• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/net/wireless/
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12/**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35#include <linux/kernel.h>
36#include <linux/slab.h>
37#include <linux/list.h>
38#include <linux/random.h>
39#include <linux/nl80211.h>
40#include <linux/platform_device.h>
41#include <net/cfg80211.h>
42#include "core.h"
43#include "reg.h"
44#include "regdb.h"
45#include "nl80211.h"
46
47#ifdef CONFIG_CFG80211_REG_DEBUG
48#define REG_DBG_PRINT(format, args...) \
49	do { \
50		printk(KERN_DEBUG format , ## args); \
51	} while (0)
52#else
53#define REG_DBG_PRINT(args...)
54#endif
55
56/* Receipt of information from last regulatory request */
57static struct regulatory_request *last_request;
58
59/* To trigger userspace events */
60static struct platform_device *reg_pdev;
61
62/*
63 * Central wireless core regulatory domains, we only need two,
64 * the current one and a world regulatory domain in case we have no
65 * information to give us an alpha2
66 */
67const struct ieee80211_regdomain *cfg80211_regdomain;
68
69/*
70 * Protects static reg.c components:
71 *     - cfg80211_world_regdom
72 *     - cfg80211_regdom
73 *     - last_request
74 */
75static DEFINE_MUTEX(reg_mutex);
76#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
77
78/* Used to queue up regulatory hints */
79static LIST_HEAD(reg_requests_list);
80static spinlock_t reg_requests_lock;
81
82/* Used to queue up beacon hints for review */
83static LIST_HEAD(reg_pending_beacons);
84static spinlock_t reg_pending_beacons_lock;
85
86/* Used to keep track of processed beacon hints */
87static LIST_HEAD(reg_beacon_list);
88
89struct reg_beacon {
90	struct list_head list;
91	struct ieee80211_channel chan;
92};
93
94/* We keep a static world regulatory domain in case of the absence of CRDA */
95static const struct ieee80211_regdomain world_regdom = {
96	.n_reg_rules = 5,
97	.alpha2 =  "00",
98	.reg_rules = {
99		/* IEEE 802.11b/g, channels 1..11 */
100		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
101		/* IEEE 802.11b/g, channels 12..13. No HT40
102		 * channel fits here. */
103		REG_RULE(2467-10, 2472+10, 20, 6, 20,
104			NL80211_RRF_PASSIVE_SCAN |
105			NL80211_RRF_NO_IBSS),
106		/* IEEE 802.11 channel 14 - Only JP enables
107		 * this and for 802.11b only */
108		REG_RULE(2484-10, 2484+10, 20, 6, 20,
109			NL80211_RRF_PASSIVE_SCAN |
110			NL80211_RRF_NO_IBSS |
111			NL80211_RRF_NO_OFDM),
112		/* IEEE 802.11a, channel 36..48 */
113		REG_RULE(5180-10, 5240+10, 40, 6, 20,
114                        NL80211_RRF_PASSIVE_SCAN |
115                        NL80211_RRF_NO_IBSS),
116
117		/* NB: 5260 MHz - 5700 MHz requies DFS */
118
119		/* IEEE 802.11a, channel 149..165 */
120		REG_RULE(5745-10, 5825+10, 40, 6, 20,
121			NL80211_RRF_PASSIVE_SCAN |
122			NL80211_RRF_NO_IBSS),
123	}
124};
125
126static const struct ieee80211_regdomain *cfg80211_world_regdom =
127	&world_regdom;
128
129static char *ieee80211_regdom = "00";
130static char user_alpha2[2];
131
132module_param(ieee80211_regdom, charp, 0444);
133MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
134
135static void reset_regdomains(void)
136{
137	/* avoid freeing static information or freeing something twice */
138	if (cfg80211_regdomain == cfg80211_world_regdom)
139		cfg80211_regdomain = NULL;
140	if (cfg80211_world_regdom == &world_regdom)
141		cfg80211_world_regdom = NULL;
142	if (cfg80211_regdomain == &world_regdom)
143		cfg80211_regdomain = NULL;
144
145	kfree(cfg80211_regdomain);
146	kfree(cfg80211_world_regdom);
147
148	cfg80211_world_regdom = &world_regdom;
149	cfg80211_regdomain = NULL;
150}
151
152/*
153 * Dynamic world regulatory domain requested by the wireless
154 * core upon initialization
155 */
156static void update_world_regdomain(const struct ieee80211_regdomain *rd)
157{
158	BUG_ON(!last_request);
159
160	reset_regdomains();
161
162	cfg80211_world_regdom = rd;
163	cfg80211_regdomain = rd;
164}
165
166bool is_world_regdom(const char *alpha2)
167{
168	if (!alpha2)
169		return false;
170	if (alpha2[0] == '0' && alpha2[1] == '0')
171		return true;
172	return false;
173}
174
175static bool is_alpha2_set(const char *alpha2)
176{
177	if (!alpha2)
178		return false;
179	if (alpha2[0] != 0 && alpha2[1] != 0)
180		return true;
181	return false;
182}
183
184static bool is_alpha_upper(char letter)
185{
186	/* ASCII A - Z */
187	if (letter >= 65 && letter <= 90)
188		return true;
189	return false;
190}
191
192static bool is_unknown_alpha2(const char *alpha2)
193{
194	if (!alpha2)
195		return false;
196	/*
197	 * Special case where regulatory domain was built by driver
198	 * but a specific alpha2 cannot be determined
199	 */
200	if (alpha2[0] == '9' && alpha2[1] == '9')
201		return true;
202	return false;
203}
204
205static bool is_intersected_alpha2(const char *alpha2)
206{
207	if (!alpha2)
208		return false;
209	/*
210	 * Special case where regulatory domain is the
211	 * result of an intersection between two regulatory domain
212	 * structures
213	 */
214	if (alpha2[0] == '9' && alpha2[1] == '8')
215		return true;
216	return false;
217}
218
219static bool is_an_alpha2(const char *alpha2)
220{
221	if (!alpha2)
222		return false;
223	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
224		return true;
225	return false;
226}
227
228static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
229{
230	if (!alpha2_x || !alpha2_y)
231		return false;
232	if (alpha2_x[0] == alpha2_y[0] &&
233		alpha2_x[1] == alpha2_y[1])
234		return true;
235	return false;
236}
237
238static bool regdom_changes(const char *alpha2)
239{
240	assert_cfg80211_lock();
241
242	if (!cfg80211_regdomain)
243		return true;
244	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
245		return false;
246	return true;
247}
248
249/*
250 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
251 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
252 * has ever been issued.
