1/*
2 *	Linux INET6 implementation
3 *	Forwarding Information Database
4 *
5 *	Authors:
6 *	Pedro Roque		<roque@di.fc.ul.pt>
7 *
8 *	This program is free software; you can redistribute it and/or
9 *      modify it under the terms of the GNU General Public License
10 *      as published by the Free Software Foundation; either version
11 *      2 of the License, or (at your option) any later version.
12 */
13
14/*
15 * 	Changes:
16 * 	Yuji SEKIYA @USAGI:	Support default route on router node;
17 * 				remove ip6_null_entry from the top of
18 * 				routing table.
19 * 	Ville Nuorvala:		Fixed routing subtrees.
20 */
21#include <linux/errno.h>
22#include <linux/types.h>
23#include <linux/net.h>
24#include <linux/route.h>
25#include <linux/netdevice.h>
26#include <linux/in6.h>
27#include <linux/init.h>
28#include <linux/list.h>
29#include <linux/slab.h>
30
31#ifdef 	CONFIG_PROC_FS
32#include <linux/proc_fs.h>
33#endif
34
35#include <net/ipv6.h>
36#include <net/ndisc.h>
37#include <net/addrconf.h>
38
39#include <net/ip6_fib.h>
40#include <net/ip6_route.h>
41
42#define RT6_DEBUG 2
43
44#if RT6_DEBUG >= 3
45#define RT6_TRACE(x...) printk(KERN_DEBUG x)
46#else
47#define RT6_TRACE(x...) do { ; } while (0)
48#endif
49
50static struct kmem_cache * fib6_node_kmem __read_mostly;
51
52enum fib_walk_state_t
53{
54#ifdef CONFIG_IPV6_SUBTREES
55	FWS_S,
56#endif
57	FWS_L,
58	FWS_R,
59	FWS_C,
60	FWS_U
61};
62
63struct fib6_cleaner_t
64{
65	struct fib6_walker_t w;
66	struct net *net;
67	int (*func)(struct rt6_info *, void *arg);
68	void *arg;
69};
70
71static DEFINE_RWLOCK(fib6_walker_lock);
72
73#ifdef CONFIG_IPV6_SUBTREES
74#define FWS_INIT FWS_S
75#else
76#define FWS_INIT FWS_L
77#endif
78
79static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
80			      struct rt6_info *rt);
81static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
82static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
83static int fib6_walk(struct fib6_walker_t *w);
84static int fib6_walk_continue(struct fib6_walker_t *w);
85
86/*
87 *	A routing update causes an increase of the serial number on the
88 *	affected subtree. This allows for cached routes to be asynchronously
89 *	tested when modifications are made to the destination cache as a
90 *	result of redirects, path MTU changes, etc.
91 */
92
93static __u32 rt_sernum;
94
95static void fib6_gc_timer_cb(unsigned long arg);
96
97static LIST_HEAD(fib6_walkers);
98#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99
100static inline void fib6_walker_link(struct fib6_walker_t *w)
101{
102	write_lock_bh(&fib6_walker_lock);
103	list_add(&w->lh, &fib6_walkers);
104	write_unlock_bh(&fib6_walker_lock);
105}
106
107static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108{
109	write_lock_bh(&fib6_walker_lock);
110	list_del(&w->lh);
111	write_unlock_bh(&fib6_walker_lock);
112}
113static __inline__ u32 fib6_new_sernum(void)
114{
115	u32 n = ++rt_sernum;
116	if ((__s32)n <= 0)
117		rt_sernum = n = 1;
118	return n;
119}
120
121/*
122 *	Auxiliary address test functions for the radix tree.
123 *
124 *	These assume a 32bit processor (although it will work on
125 *	64bit processors)
126 */
127
128/*
129 *	test bit
130 */
131#if defined(__LITTLE_ENDIAN)
132# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
133#else
134# define BITOP_BE32_SWIZZLE	0
135#endif
136
137static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
138{
139	__be32 *addr = token;
140	/*
141	 * Here,
142	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
143	 * is optimized version of
144	 *	htonl(1 << ((~fn_bit)&0x1F))
145	 * See include/asm-generic/bitops/le.h.
146	 */
147	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
148	       addr[fn_bit >> 5];
149}
150
151static __inline__ struct fib6_node * node_alloc(void)
152{
153	struct fib6_node *fn;
154
155	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
156
157	return fn;
158}
159
160static __inline__ void node_free(struct fib6_node * fn)
161{
162	kmem_cache_free(fib6_node_kmem, fn);
163}
164
165static __inline__ void rt6_release(struct rt6_info *rt)
166{
167	if (atomic_dec_and_test(&rt->rt6i_ref))
168		dst_free(&rt->dst);
169}
170
171static void fib6_link_table(struct net *net, struct fib6_table *tb)
172{
173	unsigned int h;
174
175	/*
176	 * Initialize table lock at a single place to give lockdep a key,
177	 * tables aren't visible prior to being linked to the list.
178	 */
179	rwlock_init(&tb->tb6_lock);
180
181	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
182
183	/*
184	 * No protection necessary, this is the only list mutatation
185	 * operation, tables never disappear once they exist.
