                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1175                    src[0] >> 4  , 3);
1176                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1177                    src[0] & 0x0F, 3);
1178            } else {
1179                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1180                    src[0] >> 4  , 3);
1181                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1182                    src[0] & 0x0F, 3);
1183            }
1184
1185            src++;
1186        }
1187        break;
1188    case CODEC_ID_ADPCM_XA:
1189        while (buf_size >= 128) {
1190            xa_decode(samples, src, &c->status[0], &c->status[1],
1191                avctx->channels);
1192            src += 128;
1193            samples += 28 * 8;
1194            buf_size -= 128;
1195        }
1196        break;
1197    case CODEC_ID_ADPCM_IMA_EA_EACS:
1198        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1199
1200        if (samples_in_chunk > buf_size-4-(8<<st)) {
1201            src += buf_size - 4;
1202            break;
1203        }
1204
1205        for (i=0; i<=st; i++)
1206            c->status[i].step_index = bytestream_get_le32(&src);
1207        for (i=0; i<=st; i++)
1208            c->status[i].predictor  = bytestream_get_le32(&src);
1209
1210        for (; samples_in_chunk; samples_in_chunk--, src++) {
1211            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1212            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1213        }
1214        break;
1215    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1216        for (; src < buf+buf_size; src++) {
1217            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1218            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1219        }
1220        break;
1221    case CODEC_ID_ADPCM_EA:
1222        if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1223            src += buf_size;
1224            break;
1225        }
1226        samples_in_chunk = AV_RL32(src);
1227        src += 4;
1228        current_left_sample   = (int16_t)bytestream_get_le16(&src);
1229        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
1230        current_right_sample  = (int16_t)bytestream_get_le16(&src);
1231        previous_right_sample = (int16_t)bytestream_get_le16(&src);
1232
1233        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1234            coeff1l = ea_adpcm_table[ *src >> 4       ];
1235            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1236            coeff1r = ea_adpcm_table[*src & 0x0F];
1237            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1238            src++;
1239
1240            shift_left  = (*src >> 4  ) + 8;
1241            shift_right = (*src & 0x0F) + 8;
1242            src++;
1243
1244            for (count2 = 0; count2 < 28; count2++) {
1245                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1246                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1247                src++;
1248
1249                next_left_sample = (next_left_sample +
1250                    (current_left_sample * coeff1l) +
1251                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1252                next_right_sample = (next_right_sample +
1253                    (current_right_sample * coeff1r) +
1254                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1255
1256                previous_left_sample = current_left_sample;
1257                current_left_sample = av_clip_int16(next_left_sample);
1258                previous_right_sample = current_right_sample;
1259                current_right_sample = av_clip_int16(next_right_sample);
1260                *samples++ = (unsigned short)current_left_sample;
1261                *samples++ = (unsigned short)current_right_sample;
1262            }
1263        }
1264
1265        if (src - buf == buf_size - 2)
1266            src += 2; // Skip terminating 0x0000
1267
1268        break;
1269    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1270        for(channel = 0; channel < avctx->channels; channel++) {
1271            for (i=0; i<2; i++)
1272                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1273            shift[channel] = (*src & 0x0F) + 8;
1274            src++;
1275        }
1276        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1277            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1278                for(channel = 0; channel < avctx->channels; channel++) {
1279                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1280                    sample = (sample +
1281                             c->status[channel].sample1 * coeff[channel][0] +
1282                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1283                    c->status[channel].sample2 = c->status[channel].sample1;
1284                    c->status[channel].sample1 = av_clip_int16(sample);
1285                    *samples++ = c->status[channel].sample1;
1286                }
1287            }
1288            src+=avctx->channels;
1289        }
1290        break;
1291    case CODEC_ID_ADPCM_EA_R1:
1292    case CODEC_ID_ADPCM_EA_R2:
1293    case CODEC_ID_ADPCM_EA_R3: {
1294        /* channel numbering
1295           2chan: 0=fl, 1=fr
1296           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1297           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1298        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1299        int32_t previous_sample, current_sample, next_sample;
1300        int32_t coeff1, coeff2;
