1/*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 *	David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13 *			unnecessary i-cache flushing.
14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb	Add highmem support
18 */
19
20#include <linux/cache.h>
21#include <linux/dma-mapping.h>
22#include <linux/mm.h>
23#include <linux/module.h>
24#include <linux/spinlock.h>
25#include <linux/string.h>
26#include <linux/swiotlb.h>
27#include <linux/pfn.h>
28#include <linux/types.h>
29#include <linux/ctype.h>
30#include <linux/highmem.h>
31#include <linux/gfp.h>
32
33#include <asm/io.h>
34#include <asm/dma.h>
35#include <asm/scatterlist.h>
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
39#include <linux/iommu-helper.h>
40
41#define OFFSET(val,align) ((unsigned long)	\
42	                   ( (val) & ( (align) - 1)))
43
44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46/*
47 * Minimum IO TLB size to bother booting with.  Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb.  If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
53int swiotlb_force;
54
55/*
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
58 * API.
59 */
60static char *io_tlb_start, *io_tlb_end;
61
62/*
63 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
64 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
65 */
66static unsigned long io_tlb_nslabs;
67
68/*
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
70 */
71static unsigned long io_tlb_overflow = 32*1024;
72
73void *io_tlb_overflow_buffer;
74
75/*
76 * This is a free list describing the number of free entries available from
77 * each index
78 */
79static unsigned int *io_tlb_list;
80static unsigned int io_tlb_index;
81
82/*
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
85 */
86static phys_addr_t *io_tlb_orig_addr;
87
88/*
89 * Protect the above data structures in the map and unmap calls
90 */
91static DEFINE_SPINLOCK(io_tlb_lock);
92
93static int late_alloc;
94
95static int __init
96setup_io_tlb_npages(char *str)
97{
98	if (isdigit(*str)) {
99		io_tlb_nslabs = simple_strtoul(str, &str, 0);
100		/* avoid tail segment of size < IO_TLB_SEGSIZE */
101		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102	}
103	if (*str == ',')
104		++str;
105	if (!strcmp(str, "force"))
106		swiotlb_force = 1;
107
108	return 1;
109}
110__setup("swiotlb=", setup_io_tlb_npages);
111/* make io_tlb_overflow tunable too? */
112
113/* Note that this doesn't work with highmem page */
114static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
115				      volatile void *address)
116{
117	return phys_to_dma(hwdev, virt_to_phys(address));
118}
119
120void swiotlb_print_info(void)
121{
122	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
123	phys_addr_t pstart, pend;
124
125	pstart = virt_to_phys(io_tlb_start);
126	pend = virt_to_phys(io_tlb_end);
127
128	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
129	       bytes >> 20, io_tlb_start, io_tlb_end);
130	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
131	       (unsigned long long)pstart,
132	       (unsigned long long)pend);
133}
134
135void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
136{
137	unsigned long i, bytes;
138
139	bytes = nslabs << IO_TLB_SHIFT;
140
141	io_tlb_nslabs = nslabs;
142	io_tlb_start = tlb;
143	io_tlb_end = io_tlb_start + bytes;
144
145	/*
146	 * Allocate and initialize the free list array.  This array is used
147	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
148	 * between io_tlb_start and io_tlb_end.
149	 */
150	io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
151	for (i = 0; i < io_tlb_nslabs; i++)
152 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
153	io_tlb_index = 0;
154	io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
155
156	/*
157	 * Get the overflow emergency buffer
158	 */
159	io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
160	if (!io_tlb_overflow_buffer)
161		panic("Cannot allocate SWIOTLB overflow buffer!\n");
162	if (verbose)
163		swiotlb_print_info();
164}
165
166/*
167 * Statically reserve bounce buffer space and initialize bounce buffer data
168 * structures for the software IO TLB used to implement the DMA API.
