1/*
2 * The simplest AC-3 encoder
3 * Copyright (c) 2000 Fabrice Bellard
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * The simplest AC-3 encoder.
25 */
26//#define DEBUG
27//#define DEBUG_BITALLOC
28#include "libavutil/crc.h"
29#include "avcodec.h"
30#include "libavutil/common.h" /* for av_reverse */
31#include "put_bits.h"
32#include "ac3.h"
33#include "audioconvert.h"
34
35typedef struct AC3EncodeContext {
36    PutBitContext pb;
37    int nb_channels;
38    int nb_all_channels;
39    int lfe_channel;
40    const uint8_t *channel_map;
41    int bit_rate;
42    unsigned int sample_rate;
43    unsigned int bitstream_id;
44    unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
45    unsigned int frame_size; /* current frame size in words */
46    unsigned int bits_written;
47    unsigned int samples_written;
48    int sr_shift;
49    unsigned int frame_size_code;
50    unsigned int sr_code; /* frequency */
51    unsigned int channel_mode;
52    int lfe;
53    unsigned int bitstream_mode;
54    short last_samples[AC3_MAX_CHANNELS][256];
55    unsigned int chbwcod[AC3_MAX_CHANNELS];
56    int nb_coefs[AC3_MAX_CHANNELS];
57
58    /* bitrate allocation control */
59    int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
60    AC3BitAllocParameters bit_alloc;
61    int coarse_snr_offset;
62    int fast_gain_code[AC3_MAX_CHANNELS];
63    int fine_snr_offset[AC3_MAX_CHANNELS];
64    /* mantissa encoding */
65    int mant1_cnt, mant2_cnt, mant4_cnt;
66} AC3EncodeContext;
67
68static int16_t costab[64];
69static int16_t sintab[64];
70static int16_t xcos1[128];
71static int16_t xsin1[128];
72
73#define MDCT_NBITS 9
74#define N         (1 << MDCT_NBITS)
75
76/* new exponents are sent if their Norm 1 exceed this number */
77#define EXP_DIFF_THRESHOLD 1000
78
79static inline int16_t fix15(float a)
80{
81    int v;
82    v = (int)(a * (float)(1 << 15));
83    if (v < -32767)
84        v = -32767;
85    else if (v > 32767)
86        v = 32767;
87    return v;
88}
89
90typedef struct IComplex {
91    short re,im;
92} IComplex;
93
94static av_cold void fft_init(int ln)
95{
96    int i, n;
97    float alpha;
98
99    n = 1 << ln;
100
101    for(i=0;i<(n/2);i++) {
102        alpha = 2 * M_PI * (float)i / (float)n;
103        costab[i] = fix15(cos(alpha));
104        sintab[i] = fix15(sin(alpha));
105    }
106}
107
108/* butter fly op */
109#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
110{\
111  int ax, ay, bx, by;\
112  bx=pre1;\
113  by=pim1;\
114  ax=qre1;\
115  ay=qim1;\
116  pre = (bx + ax) >> 1;\
117  pim = (by + ay) >> 1;\
118  qre = (bx - ax) >> 1;\
119  qim = (by - ay) >> 1;\
120}
121
122#define CMUL(pre, pim, are, aim, bre, bim) \
123{\
124   pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
125   pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
126}
127
128
129/* do a 2^n point complex fft on 2^ln points. */
130static void fft(IComplex *z, int ln)
131{
132    int        j, l, np, np2;
133    int        nblocks, nloops;
134    register IComplex *p,*q;
135    int tmp_re, tmp_im;
136
137    np = 1 << ln;
138
139    /* reverse */
140    for(j=0;j<np;j++) {
141        int k = av_reverse[j] >> (8 - ln);
142        if (k < j)
143            FFSWAP(IComplex, z[k], z[j]);
144    }
145
146    /* pass 0 */
147
148    p=&z[0];
149    j=(np >> 1);
150    do {
151        BF(p[0].re, p[0].im, p[1].re, p[1].im,
152           p[0].re, p[0].im, p[1].re, p[1].im);
153        p+=2;
154    } while (--j != 0);
155
156    /* pass 1 */
157
158    p=&z[0];
159    j=np >> 2;
160    do {
161        BF(p[0].re, p[0].im, p[2].re, p[2].im,
162           p[0].re, p[0].im, p[2].re, p[2].im);
163        BF(p[1].re, p[1].im, p[3].re, p[3].im,
164           p[1].re, p[1].im, p[3].im, -p[3].re);
165        p+=4;
166    } while (--j != 0);
167
168    /* pass 2 .. ln-1 */
169
170    nblocks = np >> 3;
171    nloops = 1 << 2;
172    np2 = np >> 1;
173    do {
174        p = z;
175        q = z + nloops;
176        for (j = 0; j < nblocks; ++j) {
177
178            BF(p->re, p->im, q->re, q->im,
179               p->re, p->im, q->re, q->im);
180
181            p++;
182            q++;
183            for(l = nblocks; l < np2; l += nblocks) {
184                CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
185                BF(p->re, p->im, q->re, q->im,
186                   p->re, p->im, tmp_re, tmp_im);
187                p++;
188                q++;
189            }
190            p += nloops;
191            q += nloops;
192        }
193        nblocks = nblocks >> 1;
194        nloops = nloops << 1;
195    } while (nblocks != 0);
196}
197
198/* do a 512 point mdct */
199static void mdct512(int32_t *out, int16_t *in)
200{
201    int i, re, im, re1, im1;
202    int16_t rot[N];
203    IComplex x[N/4];
204
205    /* shift to simplify computations */
206    for(i=0;i<N/4;i++)
207        rot[i] = -in[i + 3*N/4];
208    for(i=N/4;i<N;i++)
209        rot[i] = in[i - N/4];
210
211    /* pre rotation */
212    for(i=0;i<N/4;i++) {
213        re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
214        im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
215        CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
216    }
217
218    fft(x, MDCT_NBITS - 2);
219
220    /* post rotation */
221    for(i=0;i<N/4;i++) {
222        re = x[i].re;
223        im = x[i].im;
224        CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
225        out[2*i] = im1;
226        out[N/2-1-2*i] = re1;
227    }
228}
229
230/* XXX: use another norm ? */
231static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
232{
233    int sum, i;
234    sum = 0;
235    for(i=0;i<n;i++) {
236        sum += abs(exp1[i] - exp2[i]);
237    }
238    return sum;
239}