1301        uint8_t shift;
1302        unsigned int channel;
1303        uint16_t *samplesC;
1304        const uint8_t *srcC;
1305        const uint8_t *src_end = buf + buf_size;
1306
1307        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1308                                       : bytestream_get_le32(&src)) / 28;
1309        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1310            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1311            src += buf_size - 4;
1312            break;
1313        }
1314
1315        for (channel=0; channel<avctx->channels; channel++) {
1316            int32_t offset = (big_endian ? bytestream_get_be32(&src)
1317                                         : bytestream_get_le32(&src))
1318                           + (avctx->channels-channel-1) * 4;
1319
1320            if ((offset < 0) || (offset >= src_end - src - 4)) break;
1321            srcC  = src + offset;
1322            samplesC = samples + channel;
1323
1324            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1325                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1326                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1327            } else {
1328                current_sample  = c->status[channel].predictor;
1329                previous_sample = c->status[channel].prev_sample;
1330            }
1331
1332            for (count1=0; count1<samples_in_chunk; count1++) {
1333                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1334                    srcC++;
1335                    if (srcC > src_end - 30*2) break;
1336                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1337                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1338
1339                    for (count2=0; count2<28; count2++) {
1340                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1341                        samplesC += avctx->channels;
1342                    }
1343                } else {
1344                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1345                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1346                    shift = (*srcC++ & 0x0F) + 8;
1347
1348                    if (srcC > src_end - 14) break;
1349                    for (count2=0; count2<28; count2++) {
1350                        if (count2 & 1)
1351                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1352                        else
1353                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1354
1355                        next_sample += (current_sample  * coeff1) +
1356                                       (previous_sample * coeff2);
1357                        next_sample = av_clip_int16(next_sample >> 8);
1358
1359                        previous_sample = current_sample;
1360                        current_sample  = next_sample;
1361                        *samplesC = current_sample;
1362                        samplesC += avctx->channels;
1363                    }
1364                }
1365            }
1366
1367            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1368                c->status[channel].predictor   = current_sample;
1369                c->status[channel].prev_sample = previous_sample;
1370            }
1371        }
1372
1373        src = src + buf_size - (4 + 4*avctx->channels);
1374        samples += 28 * samples_in_chunk * avctx->channels;
1375        break;
1376    }
1377    case CODEC_ID_ADPCM_EA_XAS:
1378        if (samples_end-samples < 32*4*avctx->channels
1379            || buf_size < (4+15)*4*avctx->channels) {
1380            src += buf_size;
1381            break;
1382        }
1383        for (channel=0; channel<avctx->channels; channel++) {
1384            int coeff[2][4], shift[4];
1385            short *s2, *s = &samples[channel];
1386            for (n=0; n<4; n++, s+=32*avctx->channels) {
1387                for (i=0; i<2; i++)
1388                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1389                shift[n] = (src[2]&0x0F) + 8;
1390                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1391                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1392            }
1393
1394            for (m=2; m<32; m+=2) {
1395                s = &samples[m*avctx->channels + channel];
1396                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1397                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1398                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1399                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1400                                  + s2[-2*avctx->channels] * coeff[1][n];
1401                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1402                    }
1403                }
1404            }
1405        }
1406        samples += 32*4*avctx->channels;
1407        break;
1408    case CODEC_ID_ADPCM_IMA_AMV:
1409    case CODEC_ID_ADPCM_IMA_SMJPEG:
1410        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1411        c->status[0].step_index = bytestream_get_le16(&src);
1412
1413        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1414            src+=4;
1415
1416        while (src < buf + buf_size) {
1417            char hi, lo;
1418            lo = *src & 0x0F;
1419            hi = *src >> 4;
1420
1421            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1422                FFSWAP(char, hi, lo);
1423
1424            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1425                lo, 3);
1426            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1427                hi, 3);