186	 */
187	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
188}
189
190#ifdef CONFIG_IPV6_MULTIPLE_TABLES
191
192static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
193{
194	struct fib6_table *table;
195
196	table = kzalloc(sizeof(*table), GFP_ATOMIC);
197	if (table != NULL) {
198		table->tb6_id = id;
199		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
200		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
201	}
202
203	return table;
204}
205
206struct fib6_table *fib6_new_table(struct net *net, u32 id)
207{
208	struct fib6_table *tb;
209
210	if (id == 0)
211		id = RT6_TABLE_MAIN;
212	tb = fib6_get_table(net, id);
213	if (tb)
214		return tb;
215
216	tb = fib6_alloc_table(net, id);
217	if (tb != NULL)
218		fib6_link_table(net, tb);
219
220	return tb;
221}
222
223struct fib6_table *fib6_get_table(struct net *net, u32 id)
224{
225	struct fib6_table *tb;
226	struct hlist_head *head;
227	struct hlist_node *node;
228	unsigned int h;
229
230	if (id == 0)
231		id = RT6_TABLE_MAIN;
232	h = id & (FIB6_TABLE_HASHSZ - 1);
233	rcu_read_lock();
234	head = &net->ipv6.fib_table_hash[h];
235	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236		if (tb->tb6_id == id) {
237			rcu_read_unlock();
238			return tb;
239		}
240	}
241	rcu_read_unlock();
242
243	return NULL;
244}
245
246static void __net_init fib6_tables_init(struct net *net)
247{
248	fib6_link_table(net, net->ipv6.fib6_main_tbl);
249	fib6_link_table(net, net->ipv6.fib6_local_tbl);
250}
251#else
252
253struct fib6_table *fib6_new_table(struct net *net, u32 id)
254{
255	return fib6_get_table(net, id);
256}
257
258struct fib6_table *fib6_get_table(struct net *net, u32 id)
259{
260	  return net->ipv6.fib6_main_tbl;
261}
262
263struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
264				   int flags, pol_lookup_t lookup)
265{
266	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
267}
268
269static void __net_init fib6_tables_init(struct net *net)
270{
271	fib6_link_table(net, net->ipv6.fib6_main_tbl);
272}
273
274#endif
275
276static int fib6_dump_node(struct fib6_walker_t *w)
277{
278	int res;
279	struct rt6_info *rt;
280
281	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282		res = rt6_dump_route(rt, w->args);
283		if (res < 0) {
284			/* Frame is full, suspend walking */
285			w->leaf = rt;
286			return 1;
287		}
288		WARN_ON(res == 0);
289	}
290	w->leaf = NULL;
291	return 0;
292}
293
294static void fib6_dump_end(struct netlink_callback *cb)
295{
296	struct fib6_walker_t *w = (void*)cb->args[2];
297
298	if (w) {
299		if (cb->args[4]) {
300			cb->args[4] = 0;
301			fib6_walker_unlink(w);
302		}
303		cb->args[2] = 0;
304		kfree(w);
305	}
306	cb->done = (void*)cb->args[3];
307	cb->args[1] = 3;
308}
309
310static int fib6_dump_done(struct netlink_callback *cb)
311{
312	fib6_dump_end(cb);
313	return cb->done ? cb->done(cb) : 0;
314}
315
316static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317			   struct netlink_callback *cb)
318{
319	struct fib6_walker_t *w;
320	int res;
321
322	w = (void *)cb->args[2];
323	w->root = &table->tb6_root;
324
325	if (cb->args[4] == 0) {
326		w->count = 0;
327		w->skip = 0;
328
329		read_lock_bh(&table->tb6_lock);
330		res = fib6_walk(w);
331		read_unlock_bh(&table->tb6_lock);
332		if (res > 0) {
333			cb->args[4] = 1;
334			cb->args[5] = w->root->fn_sernum;
335		}
336	} else {
337		if (cb->args[5] != w->root->fn_sernum) {
338			/* Begin at the root if the tree changed */
339			cb->args[5] = w->root->fn_sernum;
340			w->state = FWS_INIT;
341			w->node = w->root;
342			w->skip = w->count;
343		} else
344			w->skip = 0;
345
346		read_lock_bh(&table->tb6_lock);
347		res = fib6_walk_continue(w);
348		read_unlock_bh(&table->tb6_lock);
349		if (res <= 0) {
350			fib6_walker_unlink(w);
351			cb->args[4] = 0;
352		}
353	}
354
355	return res;
356}
357
358static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359{
360	struct net *net = sock_net(skb->sk);
361	unsigned int h, s_h;
362	unsigned int e = 0, s_e;
363	struct rt6_rtnl_dump_arg arg;
364	struct fib6_walker_t *w;
365	struct fib6_table *tb;
366	struct hlist_node *node;
367	struct hlist_head *head;
368	int res = 0;
369
370	s_h = cb->args[0];
371	s_e = cb->args[1];
372
373	w = (void *)cb->args[2];
374	if (w == NULL) {
375		/* New dump:
376		 *
377		 * 1. hook callback destructor.
378		 */
379		cb->args[3] = (long)cb->done;
380		cb->done = fib6_dump_done;
381
382		/*
383		 * 2. allocate and initialize walker.