253 */
254static bool is_user_regdom_saved(void)
255{
256	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
257		return false;
258
259	/* This would indicate a mistake on the design */
260	if (WARN((!is_world_regdom(user_alpha2) &&
261		  !is_an_alpha2(user_alpha2)),
262		 "Unexpected user alpha2: %c%c\n",
263		 user_alpha2[0],
264	         user_alpha2[1]))
265		return false;
266
267	return true;
268}
269
270static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
271			 const struct ieee80211_regdomain *src_regd)
272{
273	struct ieee80211_regdomain *regd;
274	int size_of_regd = 0;
275	unsigned int i;
276
277	size_of_regd = sizeof(struct ieee80211_regdomain) +
278	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
279
280	regd = kzalloc(size_of_regd, GFP_KERNEL);
281	if (!regd)
282		return -ENOMEM;
283
284	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
285
286	for (i = 0; i < src_regd->n_reg_rules; i++)
287		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
288			sizeof(struct ieee80211_reg_rule));
289
290	*dst_regd = regd;
291	return 0;
292}
293
294#ifdef CONFIG_CFG80211_INTERNAL_REGDB
295struct reg_regdb_search_request {
296	char alpha2[2];
297	struct list_head list;
298};
299
300static LIST_HEAD(reg_regdb_search_list);
301static DEFINE_MUTEX(reg_regdb_search_mutex);
302
303static void reg_regdb_search(struct work_struct *work)
304{
305	struct reg_regdb_search_request *request;
306	const struct ieee80211_regdomain *curdom, *regdom;
307	int i, r;
308
309	mutex_lock(&reg_regdb_search_mutex);
310	while (!list_empty(&reg_regdb_search_list)) {
311		request = list_first_entry(&reg_regdb_search_list,
312					   struct reg_regdb_search_request,
313					   list);
314		list_del(&request->list);
315
316		for (i=0; i<reg_regdb_size; i++) {
317			curdom = reg_regdb[i];
318
319			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
320				r = reg_copy_regd(&regdom, curdom);
321				if (r)
322					break;
323				mutex_lock(&cfg80211_mutex);
324				set_regdom(regdom);
325				mutex_unlock(&cfg80211_mutex);
326				break;
327			}
328		}
329
330		kfree(request);
331	}
332	mutex_unlock(&reg_regdb_search_mutex);
333}
334
335static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
336
337static void reg_regdb_query(const char *alpha2)
338{
339	struct reg_regdb_search_request *request;
340
341	if (!alpha2)
342		return;
343
344	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
345	if (!request)
346		return;
347
348	memcpy(request->alpha2, alpha2, 2);
349
350	mutex_lock(&reg_regdb_search_mutex);
351	list_add_tail(&request->list, &reg_regdb_search_list);
352	mutex_unlock(&reg_regdb_search_mutex);
353
354	schedule_work(&reg_regdb_work);
355}
356#else
357static inline void reg_regdb_query(const char *alpha2) {}
358#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
359
360/*
361 * This lets us keep regulatory code which is updated on a regulatory
362 * basis in userspace.
363 */
364static int call_crda(const char *alpha2)
365{
366	char country_env[9 + 2] = "COUNTRY=";
367	char *envp[] = {
368		country_env,
369		NULL
370	};
371
372	if (!is_world_regdom((char *) alpha2))
373		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
374			alpha2[0], alpha2[1]);
375	else
376		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
377			"regulatory domain\n");
378
379	/* query internal regulatory database (if it exists) */
380	reg_regdb_query(alpha2);
381
382	country_env[8] = alpha2[0];
383	country_env[9] = alpha2[1];
384
385	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386}
387
388/* Used by nl80211 before kmalloc'ing our regulatory domain */
389bool reg_is_valid_request(const char *alpha2)
390{
391	assert_cfg80211_lock();
392
393	if (!last_request)
394		return false;
395
396	return alpha2_equal(last_request->alpha2, alpha2);
397}
398
399/* Sanity check on a regulatory rule */
400static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401{
402	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403	u32 freq_diff;
404
405	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406		return false;
407
408	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409		return false;
410
411	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414			freq_range->max_bandwidth_khz > freq_diff)
415		return false;
416
417	return true;
418}
419
420static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421{
422	const struct ieee80211_reg_rule *reg_rule = NULL;
423	unsigned int i;
424
425	if (!rd->n_reg_rules)
426		return false;
427
428	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429		return false;
430
431	for (i = 0; i < rd->n_reg_rules; i++) {
432		reg_rule = &rd->reg_rules[i];
433		if (!is_valid_reg_rule(reg_rule))
434			return false;
435	}
436
437	return true;
438}
439
440static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441			    u32 center_freq_khz,
442			    u32 bw_khz)
443{
444	u32 start_freq_khz, end_freq_khz;
445
446	start_freq_khz = center_freq_khz - (bw_khz/2);
447	end_freq_khz = center_freq_khz + (bw_khz/2);
448
449	if (start_freq_khz >= freq_range->start_freq_khz &&
450	    end_freq_khz <= freq_range->end_freq_khz)
451		return true;
452
453	return false;
454}
455
456/**
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
460 *
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
468 **/
469static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470	u32 freq_khz)
471{
472#define ONE_GHZ_IN_KHZ	1000000
473	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474		return true;
475	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476		return true;
477	return false;
478#undef ONE_GHZ_IN_KHZ
479}
480
481/*
482 * Helper for regdom_intersect(), this does the real
483 * mathematical intersection fun
484 */
485static int reg_rules_intersect(
486	const struct ieee80211_reg_rule *rule1,
487	const struct ieee80211_reg_rule *rule2,
488	struct ieee80211_reg_rule *intersected_rule)
489{
490	const struct ieee80211_freq_range *freq_range1, *freq_range2;
491	struct ieee80211_freq_range *freq_range;
492	const struct ieee80211_power_rule *power_rule1, *power_rule2;
493	struct ieee80211_power_rule *power_rule;
494	u32 freq_diff;
495
496	freq_range1 = &rule1->freq_range;
497	freq_range2 = &rule2->freq_range;
498	freq_range = &intersected_rule->freq_range;
499
500	power_rule1 = &rule1->power_rule;
501	power_rule2 = &rule2->power_rule;
502	power_rule = &intersected_rule->power_rule;
503
504	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
505		freq_range2->start_freq_khz);
506	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
507		freq_range2->end_freq_khz);
508	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
509		freq_range2->max_bandwidth_khz);
510
511	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
512	if (freq_range->max_bandwidth_khz > freq_diff)
513		freq_range->max_bandwidth_khz = freq_diff;
514
515	power_rule->max_eirp = min(power_rule1->max_eirp,
516		power_rule2->max_eirp);
517	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
518		power_rule2->max_antenna_gain);
519
520	intersected_rule->flags = (rule1->flags | rule2->flags);
521
522	if (!is_valid_reg_rule(intersected_rule))
523		return -EINVAL;
524
525	return 0;
526}
527
528/**
529 * regdom_intersect - do the intersection between two regulatory domains
530 * @rd1: first regulatory domain
531 * @rd2: second regulatory domain
532 *
533 * Use this function to get the intersection between two regulatory domains.
534 * Once completed we will mark the alpha2 for the rd as intersected, "98",
535 * as no one single alpha2 can represent this regulatory domain.
536 *
537 * Returns a pointer to the regulatory domain structure which will hold the
538 * resulting intersection of rules between rd1 and rd2. We will
539 * kzalloc() this structure for you.
540 */
541static struct ieee80211_regdomain *regdom_intersect(
542	const struct ieee80211_regdomain *rd1,
543	const struct ieee80211_regdomain *rd2)
544{
545	int r, size_of_regd;
546	unsigned int x, y;
547	unsigned int num_rules = 0, rule_idx = 0;
548	const struct ieee80211_reg_rule *rule1, *rule2;
549	struct ieee80211_reg_rule *intersected_rule;
550	struct ieee80211_regdomain *rd;
551	/* This is just a dummy holder to help us count */
552	struct ieee80211_reg_rule irule;
553
554	/* Uses the stack temporarily for counter arithmetic */
555	intersected_rule = &irule;
556
557	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
558
559	if (!rd1 || !rd2)
560		return NULL;
561
562	/*
563	 * First we get a count of the rules we'll need, then we actually
564	 * build them. This is to so we can malloc() and free() a
565	 * regdomain once. The reason we use reg_rules_intersect() here
566	 * is it will return -EINVAL if the rule computed makes no sense.
567	 * All rules that do check out OK are valid.