1428            src++;
1429        }
1430        break;
1431    case CODEC_ID_ADPCM_CT:
1432        while (src < buf + buf_size) {
1433            if (st) {
1434                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1435                    src[0] >> 4);
1436                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1437                    src[0] & 0x0F);
1438            } else {
1439                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1440                    src[0] >> 4);
1441                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1442                    src[0] & 0x0F);
1443            }
1444            src++;
1445        }
1446        break;
1447    case CODEC_ID_ADPCM_SBPRO_4:
1448    case CODEC_ID_ADPCM_SBPRO_3:
1449    case CODEC_ID_ADPCM_SBPRO_2:
1450        if (!c->status[0].step_index) {
1451            /* the first byte is a raw sample */
1452            *samples++ = 128 * (*src++ - 0x80);
1453            if (st)
1454              *samples++ = 128 * (*src++ - 0x80);
1455            c->status[0].step_index = 1;
1456        }
1457        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1458            while (src < buf + buf_size) {
1459                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1460                    src[0] >> 4, 4, 0);
1461                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1462                    src[0] & 0x0F, 4, 0);
1463                src++;
1464            }
1465        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1466            while (src < buf + buf_size && samples + 2 < samples_end) {
1467                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1468                     src[0] >> 5        , 3, 0);
1469                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1470                    (src[0] >> 2) & 0x07, 3, 0);
1471                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1472                    src[0] & 0x03, 2, 0);
1473                src++;
1474            }
1475        } else {
1476            while (src < buf + buf_size && samples + 3 < samples_end) {
1477                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1478                     src[0] >> 6        , 2, 2);
1479                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1480                    (src[0] >> 4) & 0x03, 2, 2);
1481                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1482                    (src[0] >> 2) & 0x03, 2, 2);
1483                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1484                    src[0] & 0x03, 2, 2);
1485                src++;
1486            }
1487        }
1488        break;
1489    case CODEC_ID_ADPCM_SWF:
1490    {
1491        GetBitContext gb;
1492        const int *table;
1493        int k0, signmask, nb_bits, count;
1494        int size = buf_size*8;
1495
1496        init_get_bits(&gb, buf, size);
1497
1498        //read bits & initial values
1499        nb_bits = get_bits(&gb, 2)+2;
1500        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1501        table = swf_index_tables[nb_bits-2];
1502        k0 = 1 << (nb_bits-2);
1503        signmask = 1 << (nb_bits-1);
1504
1505        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1506            for (i = 0; i < avctx->channels; i++) {
1507                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1508                c->status[i].step_index = get_bits(&gb, 6);
1509            }
1510
1511            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1512                int i;
1513
1514                for (i = 0; i < avctx->channels; i++) {
1515                    // similar to IMA adpcm
1516                    int delta = get_bits(&gb, nb_bits);
1517                    int step = step_table[c->status[i].step_index];
1518                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1519                    int k = k0;
1520
1521                    do {
1522                        if (delta & k)
1523                            vpdiff += step;
1524                        step >>= 1;
1525                        k >>= 1;
1526                    } while(k);
1527                    vpdiff += step;
1528
1529                    if (delta & signmask)
1530                        c->status[i].predictor -= vpdiff;
1531                    else
1532                        c->status[i].predictor += vpdiff;
1533
1534                    c->status[i].step_index += table[delta & (~signmask)];
1535
1536                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1537                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1538
1539                    *samples++ = c->status[i].predictor;
1540                    if (samples >= samples_end) {
1541                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1542                        return -1;
1543                    }
1544                }
1545            }
1546        }
1547        src += buf_size;
1548        break;
1549    }
1550    case CODEC_ID_ADPCM_YAMAHA:
1551        while (src < buf + buf_size) {
1552            if (st) {
1553                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1554                        src[0] & 0x0F);
1555                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1556                        src[0] >> 4  );
1557            } else {
1558                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1559                        src[0] & 0x0F);
1560                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1561                        src[0] >> 4  );