384		 */
385		w = kzalloc(sizeof(*w), GFP_ATOMIC);
386		if (w == NULL)
387			return -ENOMEM;
388		w->func = fib6_dump_node;
389		cb->args[2] = (long)w;
390	}
391
392	arg.skb = skb;
393	arg.cb = cb;
394	arg.net = net;
395	w->args = &arg;
396
397	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
398		e = 0;
399		head = &net->ipv6.fib_table_hash[h];
400		hlist_for_each_entry(tb, node, head, tb6_hlist) {
401			if (e < s_e)
402				goto next;
403			res = fib6_dump_table(tb, skb, cb);
404			if (res != 0)
405				goto out;
406next:
407			e++;
408		}
409	}
410out:
411	cb->args[1] = e;
412	cb->args[0] = h;
413
414	res = res < 0 ? res : skb->len;
415	if (res <= 0)
416		fib6_dump_end(cb);
417	return res;
418}
419
420/*
421 *	Routing Table
422 *
423 *	return the appropriate node for a routing tree "add" operation
424 *	by either creating and inserting or by returning an existing
425 *	node.
426 */
427
428static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
429				     int addrlen, int plen,
430				     int offset)
431{
432	struct fib6_node *fn, *in, *ln;
433	struct fib6_node *pn = NULL;
434	struct rt6key *key;
435	int	bit;
436	__be32	dir = 0;
437	__u32	sernum = fib6_new_sernum();
438
439	RT6_TRACE("fib6_add_1\n");
440
441	/* insert node in tree */
442
443	fn = root;
444
445	do {
446		key = (struct rt6key *)((u8 *)fn->leaf + offset);
447
448		/*
449		 *	Prefix match
450		 */
451		if (plen < fn->fn_bit ||
452		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
453			goto insert_above;
454
455		/*
456		 *	Exact match ?
457		 */
458
459		if (plen == fn->fn_bit) {
460			/* clean up an intermediate node */
461			if ((fn->fn_flags & RTN_RTINFO) == 0) {
462				rt6_release(fn->leaf);
463				fn->leaf = NULL;
464			}
465
466			fn->fn_sernum = sernum;
467
468			return fn;
469		}
470
471		/*
472		 *	We have more bits to go
473		 */
474
475		/* Try to walk down on tree. */
476		fn->fn_sernum = sernum;
477		dir = addr_bit_set(addr, fn->fn_bit);
478		pn = fn;
479		fn = dir ? fn->right: fn->left;
480	} while (fn);
481
482	/*
483	 *	We walked to the bottom of tree.
484	 *	Create new leaf node without children.
485	 */
486
487	ln = node_alloc();
488
489	if (ln == NULL)
490		return NULL;
491	ln->fn_bit = plen;
492
493	ln->parent = pn;
494	ln->fn_sernum = sernum;
495
496	if (dir)
497		pn->right = ln;
498	else
499		pn->left  = ln;
500
501	return ln;
502
503
504insert_above:
505	/*
506	 * split since we don't have a common prefix anymore or
507	 * we have a less significant route.
508	 * we've to insert an intermediate node on the list
509	 * this new node will point to the one we need to create
510	 * and the current
511	 */
512
513	pn = fn->parent;
514
515	/* find 1st bit in difference between the 2 addrs.
516
517	   See comment in __ipv6_addr_diff: bit may be an invalid value,
518	   but if it is >= plen, the value is ignored in any case.
519	 */
520
521	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
522
523	/*
524	 *		(intermediate)[in]
525	 *	          /	   \
526	 *	(new leaf node)[ln] (old node)[fn]
527	 */
528	if (plen > bit) {
529		in = node_alloc();
530		ln = node_alloc();
531
532		if (in == NULL || ln == NULL) {
533			if (in)
534				node_free(in);
535			if (ln)
536				node_free(ln);
537			return NULL;
538		}
539
540		/*
541		 * new intermediate node.
542		 * RTN_RTINFO will
543		 * be off since that an address that chooses one of
544		 * the branches would not match less specific routes
545		 * in the other branch
546		 */
547
548		in->fn_bit = bit;
549
550		in->parent = pn;
551		in->leaf = fn->leaf;
552		atomic_inc(&in->leaf->rt6i_ref);
553
554		in->fn_sernum = sernum;
555
556		/* update parent pointer */
557		if (dir)
558			pn->right = in;
559		else
560			pn->left  = in;
561
562		ln->fn_bit = plen;
563
564		ln->parent = in;
565		fn->parent = in;
566
567		ln->fn_sernum = sernum;
568
569		if (addr_bit_set(addr, bit)) {
570			in->right = ln;
571			in->left  = fn;
572		} else {
573			in->left  = ln;
574			in->right = fn;
575		}
576	} else { /* plen <= bit */
577
578		/*
579		 *		(new leaf node)[ln]
580		 *	          /	   \
581		 *	     (old node)[fn] NULL
582		 */
583
584		ln = node_alloc();
585
586		if (ln == NULL)
587			return NULL;
588
589		ln->fn_bit = plen;
590
591		ln->parent = pn;
592
593		ln->fn_sernum = sernum;
594
595		if (dir)
596			pn->right = ln;
597		else
598			pn->left  = ln;
599
600		if (addr_bit_set(&key->addr, plen))
601			ln->right = fn;
602		else
603			ln->left  = fn;
604
605		fn->parent = ln;
606	}
607	return ln;
608}
609
610/*
611 *	Insert routing information in a node.