169 */
170void __init
171swiotlb_init_with_default_size(size_t default_size, int verbose)
172{
173	unsigned long bytes;
174
175	if (!io_tlb_nslabs) {
176		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
177		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
178	}
179
180	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
181
182	/*
183	 * Get IO TLB memory from the low pages
184	 */
185	io_tlb_start = alloc_bootmem_low_pages(bytes);
186	if (!io_tlb_start)
187		panic("Cannot allocate SWIOTLB buffer");
188
189	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
190}
191
192void __init
193swiotlb_init(int verbose)
194{
195	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
196}
197
198/*
199 * Systems with larger DMA zones (those that don't support ISA) can
200 * initialize the swiotlb later using the slab allocator if needed.
201 * This should be just like above, but with some error catching.
202 */
203int
204swiotlb_late_init_with_default_size(size_t default_size)
205{
206	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
207	unsigned int order;
208
209	if (!io_tlb_nslabs) {
210		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
211		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
212	}
213
214	/*
215	 * Get IO TLB memory from the low pages
216	 */
217	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
218	io_tlb_nslabs = SLABS_PER_PAGE << order;
219	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
220
221	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
222		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
223							order);
224		if (io_tlb_start)
225			break;
226		order--;
227	}
228
229	if (!io_tlb_start)
230		goto cleanup1;
231
232	if (order != get_order(bytes)) {
233		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
234		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
235		io_tlb_nslabs = SLABS_PER_PAGE << order;
236		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
237	}
238	io_tlb_end = io_tlb_start + bytes;
239	memset(io_tlb_start, 0, bytes);
240
241	/*
242	 * Allocate and initialize the free list array.  This array is used
243	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
244	 * between io_tlb_start and io_tlb_end.
245	 */
246	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
247	                              get_order(io_tlb_nslabs * sizeof(int)));
248	if (!io_tlb_list)
249		goto cleanup2;
250
251	for (i = 0; i < io_tlb_nslabs; i++)
252 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
253	io_tlb_index = 0;
254
255	io_tlb_orig_addr = (phys_addr_t *)
256		__get_free_pages(GFP_KERNEL,
257				 get_order(io_tlb_nslabs *
258					   sizeof(phys_addr_t)));
259	if (!io_tlb_orig_addr)
260		goto cleanup3;
261
262	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
263
264	/*
265	 * Get the overflow emergency buffer
266	 */
267	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
268	                                          get_order(io_tlb_overflow));
269	if (!io_tlb_overflow_buffer)
270		goto cleanup4;
271
272	swiotlb_print_info();
273
274	late_alloc = 1;
275
276	return 0;
277
278cleanup4:
279	free_pages((unsigned long)io_tlb_orig_addr,
280		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
281	io_tlb_orig_addr = NULL;
282cleanup3:
283	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
284	                                                 sizeof(int)));
285	io_tlb_list = NULL;
286cleanup2:
287	io_tlb_end = NULL;
288	free_pages((unsigned long)io_tlb_start, order);
289	io_tlb_start = NULL;
290cleanup1:
291	io_tlb_nslabs = req_nslabs;
292	return -ENOMEM;
293}
294
295void __init swiotlb_free(void)
296{
297	if (!io_tlb_overflow_buffer)
298		return;
299
300	if (late_alloc) {
301		free_pages((unsigned long)io_tlb_overflow_buffer,
302			   get_order(io_tlb_overflow));
303		free_pages((unsigned long)io_tlb_orig_addr,
304			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
305		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
306								 sizeof(int)));
307		free_pages((unsigned long)io_tlb_start,
308			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
309	} else {
310		free_bootmem_late(__pa(io_tlb_overflow_buffer),
311				  io_tlb_overflow);
312		free_bootmem_late(__pa(io_tlb_orig_addr),
313				  io_tlb_nslabs * sizeof(phys_addr_t));
314		free_bootmem_late(__pa(io_tlb_list),