240
241static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
242                                 uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
243                                 int ch, int is_lfe)
244{
245    int i, j;
246    int exp_diff;
247
248    /* estimate if the exponent variation & decide if they should be
249       reused in the next frame */
250    exp_strategy[0][ch] = EXP_NEW;
251    for(i=1;i<NB_BLOCKS;i++) {
252        exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
253        dprintf(NULL, "exp_diff=%d\n", exp_diff);
254        if (exp_diff > EXP_DIFF_THRESHOLD)
255            exp_strategy[i][ch] = EXP_NEW;
256        else
257            exp_strategy[i][ch] = EXP_REUSE;
258    }
259    if (is_lfe)
260        return;
261
262    /* now select the encoding strategy type : if exponents are often
263       recoded, we use a coarse encoding */
264    i = 0;
265    while (i < NB_BLOCKS) {
266        j = i + 1;
267        while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
268            j++;
269        switch(j - i) {
270        case 1:
271            exp_strategy[i][ch] = EXP_D45;
272            break;
273        case 2:
274        case 3:
275            exp_strategy[i][ch] = EXP_D25;
276            break;
277        default:
278            exp_strategy[i][ch] = EXP_D15;
279            break;
280        }
281        i = j;
282    }
283}
284
285/* set exp[i] to min(exp[i], exp1[i]) */
286static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
287{
288    int i;
289
290    for(i=0;i<n;i++) {
291        if (exp1[i] < exp[i])
292            exp[i] = exp1[i];
293    }
294}
295
296/* update the exponents so that they are the ones the decoder will
297   decode. Return the number of bits used to code the exponents */
298static int encode_exp(uint8_t encoded_exp[N/2],
299                      uint8_t exp[N/2],
300                      int nb_exps,
301                      int exp_strategy)
302{
303    int group_size, nb_groups, i, j, k, exp_min;
304    uint8_t exp1[N/2];
305
306    switch(exp_strategy) {
307    case EXP_D15:
308        group_size = 1;
309        break;
310    case EXP_D25:
311        group_size = 2;
312        break;
313    default:
314    case EXP_D45:
315        group_size = 4;
316        break;
317    }
318    nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
319
320    /* for each group, compute the minimum exponent */
321    exp1[0] = exp[0]; /* DC exponent is handled separately */
322    k = 1;
323    for(i=1;i<=nb_groups;i++) {
324        exp_min = exp[k];
325        assert(exp_min >= 0 && exp_min <= 24);
326        for(j=1;j<group_size;j++) {
327            if (exp[k+j] < exp_min)
328                exp_min = exp[k+j];
329        }
330        exp1[i] = exp_min;
331        k += group_size;
332    }
333
334    /* constraint for DC exponent */
335    if (exp1[0] > 15)
336        exp1[0] = 15;
337
338    /* Decrease the delta between each groups to within 2
339     * so that they can be differentially encoded */
340    for (i=1;i<=nb_groups;i++)
341        exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
342    for (i=nb_groups-1;i>=0;i--)
343        exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
344
345    /* now we have the exponent values the decoder will see */
346    encoded_exp[0] = exp1[0];
347    k = 1;
348    for(i=1;i<=nb_groups;i++) {
349        for(j=0;j<group_size;j++) {
350            encoded_exp[k+j] = exp1[i];
351        }
352        k += group_size;
353    }
354
355#if defined(DEBUG)
356    av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
357    for(i=0;i<=nb_groups * group_size;i++) {
358        av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
359    }
360    av_log(NULL, AV_LOG_DEBUG, "\n");
361#endif
362
363    return 4 + (nb_groups / 3) * 7;
364}
365
366/* return the size in bits taken by the mantissa */
367static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
368{
369    int bits, mant, i;
370
371    bits = 0;
372    for(i=0;i<nb_coefs;i++) {
373        mant = m[i];
374        switch(mant) {
375        case 0:
376            /* nothing */
377            break;
378        case 1:
379            /* 3 mantissa in 5 bits */
380            if (s->mant1_cnt == 0)
381                bits += 5;
382            if (++s->mant1_cnt == 3)
383                s->mant1_cnt = 0;
384            break;
385        case 2:
386            /* 3 mantissa in 7 bits */
387            if (s->mant2_cnt == 0)
388                bits += 7;
389            if (++s->mant2_cnt == 3)
390                s->mant2_cnt = 0;
391            break;
392        case 3:
393            bits += 3;
394            break;
395        case 4:
396            /* 2 mantissa in 7 bits */
397            if (s->mant4_cnt == 0)
398                bits += 7;
399            if (++s->mant4_cnt == 2)
400                s->mant4_cnt = 0;
401            break;
402        case 14:
403            bits += 14;
404            break;
405        case 15:
406            bits += 16;
407            break;
408        default:
409            bits += mant - 1;
410            break;
411        }
412    }
413    return bits;
414}
415
416
417static void bit_alloc_masking(AC3EncodeContext *s,
418                              uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
419                              uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
420                              int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
421                              int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
422{
423    int blk, ch;
424    int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
425
426    for(blk=0; blk<NB_BLOCKS; blk++) {
427        for(ch=0;ch<s->nb_all_channels;ch++) {