612 */
613
614static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
615			    struct nl_info *info)
616{
617	struct rt6_info *iter = NULL;
618	struct rt6_info **ins;
619
620	ins = &fn->leaf;
621
622	for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
623		/*
624		 *	Search for duplicates
625		 */
626
627		if (iter->rt6i_metric == rt->rt6i_metric) {
628			/*
629			 *	Same priority level
630			 */
631
632			if (iter->rt6i_dev == rt->rt6i_dev &&
633			    iter->rt6i_idev == rt->rt6i_idev &&
634			    ipv6_addr_equal(&iter->rt6i_gateway,
635					    &rt->rt6i_gateway)) {
636				if (!(iter->rt6i_flags&RTF_EXPIRES))
637					return -EEXIST;
638				iter->rt6i_expires = rt->rt6i_expires;
639				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
640					iter->rt6i_flags &= ~RTF_EXPIRES;
641					iter->rt6i_expires = 0;
642				}
643				return -EEXIST;
644			}
645		}
646
647		if (iter->rt6i_metric > rt->rt6i_metric)
648			break;
649
650		ins = &iter->dst.rt6_next;
651	}
652
653	/* Reset round-robin state, if necessary */
654	if (ins == &fn->leaf)
655		fn->rr_ptr = NULL;
656
657	/*
658	 *	insert node
659	 */
660
661	rt->dst.rt6_next = iter;
662	*ins = rt;
663	rt->rt6i_node = fn;
664	atomic_inc(&rt->rt6i_ref);
665	inet6_rt_notify(RTM_NEWROUTE, rt, info);
666	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
667
668	if ((fn->fn_flags & RTN_RTINFO) == 0) {
669		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
670		fn->fn_flags |= RTN_RTINFO;
671	}
672
673	return 0;
674}
675
676static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
677{
678	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
679	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
680		mod_timer(&net->ipv6.ip6_fib_timer,
681			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
682}
683
684void fib6_force_start_gc(struct net *net)
685{
686	if (!timer_pending(&net->ipv6.ip6_fib_timer))
687		mod_timer(&net->ipv6.ip6_fib_timer,
688			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
689}
690
691/*
692 *	Add routing information to the routing tree.
693 *	<destination addr>/<source addr>
694 *	with source addr info in sub-trees
695 */
696
697int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
698{
699	struct fib6_node *fn, *pn = NULL;
700	int err = -ENOMEM;
701
702	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
703			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
704
705	if (fn == NULL)
706		goto out;
707
708	pn = fn;
709
710#ifdef CONFIG_IPV6_SUBTREES
711	if (rt->rt6i_src.plen) {
712		struct fib6_node *sn;
713
714		if (fn->subtree == NULL) {
715			struct fib6_node *sfn;
716
717			/*
718			 * Create subtree.
719			 *
720			 *		fn[main tree]
721			 *		|
722			 *		sfn[subtree root]
723			 *		   \
724			 *		    sn[new leaf node]
725			 */
726
727			/* Create subtree root node */
728			sfn = node_alloc();
729			if (sfn == NULL)
730				goto st_failure;
731
732			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
733			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
734			sfn->fn_flags = RTN_ROOT;
735			sfn->fn_sernum = fib6_new_sernum();
736
737			/* Now add the first leaf node to new subtree */
738
739			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
740					sizeof(struct in6_addr), rt->rt6i_src.plen,
741					offsetof(struct rt6_info, rt6i_src));
742
743			if (sn == NULL) {
744				/* If it is failed, discard just allocated
745				   root, and then (in st_failure) stale node
746				   in main tree.
747				 */
748				node_free(sfn);
749				goto st_failure;
750			}
751
752			/* Now link new subtree to main tree */
753			sfn->parent = fn;
754			fn->subtree = sfn;
755		} else {
756			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
757					sizeof(struct in6_addr), rt->rt6i_src.plen,
758					offsetof(struct rt6_info, rt6i_src));
759
760			if (sn == NULL)
761				goto st_failure;
762		}
763
764		if (fn->leaf == NULL) {
765			fn->leaf = rt;
766			atomic_inc(&rt->rt6i_ref);
767		}
768		fn = sn;
769	}
770#endif
771
772	err = fib6_add_rt2node(fn, rt, info);
773
774	if (err == 0) {
775		fib6_start_gc(info->nl_net, rt);
776		if (!(rt->rt6i_flags&RTF_CACHE))
777			fib6_prune_clones(info->nl_net, pn, rt);
778	}
779
780out:
781	if (err) {
782#ifdef CONFIG_IPV6_SUBTREES
783		/*
784		 * If fib6_add_1 has cleared the old leaf pointer in the
785		 * super-tree leaf node we have to find a new one for it.
786		 */
787		if (pn != fn && pn->leaf == rt) {
788			pn->leaf = NULL;
789			atomic_dec(&rt->rt6i_ref);
790		}
791		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
792			pn->leaf = fib6_find_prefix(info->nl_net, pn);
793#if RT6_DEBUG >= 2
794			if (!pn->leaf) {
795				WARN_ON(pn->leaf == NULL);
796				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
797			}
798#endif
799			atomic_inc(&pn->leaf->rt6i_ref);
800		}
801#endif
802		dst_free(&rt->dst);
803	}
804	return err;
805
806#ifdef CONFIG_IPV6_SUBTREES
807	/* Subtree creation failed, probably main tree node
808	   is orphan. If it is, shoot it.