568	 */
569
570	for (x = 0; x < rd1->n_reg_rules; x++) {
571		rule1 = &rd1->reg_rules[x];
572		for (y = 0; y < rd2->n_reg_rules; y++) {
573			rule2 = &rd2->reg_rules[y];
574			if (!reg_rules_intersect(rule1, rule2,
575					intersected_rule))
576				num_rules++;
577			memset(intersected_rule, 0,
578					sizeof(struct ieee80211_reg_rule));
579		}
580	}
581
582	if (!num_rules)
583		return NULL;
584
585	size_of_regd = sizeof(struct ieee80211_regdomain) +
586		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
587
588	rd = kzalloc(size_of_regd, GFP_KERNEL);
589	if (!rd)
590		return NULL;
591
592	for (x = 0; x < rd1->n_reg_rules; x++) {
593		rule1 = &rd1->reg_rules[x];
594		for (y = 0; y < rd2->n_reg_rules; y++) {
595			rule2 = &rd2->reg_rules[y];
596			/*
597			 * This time around instead of using the stack lets
598			 * write to the target rule directly saving ourselves
599			 * a memcpy()
600			 */
601			intersected_rule = &rd->reg_rules[rule_idx];
602			r = reg_rules_intersect(rule1, rule2,
603				intersected_rule);
604			/*
605			 * No need to memset here the intersected rule here as
606			 * we're not using the stack anymore
607			 */
608			if (r)
609				continue;
610			rule_idx++;
611		}
612	}
613
614	if (rule_idx != num_rules) {
615		kfree(rd);
616		return NULL;
617	}
618
619	rd->n_reg_rules = num_rules;
620	rd->alpha2[0] = '9';
621	rd->alpha2[1] = '8';
622
623	return rd;
624}
625
626static u32 map_regdom_flags(u32 rd_flags)
627{
628	u32 channel_flags = 0;
629	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
630		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
631	if (rd_flags & NL80211_RRF_NO_IBSS)
632		channel_flags |= IEEE80211_CHAN_NO_IBSS;
633	if (rd_flags & NL80211_RRF_DFS)
634		channel_flags |= IEEE80211_CHAN_RADAR;
635	return channel_flags;
636}
637
638static int freq_reg_info_regd(struct wiphy *wiphy,
639			      u32 center_freq,
640			      u32 desired_bw_khz,
641			      const struct ieee80211_reg_rule **reg_rule,
642			      const struct ieee80211_regdomain *custom_regd)
643{
644	int i;
645	bool band_rule_found = false;
646	const struct ieee80211_regdomain *regd;
647	bool bw_fits = false;
648
649	if (!desired_bw_khz)
650		desired_bw_khz = MHZ_TO_KHZ(20);
651
652	regd = custom_regd ? custom_regd : cfg80211_regdomain;
653
654	/*
655	 * Follow the driver's regulatory domain, if present, unless a country
656	 * IE has been processed or a user wants to help complaince further
657	 */
658	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
659	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
660	    wiphy->regd)
661		regd = wiphy->regd;
662
663	if (!regd)
664		return -EINVAL;
665
666	for (i = 0; i < regd->n_reg_rules; i++) {
667		const struct ieee80211_reg_rule *rr;
668		const struct ieee80211_freq_range *fr = NULL;
669		const struct ieee80211_power_rule *pr = NULL;
670
671		rr = &regd->reg_rules[i];
672		fr = &rr->freq_range;
673		pr = &rr->power_rule;
674
675		/*
676		 * We only need to know if one frequency rule was
677		 * was in center_freq's band, that's enough, so lets
678		 * not overwrite it once found
679		 */
680		if (!band_rule_found)
681			band_rule_found = freq_in_rule_band(fr, center_freq);
682
683		bw_fits = reg_does_bw_fit(fr,
684					  center_freq,
685					  desired_bw_khz);
686
687		if (band_rule_found && bw_fits) {
688			*reg_rule = rr;
689			return 0;
690		}
691	}
692
693	if (!band_rule_found)
694		return -ERANGE;
695
696	return -EINVAL;
697}
698
699int freq_reg_info(struct wiphy *wiphy,
700		  u32 center_freq,
701		  u32 desired_bw_khz,
702		  const struct ieee80211_reg_rule **reg_rule)
703{
704	assert_cfg80211_lock();
705	return freq_reg_info_regd(wiphy,
706				  center_freq,
707				  desired_bw_khz,
708				  reg_rule,
709				  NULL);
710}
711EXPORT_SYMBOL(freq_reg_info);
712
713/*
714 * Note that right now we assume the desired channel bandwidth
715 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
716 * per channel, the primary and the extension channel). To support
717 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
718 * new ieee80211_channel.target_bw and re run the regulatory check
719 * on the wiphy with the target_bw specified. Then we can simply use
720 * that below for the desired_bw_khz below.
721 */
722static void handle_channel(struct wiphy *wiphy,
723			   enum nl80211_reg_initiator initiator,
724			   enum ieee80211_band band,
725			   unsigned int chan_idx)
726{
727	int r;
728	u32 flags, bw_flags = 0;
729	u32 desired_bw_khz = MHZ_TO_KHZ(20);
730	const struct ieee80211_reg_rule *reg_rule = NULL;
731	const struct ieee80211_power_rule *power_rule = NULL;
732	const struct ieee80211_freq_range *freq_range = NULL;
733	struct ieee80211_supported_band *sband;
734	struct ieee80211_channel *chan;
735	struct wiphy *request_wiphy = NULL;
736
737	assert_cfg80211_lock();
738
739	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
740
741	sband = wiphy->bands[band];
742	BUG_ON(chan_idx >= sband->n_channels);
743	chan = &sband->channels[chan_idx];
744
745	flags = chan->orig_flags;
746
747	r = freq_reg_info(wiphy,
748			  MHZ_TO_KHZ(chan->center_freq),
749			  desired_bw_khz,
750			  &reg_rule);
751
752	if (r)
753		return;
754
755	power_rule = &reg_rule->power_rule;
756	freq_range = &reg_rule->freq_range;
757
758	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
759		bw_flags = IEEE80211_CHAN_NO_HT40;
760
761	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
762	    request_wiphy && request_wiphy == wiphy &&
763	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
764		/*
765		 * This gaurantees the driver's requested regulatory domain
766		 * will always be used as a base for further regulatory
767		 * settings
768		 */
769		chan->flags = chan->orig_flags =
770			map_regdom_flags(reg_rule->flags) | bw_flags;
771		chan->max_antenna_gain = chan->orig_mag =
772			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
773		chan->max_power = chan->orig_mpwr =
774			(int) MBM_TO_DBM(power_rule->max_eirp);
775		return;
776	}
777
778	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
779	chan->max_antenna_gain = min(chan->orig_mag,
780		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
781	if (chan->orig_mpwr)
782		chan->max_power = min(chan->orig_mpwr,
783			(int) MBM_TO_DBM(power_rule->max_eirp));
784	else
785		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
786}
787
788static void handle_band(struct wiphy *wiphy,
789			enum ieee80211_band band,
790			enum nl80211_reg_initiator initiator)
791{
792	unsigned int i;
793	struct ieee80211_supported_band *sband;
794
795	BUG_ON(!wiphy->bands[band]);
796	sband = wiphy->bands[band];
797
798	for (i = 0; i < sband->n_channels; i++)
799		handle_channel(wiphy, initiator, band, i);
800}
801
802static bool ignore_reg_update(struct wiphy *wiphy,
803			      enum nl80211_reg_initiator initiator)
804{
805	if (!last_request)
806		return true;
807	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
808	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
809		return true;
810	/*
811	 * wiphy->regd will be set once the device has its own
812	 * desired regulatory domain set
813	 */
814	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
815	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
816	    !is_world_regdom(last_request->alpha2))
817		return true;
818	return false;
819}
820
821static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
822{
823	struct cfg80211_registered_device *rdev;
824
825	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
826		wiphy_update_regulatory(&rdev->wiphy, initiator);
827}
828
829static void handle_reg_beacon(struct wiphy *wiphy,
830			      unsigned int chan_idx,
831			      struct reg_beacon *reg_beacon)
832{
833	struct ieee80211_supported_band *sband;
834	struct ieee80211_channel *chan;
835	bool channel_changed = false;
836	struct ieee80211_channel chan_before;
837
838	assert_cfg80211_lock();
839
840	sband = wiphy->bands[reg_beacon->chan.band];