428            if(exp_strategy[blk][ch] == EXP_REUSE) {
429                memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t));
430                memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
431            } else {
432                ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
433                                          s->nb_coefs[ch],
434                                          psd[blk][ch], band_psd[blk][ch]);
435                ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
436                                           0, s->nb_coefs[ch],
437                                           ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
438                                           ch == s->lfe_channel,
439                                           DBA_NONE, 0, NULL, NULL, NULL,
440                                           mask[blk][ch]);
441            }
442        }
443    }
444}
445
446static int bit_alloc(AC3EncodeContext *s,
447                     int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
448                     int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
449                     uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
450                     int frame_bits, int coarse_snr_offset, int fine_snr_offset)
451{
452    int i, ch;
453    int snr_offset;
454
455    snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
456
457    /* compute size */
458    for(i=0;i<NB_BLOCKS;i++) {
459        s->mant1_cnt = 0;
460        s->mant2_cnt = 0;
461        s->mant4_cnt = 0;
462        for(ch=0;ch<s->nb_all_channels;ch++) {
463            ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
464                                      s->nb_coefs[ch], snr_offset,
465                                      s->bit_alloc.floor, ff_ac3_bap_tab,
466                                      bap[i][ch]);
467            frame_bits += compute_mantissa_size(s, bap[i][ch],
468                                                 s->nb_coefs[ch]);
469        }
470    }
471#if 0
472    printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
473           coarse_snr_offset, fine_snr_offset, frame_bits,
474           16 * s->frame_size - ((frame_bits + 7) & ~7));
475#endif
476    return 16 * s->frame_size - frame_bits;
477}
478
479#define SNR_INC1 4
480
481static int compute_bit_allocation(AC3EncodeContext *s,
482                                  uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
483                                  uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
484                                  uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
485                                  int frame_bits)
486{
487    int i, ch;
488    int coarse_snr_offset, fine_snr_offset;
489    uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
490    int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
491    int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
492    static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
493
494    /* init default parameters */
495    s->slow_decay_code = 2;
496    s->fast_decay_code = 1;
497    s->slow_gain_code = 1;
498    s->db_per_bit_code = 2;
499    s->floor_code = 4;
500    for(ch=0;ch<s->nb_all_channels;ch++)
501        s->fast_gain_code[ch] = 4;
502
503    /* compute real values */
504    s->bit_alloc.sr_code = s->sr_code;
505    s->bit_alloc.sr_shift = s->sr_shift;
506    s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift;
507    s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift;
508    s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
509    s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
510    s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
511
512    /* header size */
513    frame_bits += 65;
514    // if (s->channel_mode == 2)
515    //    frame_bits += 2;
516    frame_bits += frame_bits_inc[s->channel_mode];
517
518    /* audio blocks */
519    for(i=0;i<NB_BLOCKS;i++) {
520        frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
521        if (s->channel_mode == AC3_CHMODE_STEREO) {
522            frame_bits++; /* rematstr */
523            if(i==0) frame_bits += 4;
524        }
525        frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
526        if (s->lfe)
527            frame_bits++; /* lfeexpstr */
528        for(ch=0;ch<s->nb_channels;ch++) {
529            if (exp_strategy[i][ch] != EXP_REUSE)
530                frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
531        }
532        frame_bits++; /* baie */
533        frame_bits++; /* snr */
534        frame_bits += 2; /* delta / skip */
535    }
536    frame_bits++; /* cplinu for block 0 */
537    /* bit alloc info */
538    /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
539    /* csnroffset[6] */
540    /* (fsnoffset[4] + fgaincod[4]) * c */
541    frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
542
543    /* auxdatae, crcrsv */
544    frame_bits += 2;
545
546    /* CRC */
547    frame_bits += 16;
548
549    /* calculate psd and masking curve before doing bit allocation */
550    bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
551
552    /* now the big work begins : do the bit allocation. Modify the snr
553       offset until we can pack everything in the requested frame size */
554
555    coarse_snr_offset = s->coarse_snr_offset;
556    while (coarse_snr_offset >= 0 &&
557           bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
558        coarse_snr_offset -= SNR_INC1;
559    if (coarse_snr_offset < 0) {
560        av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
561        return -1;
562    }
563    while ((coarse_snr_offset + SNR_INC1) <= 63 &&