809	 */
810st_failure:
811	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
812		fib6_repair_tree(info->nl_net, fn);
813	dst_free(&rt->dst);
814	return err;
815#endif
816}
817
818/*
819 *	Routing tree lookup
820 *
821 */
822
823struct lookup_args {
824	int		offset;		/* key offset on rt6_info	*/
825	struct in6_addr	*addr;		/* search key			*/
826};
827
828static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
829					struct lookup_args *args)
830{
831	struct fib6_node *fn;
832	__be32 dir;
833
834	if (unlikely(args->offset == 0))
835		return NULL;
836
837	/*
838	 *	Descend on a tree
839	 */
840
841	fn = root;
842
843	for (;;) {
844		struct fib6_node *next;
845
846		dir = addr_bit_set(args->addr, fn->fn_bit);
847
848		next = dir ? fn->right : fn->left;
849
850		if (next) {
851			fn = next;
852			continue;
853		}
854
855		break;
856	}
857
858	while(fn) {
859		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
860			struct rt6key *key;
861
862			key = (struct rt6key *) ((u8 *) fn->leaf +
863						 args->offset);
864
865			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
866#ifdef CONFIG_IPV6_SUBTREES
867				if (fn->subtree)
868					fn = fib6_lookup_1(fn->subtree, args + 1);
869#endif
870				if (!fn || fn->fn_flags & RTN_RTINFO)
871					return fn;
872			}
873		}
874
875		if (fn->fn_flags & RTN_ROOT)
876			break;
877
878		fn = fn->parent;
879	}
880
881	return NULL;
882}
883
884struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
885			       struct in6_addr *saddr)
886{
887	struct fib6_node *fn;
888	struct lookup_args args[] = {
889		{
890			.offset = offsetof(struct rt6_info, rt6i_dst),
891			.addr = daddr,
892		},
893#ifdef CONFIG_IPV6_SUBTREES
894		{
895			.offset = offsetof(struct rt6_info, rt6i_src),
896			.addr = saddr,
897		},
898#endif
899		{
900			.offset = 0,	/* sentinel */
901		}
902	};
903
904	fn = fib6_lookup_1(root, daddr ? args : args + 1);
905
906	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
907		fn = root;
908
909	return fn;
910}
911
912/*
913 *	Get node with specified destination prefix (and source prefix,
914 *	if subtrees are used)
915 */
916
917
918static struct fib6_node * fib6_locate_1(struct fib6_node *root,
919					struct in6_addr *addr,
920					int plen, int offset)
921{
922	struct fib6_node *fn;
923
924	for (fn = root; fn ; ) {
925		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
926
927		/*
928		 *	Prefix match
929		 */
930		if (plen < fn->fn_bit ||
931		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
932			return NULL;
933
934		if (plen == fn->fn_bit)
935			return fn;
936
937		/*
938		 *	We have more bits to go
939		 */
940		if (addr_bit_set(addr, fn->fn_bit))
941			fn = fn->right;
942		else
943			fn = fn->left;
944	}
945	return NULL;
946}
947
948struct fib6_node * fib6_locate(struct fib6_node *root,
949			       struct in6_addr *daddr, int dst_len,
950			       struct in6_addr *saddr, int src_len)
951{
952	struct fib6_node *fn;
953
954	fn = fib6_locate_1(root, daddr, dst_len,
955			   offsetof(struct rt6_info, rt6i_dst));
956
957#ifdef CONFIG_IPV6_SUBTREES
958	if (src_len) {
959		WARN_ON(saddr == NULL);
960		if (fn && fn->subtree)
961			fn = fib6_locate_1(fn->subtree, saddr, src_len,
962					   offsetof(struct rt6_info, rt6i_src));
963	}
964#endif
965
966	if (fn && fn->fn_flags&RTN_RTINFO)
967		return fn;
968
969	return NULL;
970}
971
972
973/*
974 *	Deletion
975 *
976 */
977
978static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
979{
980	if (fn->fn_flags&RTN_ROOT)
981		return net->ipv6.ip6_null_entry;
982
983	while(fn) {
984		if(fn->left)
985			return fn->left->leaf;
986
987		if(fn->right)
988			return fn->right->leaf;
989
990		fn = FIB6_SUBTREE(fn);
991	}
992	return NULL;
993}
994
995/*
996 *	Called to trim the tree of intermediate nodes when possible. "fn"
997 *	is the node we want to try and remove.