841	chan = &sband->channels[chan_idx];
842
843	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
844		return;
845
846	if (chan->beacon_found)
847		return;
848
849	chan->beacon_found = true;
850
851	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
852		return;
853
854	chan_before.center_freq = chan->center_freq;
855	chan_before.flags = chan->flags;
856
857	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
858		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
859		channel_changed = true;
860	}
861
862	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
863		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
864		channel_changed = true;
865	}
866
867	if (channel_changed)
868		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
869}
870
871/*
872 * Called when a scan on a wiphy finds a beacon on
873 * new channel
874 */
875static void wiphy_update_new_beacon(struct wiphy *wiphy,
876				    struct reg_beacon *reg_beacon)
877{
878	unsigned int i;
879	struct ieee80211_supported_band *sband;
880
881	assert_cfg80211_lock();
882
883	if (!wiphy->bands[reg_beacon->chan.band])
884		return;
885
886	sband = wiphy->bands[reg_beacon->chan.band];
887
888	for (i = 0; i < sband->n_channels; i++)
889		handle_reg_beacon(wiphy, i, reg_beacon);
890}
891
892/*
893 * Called upon reg changes or a new wiphy is added
894 */
895static void wiphy_update_beacon_reg(struct wiphy *wiphy)
896{
897	unsigned int i;
898	struct ieee80211_supported_band *sband;
899	struct reg_beacon *reg_beacon;
900
901	assert_cfg80211_lock();
902
903	if (list_empty(&reg_beacon_list))
904		return;
905
906	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
907		if (!wiphy->bands[reg_beacon->chan.band])
908			continue;
909		sband = wiphy->bands[reg_beacon->chan.band];
910		for (i = 0; i < sband->n_channels; i++)
911			handle_reg_beacon(wiphy, i, reg_beacon);
912	}
913}
914
915static bool reg_is_world_roaming(struct wiphy *wiphy)
916{
917	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
918	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
919		return true;
920	if (last_request &&
921	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
922	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
923		return true;
924	return false;
925}
926
927/* Reap the advantages of previously found beacons */
928static void reg_process_beacons(struct wiphy *wiphy)
929{
930	/*
931	 * Means we are just firing up cfg80211, so no beacons would
932	 * have been processed yet.
933	 */
934	if (!last_request)
935		return;
936	if (!reg_is_world_roaming(wiphy))
937		return;
938	wiphy_update_beacon_reg(wiphy);
939}
940
941static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
942{
943	if (!chan)
944		return true;
945	if (chan->flags & IEEE80211_CHAN_DISABLED)
946		return true;
947	/* This would happen when regulatory rules disallow HT40 completely */
948	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
949		return true;
950	return false;
951}
952
953static void reg_process_ht_flags_channel(struct wiphy *wiphy,
954					 enum ieee80211_band band,
955					 unsigned int chan_idx)
956{
957	struct ieee80211_supported_band *sband;
958	struct ieee80211_channel *channel;
959	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
960	unsigned int i;
961
962	assert_cfg80211_lock();
963
964	sband = wiphy->bands[band];
965	BUG_ON(chan_idx >= sband->n_channels);
966	channel = &sband->channels[chan_idx];
967
968	if (is_ht40_not_allowed(channel)) {
969		channel->flags |= IEEE80211_CHAN_NO_HT40;
970		return;
971	}
972
973	/*
974	 * We need to ensure the extension channels exist to
975	 * be able to use HT40- or HT40+, this finds them (or not)
976	 */
977	for (i = 0; i < sband->n_channels; i++) {
978		struct ieee80211_channel *c = &sband->channels[i];
979		if (c->center_freq == (channel->center_freq - 20))
980			channel_before = c;
981		if (c->center_freq == (channel->center_freq + 20))
982			channel_after = c;
983	}
984
985	/*
986	 * Please note that this assumes target bandwidth is 20 MHz,
987	 * if that ever changes we also need to change the below logic
988	 * to include that as well.
989	 */
990	if (is_ht40_not_allowed(channel_before))
991		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
992	else
993		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
994
995	if (is_ht40_not_allowed(channel_after))
996		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
997	else
998		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
999}
1000
1001static void reg_process_ht_flags_band(struct wiphy *wiphy,
1002				      enum ieee80211_band band)
1003{
1004	unsigned int i;
1005	struct ieee80211_supported_band *sband;
1006
1007	BUG_ON(!wiphy->bands[band]);
1008	sband = wiphy->bands[band];
1009
1010	for (i = 0; i < sband->n_channels; i++)
1011		reg_process_ht_flags_channel(wiphy, band, i);
1012}
1013
1014static void reg_process_ht_flags(struct wiphy *wiphy)
1015{
1016	enum ieee80211_band band;
1017
1018	if (!wiphy)
1019		return;
1020
1021	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1022		if (wiphy->bands[band])
1023			reg_process_ht_flags_band(wiphy, band);
1024	}
1025
1026}
1027
1028void wiphy_update_regulatory(struct wiphy *wiphy,
1029			     enum nl80211_reg_initiator initiator)
1030{
1031	enum ieee80211_band band;
1032
1033	if (ignore_reg_update(wiphy, initiator))
1034		goto out;
1035	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1036		if (wiphy->bands[band])
1037			handle_band(wiphy, band, initiator);
1038	}
1039out:
1040	reg_process_beacons(wiphy);
1041	reg_process_ht_flags(wiphy);
1042	if (wiphy->reg_notifier)
1043		wiphy->reg_notifier(wiphy, last_request);
1044}
1045
1046static void handle_channel_custom(struct wiphy *wiphy,
1047				  enum ieee80211_band band,
1048				  unsigned int chan_idx,
1049				  const struct ieee80211_regdomain *regd)
1050{
1051	int r;
1052	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1053	u32 bw_flags = 0;
1054	const struct ieee80211_reg_rule *reg_rule = NULL;
1055	const struct ieee80211_power_rule *power_rule = NULL;
1056	const struct ieee80211_freq_range *freq_range = NULL;
1057	struct ieee80211_supported_band *sband;
1058	struct ieee80211_channel *chan;
1059
1060	assert_reg_lock();
1061
1062	sband = wiphy->bands[band];
1063	BUG_ON(chan_idx >= sband->n_channels);
1064	chan = &sband->channels[chan_idx];
1065
1066	r = freq_reg_info_regd(wiphy,
1067			       MHZ_TO_KHZ(chan->center_freq),
1068			       desired_bw_khz,
1069			       &reg_rule,
1070			       regd);
1071
1072	if (r) {
1073		chan->flags = IEEE80211_CHAN_DISABLED;
1074		return;
1075	}
1076
1077	power_rule = &reg_rule->power_rule;
1078	freq_range = &reg_rule->freq_range;
1079
1080	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1081		bw_flags = IEEE80211_CHAN_NO_HT40;
1082
1083	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1084	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1085	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1086}
1087
1088static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1089			       const struct ieee80211_regdomain *regd)
1090{
1091	unsigned int i;
1092	struct ieee80211_supported_band *sband;
1093
1094	BUG_ON(!wiphy->bands[band]);
1095	sband = wiphy->bands[band];
1096
1097	for (i = 0; i < sband->n_channels; i++)
1098		handle_channel_custom(wiphy, band, i, regd);
1099}
1100
1101/* Used by drivers prior to wiphy registration */
1102void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1103				   const struct ieee80211_regdomain *regd)
1104{
1105	enum ieee80211_band band;
1106	unsigned int bands_set = 0;
1107
1108	mutex_lock(&reg_mutex);
1109	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1110		if (!wiphy->bands[band])
1111			continue;
1112		handle_band_custom(wiphy, band, regd);
1113		bands_set++;
1114	}
1115	mutex_unlock(&reg_mutex);
1116
1117	/*
1118	 * no point in calling this if it won't have any effect
1119	 * on your device's supportd bands.