564           bit_alloc(s, mask, psd, bap1, frame_bits,
565                     coarse_snr_offset + SNR_INC1, 0) >= 0) {
566        coarse_snr_offset += SNR_INC1;
567        memcpy(bap, bap1, sizeof(bap1));
568    }
569    while ((coarse_snr_offset + 1) <= 63 &&
570           bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
571        coarse_snr_offset++;
572        memcpy(bap, bap1, sizeof(bap1));
573    }
574
575    fine_snr_offset = 0;
576    while ((fine_snr_offset + SNR_INC1) <= 15 &&
577           bit_alloc(s, mask, psd, bap1, frame_bits,
578                     coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
579        fine_snr_offset += SNR_INC1;
580        memcpy(bap, bap1, sizeof(bap1));
581    }
582    while ((fine_snr_offset + 1) <= 15 &&
583           bit_alloc(s, mask, psd, bap1, frame_bits,
584                     coarse_snr_offset, fine_snr_offset + 1) >= 0) {
585        fine_snr_offset++;
586        memcpy(bap, bap1, sizeof(bap1));
587    }
588
589    s->coarse_snr_offset = coarse_snr_offset;
590    for(ch=0;ch<s->nb_all_channels;ch++)
591        s->fine_snr_offset[ch] = fine_snr_offset;
592#if defined(DEBUG_BITALLOC)
593    {
594        int j;
595
596        for(i=0;i<6;i++) {
597            for(ch=0;ch<s->nb_all_channels;ch++) {
598                printf("Block #%d Ch%d:\n", i, ch);
599                printf("bap=");
600                for(j=0;j<s->nb_coefs[ch];j++) {
601                    printf("%d ",bap[i][ch][j]);
602                }
603                printf("\n");
604            }
605        }
606    }
607#endif
608    return 0;
609}
610
611static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
612                                    int64_t *channel_layout)
613{
614    int ch_layout;
615
616    if (channels < 1 || channels > AC3_MAX_CHANNELS)
617        return -1;
618    if ((uint64_t)*channel_layout > 0x7FF)
619        return -1;
620    ch_layout = *channel_layout;
621    if (!ch_layout)
622        ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
623    if (avcodec_channel_layout_num_channels(ch_layout) != channels)
624        return -1;
625
626    s->lfe = !!(ch_layout & CH_LOW_FREQUENCY);
627    s->nb_all_channels = channels;
628    s->nb_channels = channels - s->lfe;
629    s->lfe_channel = s->lfe ? s->nb_channels : -1;
630    if (s->lfe)
631        ch_layout -= CH_LOW_FREQUENCY;
632
633    switch (ch_layout) {
634    case CH_LAYOUT_MONO:           s->channel_mode = AC3_CHMODE_MONO;   break;
635    case CH_LAYOUT_STEREO:         s->channel_mode = AC3_CHMODE_STEREO; break;
636    case CH_LAYOUT_SURROUND:       s->channel_mode = AC3_CHMODE_3F;     break;
637    case CH_LAYOUT_2_1:            s->channel_mode = AC3_CHMODE_2F1R;   break;
638    case CH_LAYOUT_4POINT0:        s->channel_mode = AC3_CHMODE_3F1R;   break;
639    case CH_LAYOUT_QUAD:
640    case CH_LAYOUT_2_2:            s->channel_mode = AC3_CHMODE_2F2R;   break;
641    case CH_LAYOUT_5POINT0:
642    case CH_LAYOUT_5POINT0_BACK:   s->channel_mode = AC3_CHMODE_3F2R;   break;
643    default:
644        return -1;
645    }
646
647    s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe];
648    *channel_layout = ch_layout;
649    if (s->lfe)
650        *channel_layout |= CH_LOW_FREQUENCY;
651
652    return 0;
653}
654
655static av_cold int AC3_encode_init(AVCodecContext *avctx)
656{
657    int freq = avctx->sample_rate;
658    int bitrate = avctx->bit_rate;
659    AC3EncodeContext *s = avctx->priv_data;
660    int i, j, ch;
661    float alpha;
662    int bw_code;
663
664    avctx->frame_size = AC3_FRAME_SIZE;
665
666    ac3_common_init();
667
668    if (!avctx->channel_layout) {
669        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
670                                      "encoder will guess the layout, but it "
671                                      "might be incorrect.\n");
672    }
673    if (set_channel_info(s, avctx->channels, &avctx->channel_layout)) {
674        av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
675        return -1;
676    }
677
678    /* frequency */
679    for(i=0;i<3;i++) {
680        for(j=0;j<3;j++)
681            if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
682                goto found;
683    }
684    return -1;
685 found:
686    s->sample_rate = freq;
687    s->sr_shift = i;
688    s->sr_code = j;
689    s->bitstream_id = 8 + s->sr_shift;
690    s->bitstream_mode = 0; /* complete main audio service */
691
692    /* bitrate & frame size */
693    for(i=0;i<19;i++) {
694        if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate)
695            break;
696    }
697    if (i == 19)
698        return -1;
699    s->bit_rate = bitrate;
700    s->frame_size_code = i << 1;
701    s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code];
702    s->bits_written = 0;
703    s->samples_written = 0;
704    s->frame_size = s->frame_size_min;
705
706    /* bit allocation init */
707    if(avctx->cutoff) {
708        /* calculate bandwidth based on user-specified cutoff frequency */
709        int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
710        int fbw_coeffs = cutoff * 512 / s->sample_rate;
711        bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
712    } else {
713        /* use default bandwidth setting */
714        /* XXX: should compute the bandwidth according to the frame
715           size, so that we avoid annoying high frequency artifacts */
716        bw_code = 50;
717    }
718    for(ch=0;ch<s->nb_channels;ch++) {
719        /* bandwidth for each channel */
720        s->chbwcod[ch] = bw_code;
721        s->nb_coefs[ch] = bw_code * 3 + 73;
722    }
723    if (s->lfe) {
724        s->nb_coefs[s->lfe_channel] = 7; /* fixed */
725    }