998 */
999
1000static struct fib6_node *fib6_repair_tree(struct net *net,
1001					   struct fib6_node *fn)
1002{
1003	int children;
1004	int nstate;
1005	struct fib6_node *child, *pn;
1006	struct fib6_walker_t *w;
1007	int iter = 0;
1008
1009	for (;;) {
1010		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1011		iter++;
1012
1013		WARN_ON(fn->fn_flags & RTN_RTINFO);
1014		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1015		WARN_ON(fn->leaf != NULL);
1016
1017		children = 0;
1018		child = NULL;
1019		if (fn->right) child = fn->right, children |= 1;
1020		if (fn->left) child = fn->left, children |= 2;
1021
1022		if (children == 3 || FIB6_SUBTREE(fn)
1023#ifdef CONFIG_IPV6_SUBTREES
1024		    /* Subtree root (i.e. fn) may have one child */
1025		    || (children && fn->fn_flags&RTN_ROOT)
1026#endif
1027		    ) {
1028			fn->leaf = fib6_find_prefix(net, fn);
1029#if RT6_DEBUG >= 2
1030			if (fn->leaf==NULL) {
1031				WARN_ON(!fn->leaf);
1032				fn->leaf = net->ipv6.ip6_null_entry;
1033			}
1034#endif
1035			atomic_inc(&fn->leaf->rt6i_ref);
1036			return fn->parent;
1037		}
1038
1039		pn = fn->parent;
1040#ifdef CONFIG_IPV6_SUBTREES
1041		if (FIB6_SUBTREE(pn) == fn) {
1042			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1043			FIB6_SUBTREE(pn) = NULL;
1044			nstate = FWS_L;
1045		} else {
1046			WARN_ON(fn->fn_flags & RTN_ROOT);
1047#endif
1048			if (pn->right == fn) pn->right = child;
1049			else if (pn->left == fn) pn->left = child;
1050#if RT6_DEBUG >= 2
1051			else
1052				WARN_ON(1);
1053#endif
1054			if (child)
1055				child->parent = pn;
1056			nstate = FWS_R;
1057#ifdef CONFIG_IPV6_SUBTREES
1058		}
1059#endif
1060
1061		read_lock(&fib6_walker_lock);
1062		FOR_WALKERS(w) {
1063			if (child == NULL) {
1064				if (w->root == fn) {
1065					w->root = w->node = NULL;
1066					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1067				} else if (w->node == fn) {
1068					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1069					w->node = pn;
1070					w->state = nstate;
1071				}
1072			} else {
1073				if (w->root == fn) {
1074					w->root = child;
1075					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1076				}
1077				if (w->node == fn) {
1078					w->node = child;
1079					if (children&2) {
1080						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1081						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1082					} else {
1083						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1084						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1085					}
1086				}
1087			}
1088		}
1089		read_unlock(&fib6_walker_lock);
1090
1091		node_free(fn);
1092		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1093			return pn;
1094
1095		rt6_release(pn->leaf);
1096		pn->leaf = NULL;
1097		fn = pn;
1098	}
1099}
1100
1101static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1102			   struct nl_info *info)
1103{
1104	struct fib6_walker_t *w;
1105	struct rt6_info *rt = *rtp;
1106	struct net *net = info->nl_net;
1107
1108	RT6_TRACE("fib6_del_route\n");
1109
1110	/* Unlink it */
1111	*rtp = rt->dst.rt6_next;
1112	rt->rt6i_node = NULL;
1113	net->ipv6.rt6_stats->fib_rt_entries--;
1114	net->ipv6.rt6_stats->fib_discarded_routes++;
1115
1116	/* Reset round-robin state, if necessary */
1117	if (fn->rr_ptr == rt)
1118		fn->rr_ptr = NULL;
1119
1120	/* Adjust walkers */
1121	read_lock(&fib6_walker_lock);
1122	FOR_WALKERS(w) {
1123		if (w->state == FWS_C && w->leaf == rt) {
1124			RT6_TRACE("walker %p adjusted by delroute\n", w);
1125			w->leaf = rt->dst.rt6_next;
1126			if (w->leaf == NULL)
1127				w->state = FWS_U;
1128		}
1129	}
1130	read_unlock(&fib6_walker_lock);
1131
1132	rt->dst.rt6_next = NULL;
1133
1134	/* If it was last route, expunge its radix tree node */
1135	if (fn->leaf == NULL) {
1136		fn->fn_flags &= ~RTN_RTINFO;
1137		net->ipv6.rt6_stats->fib_route_nodes--;
1138		fn = fib6_repair_tree(net, fn);
1139	}
1140
1141	if (atomic_read(&rt->rt6i_ref) != 1) {
1142		/* This route is used as dummy address holder in some split
1143		 * nodes. It is not leaked, but it still holds other resources,
1144		 * which must be released in time. So, scan ascendant nodes
1145		 * and replace dummy references to this route with references
1146		 * to still alive ones.
1147		 */
1148		while (fn) {
1149			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1150				fn->leaf = fib6_find_prefix(net, fn);
1151				atomic_inc(&fn->leaf->rt6i_ref);
1152				rt6_release(rt);
1153			}
1154			fn = fn->parent;
1155		}
1156		/* No more references are possible at this point. */
1157		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1158	}
1159
1160	inet6_rt_notify(RTM_DELROUTE, rt, info);
1161	rt6_release(rt);
1162}
1163
1164int fib6_del(struct rt6_info *rt, struct nl_info *info)
1165{
1166	struct net *net = info->nl_net;
1167	struct fib6_node *fn = rt->rt6i_node;
1168	struct rt6_info **rtp;
1169
1170#if RT6_DEBUG >= 2
1171	if (rt->dst.obsolete>0) {
1172		WARN_ON(fn != NULL);
1173		return -ENOENT;
1174	}
1175#endif
1176	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1177		return -ENOENT;
1178
1179	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1180
1181	if (!(rt->rt6i_flags&RTF_CACHE)) {
1182		struct fib6_node *pn = fn;
1183#ifdef CONFIG_IPV6_SUBTREES
1184		/* clones of this route might be in another subtree */
1185		if (rt->rt6i_src.plen) {
1186			while (!(pn->fn_flags&RTN_ROOT))
1187				pn = pn->parent;
1188			pn = pn->parent;
1189		}
1190#endif
1191		fib6_prune_clones(info->nl_net, pn, rt);
1192	}
1193
1194	/*
1195	 *	Walk the leaf entries looking for ourself
1196	 */
1197
1198	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1199		if (*rtp == rt) {
1200			fib6_del_route(fn, rtp, info);
1201			return 0;
1202		}
1203	}
1204	return -ENOENT;
1205}
1206
1207/*
1208 *	Tree traversal function.
1209 *
1210 *	Certainly, it is not interrupt safe.
1211 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1212 *	It means, that we can modify tree during walking
1213 *	and use this function for garbage collection, clone pruning,
1214 *	cleaning tree when a device goes down etc. etc.