1120	 */
1121	WARN_ON(!bands_set);
1122}
1123EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1124
1125/*
1126 * Return value which can be used by ignore_request() to indicate
1127 * it has been determined we should intersect two regulatory domains
1128 */
1129#define REG_INTERSECT	1
1130
1131/* This has the logic which determines when a new request
1132 * should be ignored. */
1133static int ignore_request(struct wiphy *wiphy,
1134			  struct regulatory_request *pending_request)
1135{
1136	struct wiphy *last_wiphy = NULL;
1137
1138	assert_cfg80211_lock();
1139
1140	/* All initial requests are respected */
1141	if (!last_request)
1142		return 0;
1143
1144	switch (pending_request->initiator) {
1145	case NL80211_REGDOM_SET_BY_CORE:
1146		return 0;
1147	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1148
1149		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1150
1151		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1152			return -EINVAL;
1153		if (last_request->initiator ==
1154		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1155			if (last_wiphy != wiphy) {
1156				/*
1157				 * Two cards with two APs claiming different
1158				 * Country IE alpha2s. We could
1159				 * intersect them, but that seems unlikely
1160				 * to be correct. Reject second one for now.
1161				 */
1162				if (regdom_changes(pending_request->alpha2))
1163					return -EOPNOTSUPP;
1164				return -EALREADY;
1165			}
1166			/*
1167			 * Two consecutive Country IE hints on the same wiphy.
1168			 * This should be picked up early by the driver/stack
1169			 */
1170			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1171				return 0;
1172			return -EALREADY;
1173		}
1174		return 0;
1175	case NL80211_REGDOM_SET_BY_DRIVER:
1176		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1177			if (regdom_changes(pending_request->alpha2))
1178				return 0;
1179			return -EALREADY;
1180		}
1181
1182		/*
1183		 * This would happen if you unplug and plug your card
1184		 * back in or if you add a new device for which the previously
1185		 * loaded card also agrees on the regulatory domain.
1186		 */
1187		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1188		    !regdom_changes(pending_request->alpha2))
1189			return -EALREADY;
1190
1191		return REG_INTERSECT;
1192	case NL80211_REGDOM_SET_BY_USER:
1193		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1194			return REG_INTERSECT;
1195		/*
1196		 * If the user knows better the user should set the regdom
1197		 * to their country before the IE is picked up
1198		 */
1199		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1200			  last_request->intersect)
1201			return -EOPNOTSUPP;
1202		/*
1203		 * Process user requests only after previous user/driver/core
1204		 * requests have been processed
1205		 */
1206		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1207		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1208		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1209			if (regdom_changes(last_request->alpha2))
1210				return -EAGAIN;
1211		}
1212
1213		if (!regdom_changes(pending_request->alpha2))
1214			return -EALREADY;
1215
1216		return 0;
1217	}
1218
1219	return -EINVAL;
1220}
1221
1222/**
1223 * __regulatory_hint - hint to the wireless core a regulatory domain
1224 * @wiphy: if the hint comes from country information from an AP, this
1225 *	is required to be set to the wiphy that received the information
1226 * @pending_request: the regulatory request currently being processed
1227 *
1228 * The Wireless subsystem can use this function to hint to the wireless core
1229 * what it believes should be the current regulatory domain.
1230 *
1231 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1232 * already been set or other standard error codes.
1233 *
1234 * Caller must hold &cfg80211_mutex and &reg_mutex
1235 */
1236static int __regulatory_hint(struct wiphy *wiphy,
1237			     struct regulatory_request *pending_request)
1238{
1239	bool intersect = false;
1240	int r = 0;
1241
1242	assert_cfg80211_lock();
1243
1244	r = ignore_request(wiphy, pending_request);
1245
1246	if (r == REG_INTERSECT) {
1247		if (pending_request->initiator ==
1248		    NL80211_REGDOM_SET_BY_DRIVER) {
1249			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1250			if (r) {
1251				kfree(pending_request);
1252				return r;
1253			}
1254		}
1255		intersect = true;
1256	} else if (r) {
1257		/*
1258		 * If the regulatory domain being requested by the
1259		 * driver has already been set just copy it to the
1260		 * wiphy
1261		 */
1262		if (r == -EALREADY &&
1263		    pending_request->initiator ==
1264		    NL80211_REGDOM_SET_BY_DRIVER) {
1265			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1266			if (r) {
1267				kfree(pending_request);
1268				return r;
1269			}
1270			r = -EALREADY;
1271			goto new_request;
1272		}
1273		kfree(pending_request);
1274		return r;
1275	}
1276
1277new_request:
1278	kfree(last_request);
1279
1280	last_request = pending_request;
1281	last_request->intersect = intersect;
1282
1283	pending_request = NULL;
1284
1285	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1286		user_alpha2[0] = last_request->alpha2[0];
1287		user_alpha2[1] = last_request->alpha2[1];
1288	}
1289
1290	/* When r == REG_INTERSECT we do need to call CRDA */
1291	if (r < 0) {
1292		/*
1293		 * Since CRDA will not be called in this case as we already
1294		 * have applied the requested regulatory domain before we just
1295		 * inform userspace we have processed the request
1296		 */
1297		if (r == -EALREADY)
1298			nl80211_send_reg_change_event(last_request);
1299		return r;
1300	}
1301
1302	return call_crda(last_request->alpha2);
1303}
1304
1305/* This processes *all* regulatory hints */
1306static void reg_process_hint(struct regulatory_request *reg_request)
1307{
1308	int r = 0;
1309	struct wiphy *wiphy = NULL;
1310	enum nl80211_reg_initiator initiator = reg_request->initiator;
1311
1312	BUG_ON(!reg_request->alpha2);
1313
1314	mutex_lock(&cfg80211_mutex);
1315	mutex_lock(&reg_mutex);
1316
1317	if (wiphy_idx_valid(reg_request->wiphy_idx))
1318		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1319
1320	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1321	    !wiphy) {
1322		kfree(reg_request);
1323		goto out;
1324	}
1325
1326	r = __regulatory_hint(wiphy, reg_request);
1327	/* This is required so that the orig_* parameters are saved */
1328	if (r == -EALREADY && wiphy &&
1329	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1330		wiphy_update_regulatory(wiphy, initiator);
1331out:
1332	mutex_unlock(&reg_mutex);
1333	mutex_unlock(&cfg80211_mutex);
1334}
1335
1336/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1337static void reg_process_pending_hints(void)
1338	{
1339	struct regulatory_request *reg_request;
1340
1341	spin_lock(&reg_requests_lock);
1342	while (!list_empty(&reg_requests_list)) {
1343		reg_request = list_first_entry(&reg_requests_list,
1344					       struct regulatory_request,
1345					       list);
1346		list_del_init(&reg_request->list);
1347
1348		spin_unlock(&reg_requests_lock);
1349		reg_process_hint(reg_request);
1350		spin_lock(&reg_requests_lock);
1351	}
1352	spin_unlock(&reg_requests_lock);
1353}
1354
1355/* Processes beacon hints -- this has nothing to do with country IEs */
1356static void reg_process_pending_beacon_hints(void)
1357{
1358	struct cfg80211_registered_device *rdev;
1359	struct reg_beacon *pending_beacon, *tmp;
1360
1361	/*
1362	 * No need to hold the reg_mutex here as we just touch wiphys
1363	 * and do not read or access regulatory variables.