726    /* initial snr offset */
727    s->coarse_snr_offset = 40;
728
729    /* mdct init */
730    fft_init(MDCT_NBITS - 2);
731    for(i=0;i<N/4;i++) {
732        alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
733        xcos1[i] = fix15(-cos(alpha));
734        xsin1[i] = fix15(-sin(alpha));
735    }
736
737    avctx->coded_frame= avcodec_alloc_frame();
738    avctx->coded_frame->key_frame= 1;
739
740    return 0;
741}
742
743/* output the AC-3 frame header */
744static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
745{
746    init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
747
748    put_bits(&s->pb, 16, 0x0b77); /* frame header */
749    put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
750    put_bits(&s->pb, 2, s->sr_code);
751    put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
752    put_bits(&s->pb, 5, s->bitstream_id);
753    put_bits(&s->pb, 3, s->bitstream_mode);
754    put_bits(&s->pb, 3, s->channel_mode);
755    if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
756        put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
757    if (s->channel_mode & 0x04)
758        put_bits(&s->pb, 2, 1); /* XXX -6 dB */
759    if (s->channel_mode == AC3_CHMODE_STEREO)
760        put_bits(&s->pb, 2, 0); /* surround not indicated */
761    put_bits(&s->pb, 1, s->lfe); /* LFE */
762    put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
763    put_bits(&s->pb, 1, 0); /* no compression control word */
764    put_bits(&s->pb, 1, 0); /* no lang code */
765    put_bits(&s->pb, 1, 0); /* no audio production info */
766    put_bits(&s->pb, 1, 0); /* no copyright */
767    put_bits(&s->pb, 1, 1); /* original bitstream */
768    put_bits(&s->pb, 1, 0); /* no time code 1 */
769    put_bits(&s->pb, 1, 0); /* no time code 2 */
770    put_bits(&s->pb, 1, 0); /* no additional bit stream info */
771}
772
773/* symetric quantization on 'levels' levels */
774static inline int sym_quant(int c, int e, int levels)
775{
776    int v;
777
778    if (c >= 0) {
779        v = (levels * (c << e)) >> 24;
780        v = (v + 1) >> 1;
781        v = (levels >> 1) + v;
782    } else {
783        v = (levels * ((-c) << e)) >> 24;
784        v = (v + 1) >> 1;
785        v = (levels >> 1) - v;
786    }
787    assert (v >= 0 && v < levels);
788    return v;
789}
790
791/* asymetric quantization on 2^qbits levels */
792static inline int asym_quant(int c, int e, int qbits)
793{
794    int lshift, m, v;
795
796    lshift = e + qbits - 24;
797    if (lshift >= 0)
798        v = c << lshift;
799    else
800        v = c >> (-lshift);
801    /* rounding */
802    v = (v + 1) >> 1;
803    m = (1 << (qbits-1));
804    if (v >= m)
805        v = m - 1;
806    assert(v >= -m);
807    return v & ((1 << qbits)-1);
808}
809
810/* Output one audio block. There are NB_BLOCKS audio blocks in one AC-3
811   frame */
812static void output_audio_block(AC3EncodeContext *s,
813                               uint8_t exp_strategy[AC3_MAX_CHANNELS],
814                               uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
815                               uint8_t bap[AC3_MAX_CHANNELS][N/2],
816                               int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
817                               int8_t global_exp[AC3_MAX_CHANNELS],
818                               int block_num)
819{
820    int ch, nb_groups, group_size, i, baie, rbnd;
821    uint8_t *p;
822    uint16_t qmant[AC3_MAX_CHANNELS][N/2];
823    int exp0, exp1;
824    int mant1_cnt, mant2_cnt, mant4_cnt;
825    uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
826    int delta0, delta1, delta2;
827
828    for(ch=0;ch<s->nb_channels;ch++)
829        put_bits(&s->pb, 1, 0); /* 512 point MDCT */
830    for(ch=0;ch<s->nb_channels;ch++)
831        put_bits(&s->pb, 1, 1); /* no dither */
832    put_bits(&s->pb, 1, 0); /* no dynamic range */
833    if (block_num == 0) {
834        /* for block 0, even if no coupling, we must say it. This is a
835           waste of bit :-) */
836        put_bits(&s->pb, 1, 1); /* coupling strategy present */
837        put_bits(&s->pb, 1, 0); /* no coupling strategy */
838    } else {
839        put_bits(&s->pb, 1, 0); /* no new coupling strategy */
840    }
841
842    if (s->channel_mode == AC3_CHMODE_STEREO)
843      {
844        if(block_num==0)
845          {
846            /* first block must define rematrixing (rematstr)  */
847            put_bits(&s->pb, 1, 1);
848
849            /* dummy rematrixing rematflg(1:4)=0 */
850            for (rbnd=0;rbnd<4;rbnd++)
851              put_bits(&s->pb, 1, 0);
852          }
853        else
854          {
855            /* no matrixing (but should be used in the future) */
856            put_bits(&s->pb, 1, 0);
857          }
858      }
859
860#if defined(DEBUG)
861    {
862      static int count = 0;
863      av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
864    }
865#endif
866    /* exponent strategy */
867    for(ch=0;ch<s->nb_channels;ch++) {
868        put_bits(&s->pb, 2, exp_strategy[ch]);
869    }
870
871    if (s->lfe) {
872        put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
873    }
874
875    for(ch=0;ch<s->nb_channels;ch++) {
876        if (exp_strategy[ch] != EXP_REUSE)
877            put_bits(&s->pb, 6, s->chbwcod[ch]);
878    }
879
880    /* exponents */
881    for (ch = 0; ch < s->nb_all_channels; ch++) {
882        switch(exp_strategy[ch]) {
883        case EXP_REUSE:
884            continue;
885        case EXP_D15:
886            group_size = 1;
887            break;
888        case EXP_D25:
889            group_size = 2;
890            break;
891        default:
892        case EXP_D45:
893            group_size = 4;