1215 *
1216 *	It guarantees that every node will be traversed,
1217 *	and that it will be traversed only once.
1218 *
1219 *	Callback function w->func may return:
1220 *	0 -> continue walking.
1221 *	positive value -> walking is suspended (used by tree dumps,
1222 *	and probably by gc, if it will be split to several slices)
1223 *	negative value -> terminate walking.
1224 *
1225 *	The function itself returns:
1226 *	0   -> walk is complete.
1227 *	>0  -> walk is incomplete (i.e. suspended)
1228 *	<0  -> walk is terminated by an error.
1229 */
1230
1231static int fib6_walk_continue(struct fib6_walker_t *w)
1232{
1233	struct fib6_node *fn, *pn;
1234
1235	for (;;) {
1236		fn = w->node;
1237		if (fn == NULL)
1238			return 0;
1239
1240		if (w->prune && fn != w->root &&
1241		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1242			w->state = FWS_C;
1243			w->leaf = fn->leaf;
1244		}
1245		switch (w->state) {
1246#ifdef CONFIG_IPV6_SUBTREES
1247		case FWS_S:
1248			if (FIB6_SUBTREE(fn)) {
1249				w->node = FIB6_SUBTREE(fn);
1250				continue;
1251			}
1252			w->state = FWS_L;
1253#endif
1254		case FWS_L:
1255			if (fn->left) {
1256				w->node = fn->left;
1257				w->state = FWS_INIT;
1258				continue;
1259			}
1260			w->state = FWS_R;
1261		case FWS_R:
1262			if (fn->right) {
1263				w->node = fn->right;
1264				w->state = FWS_INIT;
1265				continue;
1266			}
1267			w->state = FWS_C;
1268			w->leaf = fn->leaf;
1269		case FWS_C:
1270			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1271				int err;
1272
1273				if (w->count < w->skip) {
1274					w->count++;
1275					continue;
1276				}
1277
1278				err = w->func(w);
1279				if (err)
1280					return err;
1281
1282				w->count++;
1283				continue;
1284			}
1285			w->state = FWS_U;
1286		case FWS_U:
1287			if (fn == w->root)
1288				return 0;
1289			pn = fn->parent;
1290			w->node = pn;
1291#ifdef CONFIG_IPV6_SUBTREES
1292			if (FIB6_SUBTREE(pn) == fn) {
1293				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1294				w->state = FWS_L;
1295				continue;
1296			}
1297#endif
1298			if (pn->left == fn) {
1299				w->state = FWS_R;
1300				continue;
1301			}
1302			if (pn->right == fn) {
1303				w->state = FWS_C;
1304				w->leaf = w->node->leaf;
1305				continue;
1306			}
1307#if RT6_DEBUG >= 2
1308			WARN_ON(1);
1309#endif
1310		}
1311	}
1312}
1313
1314static int fib6_walk(struct fib6_walker_t *w)
1315{
1316	int res;
1317
1318	w->state = FWS_INIT;
1319	w->node = w->root;
1320
1321	fib6_walker_link(w);
1322	res = fib6_walk_continue(w);
1323	if (res <= 0)
1324		fib6_walker_unlink(w);
1325	return res;
1326}
1327
1328static int fib6_clean_node(struct fib6_walker_t *w)
1329{
1330	int res;
1331	struct rt6_info *rt;
1332	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1333	struct nl_info info = {
1334		.nl_net = c->net,
1335	};
1336
1337	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1338		res = c->func(rt, c->arg);
1339		if (res < 0) {
1340			w->leaf = rt;
1341			res = fib6_del(rt, &info);
1342			if (res) {
1343#if RT6_DEBUG >= 2
1344				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1345#endif
1346				continue;
1347			}
1348			return 0;
1349		}
1350		WARN_ON(res != 0);
1351	}
1352	w->leaf = rt;
1353	return 0;
1354}
1355
1356/*
1357 *	Convenient frontend to tree walker.
1358 *
1359 *	func is called on each route.
1360 *		It may return -1 -> delete this route.
1361 *		              0  -> continue walking
1362 *
1363 *	prune==1 -> only immediate children of node (certainly,
1364 *	ignoring pure split nodes) will be scanned.
1365 */
1366
1367static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1368			    int (*func)(struct rt6_info *, void *arg),
1369			    int prune, void *arg)
1370{
1371	struct fib6_cleaner_t c;
1372
1373	c.w.root = root;
1374	c.w.func = fib6_clean_node;
1375	c.w.prune = prune;
1376	c.w.count = 0;
1377	c.w.skip = 0;
1378	c.func = func;
1379	c.arg = arg;
1380	c.net = net;
1381
1382	fib6_walk(&c.w);
1383}
1384
1385void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1386		    int prune, void *arg)
1387{
1388	struct fib6_table *table;
1389	struct hlist_node *node;
1390	struct hlist_head *head;
1391	unsigned int h;
1392
1393	rcu_read_lock();
1394	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1395		head = &net->ipv6.fib_table_hash[h];
1396		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1397			write_lock_bh(&table->tb6_lock);
1398			fib6_clean_tree(net, &table->tb6_root,
1399					func, prune, arg);
1400			write_unlock_bh(&table->tb6_lock);
1401		}
1402	}
1403	rcu_read_unlock();
1404}
1405
1406static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1407{
1408	if (rt->rt6i_flags & RTF_CACHE) {
1409		RT6_TRACE("pruning clone %p\n", rt);
1410		return -1;
1411	}
1412
1413	return 0;
1414}
1415
1416static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1417			      struct rt6_info *rt)
1418{
1419	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1420}
1421
1422/*
1423 *	Garbage collection
1424 */
1425
1426static struct fib6_gc_args
1427{
1428	int			timeout;
1429	int			more;
1430} gc_args;
1431
1432static int fib6_age(struct rt6_info *rt, void *arg)
1433{
1434	unsigned long now = jiffies;
1435
1436	/*
1437	 *	check addrconf expiration here.