1562            }
1563            src++;
1564        }
1565        break;
1566    case CODEC_ID_ADPCM_THP:
1567    {
1568        int table[2][16];
1569        unsigned int samplecnt;
1570        int prev[2][2];
1571        int ch;
1572
1573        if (buf_size < 80) {
1574            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1575            return -1;
1576        }
1577
1578        src+=4;
1579        samplecnt = bytestream_get_be32(&src);
1580
1581        for (i = 0; i < 32; i++)
1582            table[0][i] = (int16_t)bytestream_get_be16(&src);
1583
1584        /* Initialize the previous sample.  */
1585        for (i = 0; i < 4; i++)
1586            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1587
1588        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1589            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1590            return -1;
1591        }
1592
1593        for (ch = 0; ch <= st; ch++) {
1594            samples = (unsigned short *) data + ch;
1595
1596            /* Read in every sample for this channel.  */
1597            for (i = 0; i < samplecnt / 14; i++) {
1598                int index = (*src >> 4) & 7;
1599                unsigned int exp = 28 - (*src++ & 15);
1600                int factor1 = table[ch][index * 2];
1601                int factor2 = table[ch][index * 2 + 1];
1602
1603                /* Decode 14 samples.  */
1604                for (n = 0; n < 14; n++) {
1605                    int32_t sampledat;
1606                    if(n&1) sampledat=  *src++    <<28;
1607                    else    sampledat= (*src&0xF0)<<24;
1608
1609                    sampledat = ((prev[ch][0]*factor1
1610                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1611                    *samples = av_clip_int16(sampledat);
1612                    prev[ch][1] = prev[ch][0];
1613                    prev[ch][0] = *samples++;
1614
1615                    /* In case of stereo, skip one sample, this sample
1616                       is for the other channel.  */
1617                    samples += st;
1618                }
1619            }
1620        }
1621
1622        /* In the previous loop, in case stereo is used, samples is
1623           increased exactly one time too often.  */
1624        samples -= st;
1625        break;
1626    }
1627
1628    default:
1629        return -1;
1630    }
1631    *data_size = (uint8_t *)samples - (uint8_t *)data;
1632    return src - buf;
1633}
1634
1635
1636
1637#if CONFIG_ENCODERS
1638#define ADPCM_ENCODER(id,name,long_name_)       \
1639AVCodec name ## _encoder = {                    \
1640    #name,                                      \
1641    AVMEDIA_TYPE_AUDIO,                         \
1642    id,                                         \
1643    sizeof(ADPCMContext),                       \
1644    adpcm_encode_init,                          \
1645    adpcm_encode_frame,                         \
1646    adpcm_encode_close,                         \
1647    NULL,                                       \
1648    .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1649    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1650};
1651#else
1652#define ADPCM_ENCODER(id,name,long_name_)
1653#endif
1654
1655#if CONFIG_DECODERS
1656#define ADPCM_DECODER(id,name,long_name_)       \
1657AVCodec name ## _decoder = {                    \
1658    #name,                                      \
1659    AVMEDIA_TYPE_AUDIO,                         \
1660    id,                                         \
1661    sizeof(ADPCMContext),                       \
1662    adpcm_decode_init,                          \
1663    NULL,                                       \
1664    NULL,                                       \
1665    adpcm_decode_frame,                         \
1666    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1667};
1668#else
1669#define ADPCM_DECODER(id,name,long_name_)
1670#endif
1671
1672#define ADPCM_CODEC(id,name,long_name_)         \
1673    ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1674
1675/* Note: Do not forget to add new entries to the Makefile as well. */
1676ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1677ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1678ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1679ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1680ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1681ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1682ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1683ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1684ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1685ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1686ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1687ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1688ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1689ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1690ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1691ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1692ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1693ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1694ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1695ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1696ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1697ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1698ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1699ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1700ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1701ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");
1702