894            break;
895        }
896        nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
897        p = encoded_exp[ch];
898
899        /* first exponent */
900        exp1 = *p++;
901        put_bits(&s->pb, 4, exp1);
902
903        /* next ones are delta encoded */
904        for(i=0;i<nb_groups;i++) {
905            /* merge three delta in one code */
906            exp0 = exp1;
907            exp1 = p[0];
908            p += group_size;
909            delta0 = exp1 - exp0 + 2;
910
911            exp0 = exp1;
912            exp1 = p[0];
913            p += group_size;
914            delta1 = exp1 - exp0 + 2;
915
916            exp0 = exp1;
917            exp1 = p[0];
918            p += group_size;
919            delta2 = exp1 - exp0 + 2;
920
921            put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
922        }
923
924        if (ch != s->lfe_channel)
925            put_bits(&s->pb, 2, 0); /* no gain range info */
926    }
927
928    /* bit allocation info */
929    baie = (block_num == 0);
930    put_bits(&s->pb, 1, baie);
931    if (baie) {
932        put_bits(&s->pb, 2, s->slow_decay_code);
933        put_bits(&s->pb, 2, s->fast_decay_code);
934        put_bits(&s->pb, 2, s->slow_gain_code);
935        put_bits(&s->pb, 2, s->db_per_bit_code);
936        put_bits(&s->pb, 3, s->floor_code);
937    }
938
939    /* snr offset */
940    put_bits(&s->pb, 1, baie); /* always present with bai */
941    if (baie) {
942        put_bits(&s->pb, 6, s->coarse_snr_offset);
943        for(ch=0;ch<s->nb_all_channels;ch++) {
944            put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
945            put_bits(&s->pb, 3, s->fast_gain_code[ch]);
946        }
947    }
948
949    put_bits(&s->pb, 1, 0); /* no delta bit allocation */
950    put_bits(&s->pb, 1, 0); /* no data to skip */
951
952    /* mantissa encoding : we use two passes to handle the grouping. A
953       one pass method may be faster, but it would necessitate to
954       modify the output stream. */
955
956    /* first pass: quantize */
957    mant1_cnt = mant2_cnt = mant4_cnt = 0;
958    qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
959
960    for (ch = 0; ch < s->nb_all_channels; ch++) {
961        int b, c, e, v;
962
963        for(i=0;i<s->nb_coefs[ch];i++) {
964            c = mdct_coefs[ch][i];
965            e = encoded_exp[ch][i] - global_exp[ch];
966            b = bap[ch][i];
967            switch(b) {
968            case 0:
969                v = 0;
970                break;
971            case 1:
972                v = sym_quant(c, e, 3);
973                switch(mant1_cnt) {
974                case 0:
975                    qmant1_ptr = &qmant[ch][i];
976                    v = 9 * v;
977                    mant1_cnt = 1;
978                    break;
979                case 1:
980                    *qmant1_ptr += 3 * v;
981                    mant1_cnt = 2;
982                    v = 128;
983                    break;
984                default:
985                    *qmant1_ptr += v;
986                    mant1_cnt = 0;
987                    v = 128;
988                    break;
989                }
990                break;
991            case 2:
992                v = sym_quant(c, e, 5);
993                switch(mant2_cnt) {
994                case 0:
995                    qmant2_ptr = &qmant[ch][i];
996                    v = 25 * v;
997                    mant2_cnt = 1;
998                    break;
999                case 1:
1000                    *qmant2_ptr += 5 * v;
1001                    mant2_cnt = 2;
1002                    v = 128;
1003                    break;
1004                default:
1005                    *qmant2_ptr += v;
1006                    mant2_cnt = 0;
1007                    v = 128;
1008                    break;
1009                }
1010                break;
1011            case 3:
1012                v = sym_quant(c, e, 7);
1013                break;
1014            case 4:
1015                v = sym_quant(c, e, 11);
1016                switch(mant4_cnt) {
1017                case 0:
1018                    qmant4_ptr = &qmant[ch][i];
1019                    v = 11 * v;
1020                    mant4_cnt = 1;
1021                    break;
1022                default:
1023                    *qmant4_ptr += v;
1024                    mant4_cnt = 0;
1025                    v = 128;
1026                    break;
1027                }
1028                break;
1029            case 5:
1030                v = sym_quant(c, e, 15);
1031                break;
1032            case 14:
1033                v = asym_quant(c, e, 14);
1034                break;
1035            case 15:
1036                v = asym_quant(c, e, 16);
1037                break;
1038            default:
1039                v = asym_quant(c, e, b - 1);
1040                break;
1041            }
1042            qmant[ch][i] = v;
1043        }
1044    }
1045
1046    /* second pass : output the values */
1047    for (ch = 0; ch < s->nb_all_channels; ch++) {
1048        int b, q;
1049
1050        for(i=0;i<s->nb_coefs[ch];i++) {
1051            q = qmant[ch][i];
1052            b = bap[ch][i];
1053            switch(b) {
1054            case 0:
1055                break;
1056            case 1:
1057                if (q != 128)
1058                    put_bits(&s->pb, 5, q);
1059                break;
1060            case 2:
1061                if (q != 128)
1062                    put_bits(&s->pb, 7, q);
1063                break;
1064            case 3:
1065                put_bits(&s->pb, 3, q);
1066                break;
1067            case 4:
1068                if (q != 128)
1069                    put_bits(&s->pb, 7, q);