1438	 *	Routes are expired even if they are in use.
1439	 *
1440	 *	Also age clones. Note, that clones are aged out
1441	 *	only if they are not in use now.
1442	 */
1443
1444	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1445		if (time_after(now, rt->rt6i_expires)) {
1446			RT6_TRACE("expiring %p\n", rt);
1447			return -1;
1448		}
1449		gc_args.more++;
1450	} else if (rt->rt6i_flags & RTF_CACHE) {
1451		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1452		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1453			RT6_TRACE("aging clone %p\n", rt);
1454			return -1;
1455		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1456			   (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1457			RT6_TRACE("purging route %p via non-router but gateway\n",
1458				  rt);
1459			return -1;
1460		}
1461		gc_args.more++;
1462	}
1463
1464	return 0;
1465}
1466
1467static DEFINE_SPINLOCK(fib6_gc_lock);
1468
1469void fib6_run_gc(unsigned long expires, struct net *net)
1470{
1471	if (expires != ~0UL) {
1472		spin_lock_bh(&fib6_gc_lock);
1473		gc_args.timeout = expires ? (int)expires :
1474			net->ipv6.sysctl.ip6_rt_gc_interval;
1475	} else {
1476		if (!spin_trylock_bh(&fib6_gc_lock)) {
1477			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1478			return;
1479		}
1480		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1481	}
1482
1483	gc_args.more = icmp6_dst_gc();
1484
1485	fib6_clean_all(net, fib6_age, 0, NULL);
1486
1487	if (gc_args.more)
1488		mod_timer(&net->ipv6.ip6_fib_timer,
1489			  round_jiffies(jiffies
1490					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1491	else
1492		del_timer(&net->ipv6.ip6_fib_timer);
1493	spin_unlock_bh(&fib6_gc_lock);
1494}
1495
1496static void fib6_gc_timer_cb(unsigned long arg)
1497{
1498	fib6_run_gc(0, (struct net *)arg);
1499}
1500
1501static int __net_init fib6_net_init(struct net *net)
1502{
1503	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1504
1505	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1506	if (!net->ipv6.rt6_stats)
1507		goto out_timer;
1508
1509	net->ipv6.fib_table_hash = kcalloc(FIB6_TABLE_HASHSZ,
1510					   sizeof(*net->ipv6.fib_table_hash),
1511					   GFP_KERNEL);
1512	if (!net->ipv6.fib_table_hash)
1513		goto out_rt6_stats;
1514
1515	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1516					  GFP_KERNEL);
1517	if (!net->ipv6.fib6_main_tbl)
1518		goto out_fib_table_hash;
1519
1520	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1521	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1522	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1523		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1524
1525#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1526	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1527					   GFP_KERNEL);
1528	if (!net->ipv6.fib6_local_tbl)
1529		goto out_fib6_main_tbl;
1530	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1531	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1532	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1533		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1534#endif
1535	fib6_tables_init(net);
1536
1537	return 0;
1538
1539#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1540out_fib6_main_tbl:
1541	kfree(net->ipv6.fib6_main_tbl);
1542#endif
1543out_fib_table_hash:
1544	kfree(net->ipv6.fib_table_hash);
1545out_rt6_stats:
1546	kfree(net->ipv6.rt6_stats);
1547out_timer:
1548	return -ENOMEM;
1549 }
1550
1551static void fib6_net_exit(struct net *net)
1552{
1553	rt6_ifdown(net, NULL);
1554	del_timer_sync(&net->ipv6.ip6_fib_timer);
1555
1556#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1557	kfree(net->ipv6.fib6_local_tbl);
1558#endif
1559	kfree(net->ipv6.fib6_main_tbl);
1560	kfree(net->ipv6.fib_table_hash);
1561	kfree(net->ipv6.rt6_stats);
1562}
1563
1564static struct pernet_operations fib6_net_ops = {
1565	.init = fib6_net_init,
1566	.exit = fib6_net_exit,
1567};
1568
1569int __init fib6_init(void)
1570{
1571	int ret = -ENOMEM;
1572
1573	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1574					   sizeof(struct fib6_node),
1575					   0, SLAB_HWCACHE_ALIGN,
1576					   NULL);
1577	if (!fib6_node_kmem)
1578		goto out;
1579
1580	ret = register_pernet_subsys(&fib6_net_ops);
1581	if (ret)
1582		goto out_kmem_cache_create;
1583
1584	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1585	if (ret)
1586		goto out_unregister_subsys;
1587out:
1588	return ret;
1589
1590out_unregister_subsys:
1591	unregister_pernet_subsys(&fib6_net_ops);
1592out_kmem_cache_create:
1593	kmem_cache_destroy(fib6_node_kmem);
1594	goto out;
1595}
1596
1597void fib6_gc_cleanup(void)
1598{
1599	unregister_pernet_subsys(&fib6_net_ops);
1600	kmem_cache_destroy(fib6_node_kmem);
1601}
1602