1364	 */
1365	mutex_lock(&cfg80211_mutex);
1366
1367	/* This goes through the _pending_ beacon list */
1368	spin_lock_bh(&reg_pending_beacons_lock);
1369
1370	if (list_empty(&reg_pending_beacons)) {
1371		spin_unlock_bh(&reg_pending_beacons_lock);
1372		goto out;
1373	}
1374
1375	list_for_each_entry_safe(pending_beacon, tmp,
1376				 &reg_pending_beacons, list) {
1377
1378		list_del_init(&pending_beacon->list);
1379
1380		/* Applies the beacon hint to current wiphys */
1381		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1382			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1383
1384		/* Remembers the beacon hint for new wiphys or reg changes */
1385		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1386	}
1387
1388	spin_unlock_bh(&reg_pending_beacons_lock);
1389out:
1390	mutex_unlock(&cfg80211_mutex);
1391}
1392
1393static void reg_todo(struct work_struct *work)
1394{
1395	reg_process_pending_hints();
1396	reg_process_pending_beacon_hints();
1397}
1398
1399static DECLARE_WORK(reg_work, reg_todo);
1400
1401static void queue_regulatory_request(struct regulatory_request *request)
1402{
1403	spin_lock(&reg_requests_lock);
1404	list_add_tail(&request->list, &reg_requests_list);
1405	spin_unlock(&reg_requests_lock);
1406
1407	schedule_work(&reg_work);
1408}
1409
1410/*
1411 * Core regulatory hint -- happens during cfg80211_init()
1412 * and when we restore regulatory settings.
1413 */
1414static int regulatory_hint_core(const char *alpha2)
1415{
1416	struct regulatory_request *request;
1417
1418	kfree(last_request);
1419	last_request = NULL;
1420
1421	request = kzalloc(sizeof(struct regulatory_request),
1422			  GFP_KERNEL);
1423	if (!request)
1424		return -ENOMEM;
1425
1426	request->alpha2[0] = alpha2[0];
1427	request->alpha2[1] = alpha2[1];
1428	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1429
1430	/*
1431	 * This ensures last_request is populated once modules
1432	 * come swinging in and calling regulatory hints and
1433	 * wiphy_apply_custom_regulatory().
1434	 */
1435	reg_process_hint(request);
1436
1437	return 0;
1438}
1439
1440/* User hints */
1441int regulatory_hint_user(const char *alpha2)
1442{
1443	struct regulatory_request *request;
1444
1445	BUG_ON(!alpha2);
1446
1447	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1448	if (!request)
1449		return -ENOMEM;
1450
1451	request->wiphy_idx = WIPHY_IDX_STALE;
1452	request->alpha2[0] = alpha2[0];
1453	request->alpha2[1] = alpha2[1];
1454	request->initiator = NL80211_REGDOM_SET_BY_USER;
1455
1456	queue_regulatory_request(request);
1457
1458	return 0;
1459}
1460
1461/* Driver hints */
1462int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1463{
1464	struct regulatory_request *request;
1465
1466	BUG_ON(!alpha2);
1467	BUG_ON(!wiphy);
1468
1469	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1470	if (!request)
1471		return -ENOMEM;
1472
1473	request->wiphy_idx = get_wiphy_idx(wiphy);
1474
1475	/* Must have registered wiphy first */
1476	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1477
1478	request->alpha2[0] = alpha2[0];
1479	request->alpha2[1] = alpha2[1];
1480	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1481
1482	queue_regulatory_request(request);
1483
1484	return 0;
1485}
1486EXPORT_SYMBOL(regulatory_hint);
1487
1488/*
1489 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1490 * therefore cannot iterate over the rdev list here.
1491 */
1492void regulatory_hint_11d(struct wiphy *wiphy,
1493			 enum ieee80211_band band,
1494			 u8 *country_ie,
1495			 u8 country_ie_len)
1496{
1497	char alpha2[2];
1498	enum environment_cap env = ENVIRON_ANY;
1499	struct regulatory_request *request;
1500
1501	mutex_lock(&reg_mutex);
1502
1503	if (unlikely(!last_request))
1504		goto out;
1505
1506	/* IE len must be evenly divisible by 2 */
1507	if (country_ie_len & 0x01)
1508		goto out;
1509
1510	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1511		goto out;
1512
1513	alpha2[0] = country_ie[0];
1514	alpha2[1] = country_ie[1];
1515
1516	if (country_ie[2] == 'I')
1517		env = ENVIRON_INDOOR;
1518	else if (country_ie[2] == 'O')
1519		env = ENVIRON_OUTDOOR;
1520
1521	/*
1522	 * We will run this only upon a successful connection on cfg80211.
1523	 * We leave conflict resolution to the workqueue, where can hold
1524	 * cfg80211_mutex.
1525	 */
1526	if (likely(last_request->initiator ==
1527	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1528	    wiphy_idx_valid(last_request->wiphy_idx)))
1529		goto out;
1530
1531	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1532	if (!request)
1533		goto out;
1534
1535	request->wiphy_idx = get_wiphy_idx(wiphy);
1536	request->alpha2[0] = alpha2[0];
1537	request->alpha2[1] = alpha2[1];
1538	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1539	request->country_ie_env = env;
1540
1541	mutex_unlock(&reg_mutex);
1542
1543	queue_regulatory_request(request);
1544
1545	return;
1546
1547out:
1548	mutex_unlock(&reg_mutex);
1549}
1550
1551static void restore_alpha2(char *alpha2, bool reset_user)
1552{
1553	/* indicates there is no alpha2 to consider for restoration */
1554	alpha2[0] = '9';
1555	alpha2[1] = '7';
1556
1557	/* The user setting has precedence over the module parameter */
1558	if (is_user_regdom_saved()) {
1559		/* Unless we're asked to ignore it and reset it */
1560		if (reset_user) {
1561			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1562			       "including user preference\n");
1563			user_alpha2[0] = '9';
1564			user_alpha2[1] = '7';
1565
1566			/*
1567			 * If we're ignoring user settings, we still need to
1568			 * check the module parameter to ensure we put things
1569			 * back as they were for a full restore.
1570			 */
1571			if (!is_world_regdom(ieee80211_regdom)) {
1572				REG_DBG_PRINT("cfg80211: Keeping preference on "
1573				       "module parameter ieee80211_regdom: %c%c\n",
1574				       ieee80211_regdom[0],
1575				       ieee80211_regdom[1]);
1576				alpha2[0] = ieee80211_regdom[0];
1577				alpha2[1] = ieee80211_regdom[1];
1578			}
1579		} else {
1580			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1581			       "while preserving user preference for: %c%c\n",
1582			       user_alpha2[0],
1583			       user_alpha2[1]);
1584			alpha2[0] = user_alpha2[0];
1585			alpha2[1] = user_alpha2[1];
1586		}
1587	} else if (!is_world_regdom(ieee80211_regdom)) {
1588		REG_DBG_PRINT("cfg80211: Keeping preference on "
1589		       "module parameter ieee80211_regdom: %c%c\n",
1590		       ieee80211_regdom[0],
1591		       ieee80211_regdom[1]);
1592		alpha2[0] = ieee80211_regdom[0];
1593		alpha2[1] = ieee80211_regdom[1];
1594	} else
1595		REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1596}
1597
1598/*
1599 * Restoring regulatory settings involves ingoring any
1600 * possibly stale country IE information and user regulatory
1601 * settings if so desired, this includes any beacon hints
1602 * learned as we could have traveled outside to another country
1603 * after disconnection. To restore regulatory settings we do
1604 * exactly what we did at bootup:
1605 *
1606 *   - send a core regulatory hint
1607 *   - send a user regulatory hint if applicable
1608 *
1609 * Device drivers that send a regulatory hint for a specific country
1610 * keep their own regulatory domain on wiphy->regd so that does does
1611 * not need to be remembered.