1070                break;
1071            case 14:
1072                put_bits(&s->pb, 14, q);
1073                break;
1074            case 15:
1075                put_bits(&s->pb, 16, q);
1076                break;
1077            default:
1078                put_bits(&s->pb, b - 1, q);
1079                break;
1080            }
1081        }
1082    }
1083}
1084
1085#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
1086
1087static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
1088{
1089    unsigned int c;
1090
1091    c = 0;
1092    while (a) {
1093        if (a & 1)
1094            c ^= b;
1095        a = a >> 1;
1096        b = b << 1;
1097        if (b & (1 << 16))
1098            b ^= poly;
1099    }
1100    return c;
1101}
1102
1103static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
1104{
1105    unsigned int r;
1106    r = 1;
1107    while (n) {
1108        if (n & 1)
1109            r = mul_poly(r, a, poly);
1110        a = mul_poly(a, a, poly);
1111        n >>= 1;
1112    }
1113    return r;
1114}
1115
1116
1117/* compute log2(max(abs(tab[]))) */
1118static int log2_tab(int16_t *tab, int n)
1119{
1120    int i, v;
1121
1122    v = 0;
1123    for(i=0;i<n;i++) {
1124        v |= abs(tab[i]);
1125    }
1126    return av_log2(v);
1127}
1128
1129static void lshift_tab(int16_t *tab, int n, int lshift)
1130{
1131    int i;
1132
1133    if (lshift > 0) {
1134        for(i=0;i<n;i++) {
1135            tab[i] <<= lshift;
1136        }
1137    } else if (lshift < 0) {
1138        lshift = -lshift;
1139        for(i=0;i<n;i++) {
1140            tab[i] >>= lshift;
1141        }
1142    }
1143}
1144
1145/* fill the end of the frame and compute the two crcs */
1146static int output_frame_end(AC3EncodeContext *s)
1147{
1148    int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
1149    uint8_t *frame;
1150
1151    frame_size = s->frame_size; /* frame size in words */
1152    /* align to 8 bits */
1153    flush_put_bits(&s->pb);
1154    /* add zero bytes to reach the frame size */
1155    frame = s->pb.buf;
1156    n = 2 * s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
1157    assert(n >= 0);
1158    if(n>0)
1159      memset(put_bits_ptr(&s->pb), 0, n);
1160
1161    /* Now we must compute both crcs : this is not so easy for crc1
1162       because it is at the beginning of the data... */
1163    frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
1164    crc1 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
1165                           frame + 4, 2 * frame_size_58 - 4));
1166    /* XXX: could precompute crc_inv */
1167    crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
1168    crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
1169    AV_WB16(frame+2,crc1);
1170
1171    crc2 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
1172                           frame + 2 * frame_size_58,
1173                           (frame_size - frame_size_58) * 2 - 2));
1174    AV_WB16(frame+2*frame_size-2,crc2);
1175
1176    //    printf("n=%d frame_size=%d\n", n, frame_size);
1177    return frame_size * 2;
1178}
1179
1180static int AC3_encode_frame(AVCodecContext *avctx,
1181                            unsigned char *frame, int buf_size, void *data)
1182{
1183    AC3EncodeContext *s = avctx->priv_data;
1184    int16_t *samples = data;
1185    int i, j, k, v, ch;
1186    int16_t input_samples[N];
1187    int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
1188    uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
1189    uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
1190    uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
1191    uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
1192    int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
1193    int frame_bits;
1194
1195    frame_bits = 0;
1196    for(ch=0;ch<s->nb_all_channels;ch++) {
1197        int ich = s->channel_map[ch];
1198        /* fixed mdct to the six sub blocks & exponent computation */
1199        for(i=0;i<NB_BLOCKS;i++) {
1200            int16_t *sptr;
1201            int sinc;
1202
1203            /* compute input samples */
1204            memcpy(input_samples, s->last_samples[ich], N/2 * sizeof(int16_t));
1205            sinc = s->nb_all_channels;
1206            sptr = samples + (sinc * (N/2) * i) + ich;
1207            for(j=0;j<N/2;j++) {
1208                v = *sptr;
1209                input_samples[j + N/2] = v;
1210                s->last_samples[ich][j] = v;
1211                sptr += sinc;
1212            }
1213
1214            /* apply the MDCT window */
1215            for(j=0;j<N/2;j++) {
1216                input_samples[j] = MUL16(input_samples[j],
1217                                         ff_ac3_window[j]) >> 15;
1218                input_samples[N-j-1] = MUL16(input_samples[N-j-1],
1219                                             ff_ac3_window[j]) >> 15;
1220            }
1221
1222            /* Normalize the samples to use the maximum available
1223               precision */
1224            v = 14 - log2_tab(input_samples, N);
1225            if (v < 0)
1226                v = 0;
1227            exp_samples[i][ch] = v - 9;
1228            lshift_tab(input_samples, N, v);
1229
1230            /* do the MDCT */
1231            mdct512(mdct_coef[i][ch], input_samples);
1232
1233            /* compute "exponents". We take into account the
1234               normalization there */
1235            for(j=0;j<N/2;j++) {
1236                int e;
1237                v = abs(mdct_coef[i][ch][j]);
1238                if (v == 0)
1239                    e = 24;
1240                else {
1241                    e = 23 - av_log2(v) + exp_samples[i][ch];
1242                    if (e >= 24) {
1243                        e = 24;
1244                        mdct_coef[i][ch][j] = 0;
1245                    }
1246                }
1247                exp[i][ch][j] = e;
1248            }
1249        }
1250
1251        compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
1252
1253        /* compute the exponents as the decoder will see them. The
1254           EXP_REUSE case must be handled carefully : we select the
1255           min of the exponents */
1256        i = 0;
1257        while (i < NB_BLOCKS) {
1258            j = i + 1;
1259            while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
1260                exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
1261                j++;
1262            }
1263            frame_bits += encode_exp(encoded_exp[i][ch],
1264                                     exp[i][ch], s->nb_coefs[ch],
1265                                     exp_strategy[i][ch]);
1266            /* copy encoded exponents for reuse case */
1267            for(k=i+1;k<j;k++) {
1268                memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
1269                       s->nb_coefs[ch] * sizeof(uint8_t));
1270            }
1271            i = j;
1272        }
1273    }
1274
1275    /* adjust for fractional frame sizes */
1276    while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
1277        s->bits_written -= s->bit_rate;
1278        s->samples_written -= s->sample_rate;
1279    }
1280    s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
1281    s->bits_written += s->frame_size * 16;
1282    s->samples_written += AC3_FRAME_SIZE;
1283
1284    compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
1285    /* everything is known... let's output the frame */
1286    output_frame_header(s, frame);
1287
1288    for(i=0;i<NB_BLOCKS;i++) {
1289        output_audio_block(s, exp_strategy[i], encoded_exp[i],
1290                           bap[i], mdct_coef[i], exp_samples[i], i);
1291    }
1292    return output_frame_end(s);
1293}
1294
1295static av_cold int AC3_encode_close(AVCodecContext *avctx)
1296{
1297    av_freep(&avctx->coded_frame);
1298    return 0;
1299}
1300
1301#if 0
1302/*************************************************************************/
1303/* TEST */
1304
1305#undef random
1306#define FN (N/4)
1307
1308void fft_test(void)
1309{
1310    IComplex in[FN], in1[FN];
1311    int k, n, i;
1312    float sum_re, sum_im, a;
1313
1314    /* FFT test */
1315
1316    for(i=0;i<FN;i++) {
1317        in[i].re = random() % 65535 - 32767;
1318        in[i].im = random() % 65535 - 32767;
1319        in1[i] = in[i];
1320    }
1321    fft(in, 7);
1322
1323    /* do it by hand */
1324    for(k=0;k<FN;k++) {
1325        sum_re = 0;
1326        sum_im = 0;
1327        for(n=0;n<FN;n++) {
1328            a = -2 * M_PI * (n * k) / FN;
1329            sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
1330            sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
1331        }
1332        printf("%3d: %6d,%6d %6.0f,%6.0f\n",
1333               k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
1334    }
1335}
1336
1337void mdct_test(void)
1338{
1339    int16_t input[N];
1340    int32_t output[N/2];
1341    float input1[N];
1342    float output1[N/2];
1343    float s, a, err, e, emax;
1344    int i, k, n;
1345
1346    for(i=0;i<N;i++) {
1347        input[i] = (random() % 65535 - 32767) * 9 / 10;
1348        input1[i] = input[i];
1349    }
1350
1351    mdct512(output, input);
1352
1353    /* do it by hand */
1354    for(k=0;k<N/2;k++) {
1355        s = 0;
1356        for(n=0;n<N;n++) {
1357            a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
1358            s += input1[n] * cos(a);
1359        }
1360        output1[k] = -2 * s / N;
1361    }
1362
1363    err = 0;
1364    emax = 0;
1365    for(i=0;i<N/2;i++) {
1366        printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
1367        e = output[i] - output1[i];
1368        if (e > emax)
1369            emax = e;
1370        err += e * e;
1371    }
1372    printf("err2=%f emax=%f\n", err / (N/2), emax);
1373}
1374
1375void test_ac3(void)
1376{
1377    AC3EncodeContext ctx;
1378    unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
1379    short samples[AC3_FRAME_SIZE];
1380    int ret, i;
1381
1382    AC3_encode_init(&ctx, 44100, 64000, 1);
1383
1384    fft_test();
1385    mdct_test();
1386
1387    for(i=0;i<AC3_FRAME_SIZE;i++)
1388        samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
1389    ret = AC3_encode_frame(&ctx, frame, samples);
1390    printf("ret=%d\n", ret);
1391}
1392#endif
1393
1394AVCodec ac3_encoder = {
1395    "ac3",
1396    AVMEDIA_TYPE_AUDIO,
1397    CODEC_ID_AC3,
1398    sizeof(AC3EncodeContext),
1399    AC3_encode_init,
1400    AC3_encode_frame,
1401    AC3_encode_close,
1402    NULL,
1403    .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
1404    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1405    .channel_layouts = (const int64_t[]){
1406        CH_LAYOUT_MONO,
1407        CH_LAYOUT_STEREO,
1408        CH_LAYOUT_2_1,
1409        CH_LAYOUT_SURROUND,
1410        CH_LAYOUT_2_2,
1411        CH_LAYOUT_QUAD,
1412        CH_LAYOUT_4POINT0,
1413        CH_LAYOUT_5POINT0,
1414        CH_LAYOUT_5POINT0_BACK,
1415       (CH_LAYOUT_MONO     | CH_LOW_FREQUENCY),
1416       (CH_LAYOUT_STEREO   | CH_LOW_FREQUENCY),
1417       (CH_LAYOUT_2_1      | CH_LOW_FREQUENCY),
1418       (CH_LAYOUT_SURROUND | CH_LOW_FREQUENCY),
1419       (CH_LAYOUT_2_2      | CH_LOW_FREQUENCY),
1420       (CH_LAYOUT_QUAD     | CH_LOW_FREQUENCY),
1421       (CH_LAYOUT_4POINT0  | CH_LOW_FREQUENCY),
1422        CH_LAYOUT_5POINT1,
1423        CH_LAYOUT_5POINT1_BACK,
1424        0 },
1425};
1426