1612 */
1613static void restore_regulatory_settings(bool reset_user)
1614{
1615	char alpha2[2];
1616	struct reg_beacon *reg_beacon, *btmp;
1617
1618	mutex_lock(&cfg80211_mutex);
1619	mutex_lock(&reg_mutex);
1620
1621	reset_regdomains();
1622	restore_alpha2(alpha2, reset_user);
1623
1624	/* Clear beacon hints */
1625	spin_lock_bh(&reg_pending_beacons_lock);
1626	if (!list_empty(&reg_pending_beacons)) {
1627		list_for_each_entry_safe(reg_beacon, btmp,
1628					 &reg_pending_beacons, list) {
1629			list_del(&reg_beacon->list);
1630			kfree(reg_beacon);
1631		}
1632	}
1633	spin_unlock_bh(&reg_pending_beacons_lock);
1634
1635	if (!list_empty(&reg_beacon_list)) {
1636		list_for_each_entry_safe(reg_beacon, btmp,
1637					 &reg_beacon_list, list) {
1638			list_del(&reg_beacon->list);
1639			kfree(reg_beacon);
1640		}
1641	}
1642
1643	/* First restore to the basic regulatory settings */
1644	cfg80211_regdomain = cfg80211_world_regdom;
1645
1646	mutex_unlock(&reg_mutex);
1647	mutex_unlock(&cfg80211_mutex);
1648
1649	regulatory_hint_core(cfg80211_regdomain->alpha2);
1650
1651	/*
1652	 * This restores the ieee80211_regdom module parameter
1653	 * preference or the last user requested regulatory
1654	 * settings, user regulatory settings takes precedence.
1655	 */
1656	if (is_an_alpha2(alpha2))
1657		regulatory_hint_user(user_alpha2);
1658}
1659
1660
1661void regulatory_hint_disconnect(void)
1662{
1663	REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1664		      "restore regulatory settings\n");
1665	restore_regulatory_settings(false);
1666}
1667
1668static bool freq_is_chan_12_13_14(u16 freq)
1669{
1670	if (freq == ieee80211_channel_to_frequency(12) ||
1671	    freq == ieee80211_channel_to_frequency(13) ||
1672	    freq == ieee80211_channel_to_frequency(14))
1673		return true;
1674	return false;
1675}
1676
1677int regulatory_hint_found_beacon(struct wiphy *wiphy,
1678				 struct ieee80211_channel *beacon_chan,
1679				 gfp_t gfp)
1680{
1681	struct reg_beacon *reg_beacon;
1682
1683	if (likely((beacon_chan->beacon_found ||
1684	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1685	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1686	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1687		return 0;
1688
1689	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1690	if (!reg_beacon)
1691		return -ENOMEM;
1692
1693	REG_DBG_PRINT("cfg80211: Found new beacon on "
1694		      "frequency: %d MHz (Ch %d) on %s\n",
1695		      beacon_chan->center_freq,
1696		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1697		      wiphy_name(wiphy));
1698
1699	memcpy(&reg_beacon->chan, beacon_chan,
1700		sizeof(struct ieee80211_channel));
1701
1702
1703	/*
1704	 * Since we can be called from BH or and non-BH context
1705	 * we must use spin_lock_bh()
1706	 */
1707	spin_lock_bh(&reg_pending_beacons_lock);
1708	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1709	spin_unlock_bh(&reg_pending_beacons_lock);
1710
1711	schedule_work(&reg_work);
1712
1713	return 0;
1714}
1715
1716static void print_rd_rules(const struct ieee80211_regdomain *rd)
1717{
1718	unsigned int i;
1719	const struct ieee80211_reg_rule *reg_rule = NULL;
1720	const struct ieee80211_freq_range *freq_range = NULL;
1721	const struct ieee80211_power_rule *power_rule = NULL;
1722
1723	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1724		"(max_antenna_gain, max_eirp)\n");
1725
1726	for (i = 0; i < rd->n_reg_rules; i++) {
1727		reg_rule = &rd->reg_rules[i];
1728		freq_range = &reg_rule->freq_range;
1729		power_rule = &reg_rule->power_rule;
1730
1731		/*
1732		 * There may not be documentation for max antenna gain
1733		 * in certain regions
1734		 */
1735		if (power_rule->max_antenna_gain)
1736			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1737				"(%d mBi, %d mBm)\n",
1738				freq_range->start_freq_khz,
1739				freq_range->end_freq_khz,
1740				freq_range->max_bandwidth_khz,
1741				power_rule->max_antenna_gain,
1742				power_rule->max_eirp);
1743		else
1744			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1745				"(N/A, %d mBm)\n",
1746				freq_range->start_freq_khz,
1747				freq_range->end_freq_khz,
1748				freq_range->max_bandwidth_khz,
1749				power_rule->max_eirp);
1750	}
1751}
1752
1753static void print_regdomain(const struct ieee80211_regdomain *rd)
1754{
1755
1756	if (is_intersected_alpha2(rd->alpha2)) {
1757
1758		if (last_request->initiator ==
1759		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1760			struct cfg80211_registered_device *rdev;
1761			rdev = cfg80211_rdev_by_wiphy_idx(
1762				last_request->wiphy_idx);
1763			if (rdev) {
1764				printk(KERN_INFO "cfg80211: Current regulatory "
1765					"domain updated by AP to: %c%c\n",
1766					rdev->country_ie_alpha2[0],
1767					rdev->country_ie_alpha2[1]);
1768			} else
1769				printk(KERN_INFO "cfg80211: Current regulatory "
1770					"domain intersected:\n");
1771		} else
1772			printk(KERN_INFO "cfg80211: Current regulatory "
1773				"domain intersected:\n");
1774	} else if (is_world_regdom(rd->alpha2))
1775		printk(KERN_INFO "cfg80211: World regulatory "
1776			"domain updated:\n");
1777	else {
1778		if (is_unknown_alpha2(rd->alpha2))
1779			printk(KERN_INFO "cfg80211: Regulatory domain "
1780				"changed to driver built-in settings "
1781				"(unknown country)\n");
1782		else
1783			printk(KERN_INFO "cfg80211: Regulatory domain "
1784				"changed to country: %c%c\n",
1785				rd->alpha2[0], rd->alpha2[1]);
1786	}
1787	print_rd_rules(rd);
1788}
1789
1790static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1791{
1792	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1793		rd->alpha2[0], rd->alpha2[1]);
1794	print_rd_rules(rd);
1795}
1796
1797/* Takes ownership of rd only if it doesn't fail */
1798static int __set_regdom(const struct ieee80211_regdomain *rd)
1799{
1800	const struct ieee80211_regdomain *intersected_rd = NULL;
1801	struct cfg80211_registered_device *rdev = NULL;
1802	struct wiphy *request_wiphy;
1803	/* Some basic sanity checks first */
1804
1805	if (is_world_regdom(rd->alpha2)) {
1806		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1807			return -EINVAL;
1808		update_world_regdomain(rd);
1809		return 0;
1810	}
1811
1812	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1813			!is_unknown_alpha2(rd->alpha2))
1814		return -EINVAL;
1815
1816	if (!last_request)
1817		return -EINVAL;
1818
1819	/*
1820	 * Lets only bother proceeding on the same alpha2 if the current
1821	 * rd is non static (it means CRDA was present and was used last)
1822	 * and the pending request came in from a country IE
1823	 */
1824	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1825		/*
1826		 * If someone else asked us to change the rd lets only bother
1827		 * checking if the alpha2 changes if CRDA was already called
1828		 */
1829		if (!regdom_changes(rd->alpha2))
1830			return -EINVAL;
1831	}
1832
1833	/*
1834	 * Now lets set the regulatory domain, update all driver channels
1835	 * and finally inform them of what we have done, in case they want
1836	 * to review or adjust their own settings based on their own
1837	 * internal EEPROM data
1838	 */
1839
1840	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1841		return -EINVAL;
1842
1843	if (!is_valid_rd(rd)) {
1844		printk(KERN_ERR "cfg80211: Invalid "
1845			"regulatory domain detected:\n");
1846		print_regdomain_info(rd);
1847		return -EINVAL;
1848	}
1849
1850	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1851
1852	if (!last_request->intersect) {
1853		int r;
1854
1855		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1856			reset_regdomains();
1857			cfg80211_regdomain = rd;
1858			return 0;
1859		}
1860
1861		/*
1862		 * For a driver hint, lets copy the regulatory domain the
1863		 * driver wanted to the wiphy to deal with conflicts
1864		 */
1865
1866		/*
1867		 * Userspace could have sent two replies with only
1868		 * one kernel request.
1869		 */
1870		if (request_wiphy->regd)
1871			return -EALREADY;
1872
1873		r = reg_copy_regd(&request_wiphy->regd, rd);
1874		if (r)
1875			return r;
1876
1877		reset_regdomains();
1878		cfg80211_regdomain = rd;
1879		return 0;
1880	}
1881
1882	/* Intersection requires a bit more work */
1883
1884	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1885
1886		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1887		if (!intersected_rd)
1888			return -EINVAL;
1889
1890		/*
1891		 * We can trash what CRDA provided now.
1892		 * However if a driver requested this specific regulatory
1893		 * domain we keep it for its private use
1894		 */
1895		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1896			request_wiphy->regd = rd;
1897		else
1898			kfree(rd);
1899
1900		rd = NULL;
1901
1902		reset_regdomains();
1903		cfg80211_regdomain = intersected_rd;
1904
1905		return 0;
1906	}
1907
1908	if (!intersected_rd)
1909		return -EINVAL;
1910
1911	rdev = wiphy_to_dev(request_wiphy);
1912
1913	rdev->country_ie_alpha2[0] = rd->alpha2[0];
1914	rdev->country_ie_alpha2[1] = rd->alpha2[1];
1915	rdev->env = last_request->country_ie_env;
1916
1917	BUG_ON(intersected_rd == rd);
1918
1919	kfree(rd);
1920	rd = NULL;
1921
1922	reset_regdomains();
1923	cfg80211_regdomain = intersected_rd;
1924
1925	return 0;
1926}
1927
1928
1929/*
1930 * Use this call to set the current regulatory domain. Conflicts with
1931 * multiple drivers can be ironed out later. Caller must've already
1932 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1933 */
1934int set_regdom(const struct ieee80211_regdomain *rd)
1935{
1936	int r;
1937
1938	assert_cfg80211_lock();
1939
1940	mutex_lock(&reg_mutex);
1941
1942	/* Note that this doesn't update the wiphys, this is done below */
1943	r = __set_regdom(rd);
1944	if (r) {
1945		kfree(rd);
1946		mutex_unlock(&reg_mutex);
1947		return r;
1948	}
1949
1950	/* This would make this whole thing pointless */
1951	if (!last_request->intersect)
1952		BUG_ON(rd != cfg80211_regdomain);
1953
1954	/* update all wiphys now with the new established regulatory domain */
1955	update_all_wiphy_regulatory(last_request->initiator);
1956
1957	print_regdomain(cfg80211_regdomain);
1958
1959	nl80211_send_reg_change_event(last_request);
1960
1961	mutex_unlock(&reg_mutex);
1962
1963	return r;
1964}
1965
1966/* Caller must hold cfg80211_mutex */
1967void reg_device_remove(struct wiphy *wiphy)
1968{
1969	struct wiphy *request_wiphy = NULL;
1970
1971	assert_cfg80211_lock();
1972
1973	mutex_lock(&reg_mutex);
1974
1975	kfree(wiphy->regd);
1976
1977	if (last_request)
1978		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1979
1980	if (!request_wiphy || request_wiphy != wiphy)
1981		goto out;
1982
1983	last_request->wiphy_idx = WIPHY_IDX_STALE;
1984	last_request->country_ie_env = ENVIRON_ANY;
1985out:
1986	mutex_unlock(&reg_mutex);
1987}
1988
1989int __init regulatory_init(void)
1990{
1991	int err = 0;
1992
1993	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1994	if (IS_ERR(reg_pdev))
1995		return PTR_ERR(reg_pdev);
1996
1997	spin_lock_init(&reg_requests_lock);
1998	spin_lock_init(&reg_pending_beacons_lock);
1999
2000	cfg80211_regdomain = cfg80211_world_regdom;
2001
2002	user_alpha2[0] = '9';
2003	user_alpha2[1] = '7';
2004
2005	/* We always try to get an update for the static regdomain */
2006	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2007	if (err) {
2008		if (err == -ENOMEM)
2009			return err;
2010		/*
2011		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2012		 * memory which is handled and propagated appropriately above
2013		 * but it can also fail during a netlink_broadcast() or during
2014		 * early boot for call_usermodehelper(). For now treat these
2015		 * errors as non-fatal.
2016		 */
2017		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2018			"to call CRDA during init");
2019#ifdef CONFIG_CFG80211_REG_DEBUG
2020		/* We want to find out exactly why when debugging */
2021		WARN_ON(err);
2022#endif
2023	}
2024
2025	/*
2026	 * Finally, if the user set the module parameter treat it
2027	 * as a user hint.
2028	 */
2029	if (!is_world_regdom(ieee80211_regdom))
2030		regulatory_hint_user(ieee80211_regdom);
2031
2032	return 0;
2033}
2034
2035void /* __init_or_exit */ regulatory_exit(void)
2036{
2037	struct regulatory_request *reg_request, *tmp;
2038	struct reg_beacon *reg_beacon, *btmp;
2039
2040	cancel_work_sync(&reg_work);
2041
2042	mutex_lock(&cfg80211_mutex);
2043	mutex_lock(&reg_mutex);
2044
2045	reset_regdomains();
2046
2047	kfree(last_request);
2048
2049	platform_device_unregister(reg_pdev);
2050
2051	spin_lock_bh(&reg_pending_beacons_lock);
2052	if (!list_empty(&reg_pending_beacons)) {
2053		list_for_each_entry_safe(reg_beacon, btmp,
2054					 &reg_pending_beacons, list) {
2055			list_del(&reg_beacon->list);
2056			kfree(reg_beacon);
2057		}
2058	}
2059	spin_unlock_bh(&reg_pending_beacons_lock);
2060
2061	if (!list_empty(&reg_beacon_list)) {
2062		list_for_each_entry_safe(reg_beacon, btmp,
2063					 &reg_beacon_list, list) {
2064			list_del(&reg_beacon->list);
2065			kfree(reg_beacon);
2066		}
2067	}
2068
2069	spin_lock(&reg_requests_lock);
2070	if (!list_empty(&reg_requests_list)) {
2071		list_for_each_entry_safe(reg_request, tmp,
2072					 &reg_requests_list, list) {
2073			list_del(&reg_request->list);
2074			kfree(reg_request);
2075		}
2076	}
2077	spin_unlock(&reg_requests_lock);
2078
2079	mutex_unlock(&reg_mutex);
2080	mutex_unlock(&cfg80211_mutex);
2081}
2082