315				  io_tlb_nslabs * sizeof(int));
316		free_bootmem_late(__pa(io_tlb_start),
317				  io_tlb_nslabs << IO_TLB_SHIFT);
318	}
319}
320
321static int is_swiotlb_buffer(phys_addr_t paddr)
322{
323	return paddr >= virt_to_phys(io_tlb_start) &&
324		paddr < virt_to_phys(io_tlb_end);
325}
326
327/*
328 * Bounce: copy the swiotlb buffer back to the original dma location
329 */
330void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
331		    enum dma_data_direction dir)
332{
333	unsigned long pfn = PFN_DOWN(phys);
334
335	if (PageHighMem(pfn_to_page(pfn))) {
336		/* The buffer does not have a mapping.  Map it in and copy */
337		unsigned int offset = phys & ~PAGE_MASK;
338		char *buffer;
339		unsigned int sz = 0;
340		unsigned long flags;
341
342		while (size) {
343			sz = min_t(size_t, PAGE_SIZE - offset, size);
344
345			local_irq_save(flags);
346			buffer = kmap_atomic(pfn_to_page(pfn),
347					     KM_BOUNCE_READ);
348			if (dir == DMA_TO_DEVICE)
349				memcpy(dma_addr, buffer + offset, sz);
350			else
351				memcpy(buffer + offset, dma_addr, sz);
352			kunmap_atomic(buffer, KM_BOUNCE_READ);
353			local_irq_restore(flags);
354
355			size -= sz;
356			pfn++;
357			dma_addr += sz;
358			offset = 0;
359		}
360	} else {
361		if (dir == DMA_TO_DEVICE)
362			memcpy(dma_addr, phys_to_virt(phys), size);
363		else
364			memcpy(phys_to_virt(phys), dma_addr, size);
365	}
366}
367EXPORT_SYMBOL_GPL(swiotlb_bounce);
368
369void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
370			     phys_addr_t phys, size_t size,
371			     enum dma_data_direction dir)
372{
373	unsigned long flags;
374	char *dma_addr;
375	unsigned int nslots, stride, index, wrap;
376	int i;
377	unsigned long mask;
378	unsigned long offset_slots;
379	unsigned long max_slots;
380
381	mask = dma_get_seg_boundary(hwdev);
382
383	tbl_dma_addr &= mask;
384
385	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
386
387	/*
388 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
389 	 */
390	max_slots = mask + 1
391		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
392		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
393
394	/*
395	 * For mappings greater than a page, we limit the stride (and
396	 * hence alignment) to a page size.
397	 */
398	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
399	if (size > PAGE_SIZE)
400		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
401	else
402		stride = 1;
403
404	BUG_ON(!nslots);
405
406	/*
407	 * Find suitable number of IO TLB entries size that will fit this
408	 * request and allocate a buffer from that IO TLB pool.
409	 */
410	spin_lock_irqsave(&io_tlb_lock, flags);
411	index = ALIGN(io_tlb_index, stride);
412	if (index >= io_tlb_nslabs)
413		index = 0;
414	wrap = index;
415
416	do {
417		while (iommu_is_span_boundary(index, nslots, offset_slots,
418					      max_slots)) {
419			index += stride;
420			if (index >= io_tlb_nslabs)
421				index = 0;
422			if (index == wrap)
423				goto not_found;
424		}
425
426		/*
427		 * If we find a slot that indicates we have 'nslots' number of
428		 * contiguous buffers, we allocate the buffers from that slot
429		 * and mark the entries as '0' indicating unavailable.
430		 */
431		if (io_tlb_list[index] >= nslots) {
432			int count = 0;
433
434			for (i = index; i < (int) (index + nslots); i++)
435				io_tlb_list[i] = 0;
436			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
437				io_tlb_list[i] = ++count;
438			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
439
440			/*
441			 * Update the indices to avoid searching in the next
442			 * round.
443			 */
444			io_tlb_index = ((index + nslots) < io_tlb_nslabs
445					? (index + nslots) : 0);
446
447			goto found;
448		}
449		index += stride;
450		if (index >= io_tlb_nslabs)
451			index = 0;
452	} while (index != wrap);
453
454not_found:
455	spin_unlock_irqrestore(&io_tlb_lock, flags);
456	return NULL;
457found:
458	spin_unlock_irqrestore(&io_tlb_lock, flags);
459
460	/*
461	 * Save away the mapping from the original address to the DMA address.
462	 * This is needed when we sync the memory.  Then we sync the buffer if
463	 * needed.
464	 */
465	for (i = 0; i < nslots; i++)
466		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
467	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
468		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
469
470	return dma_addr;
471}
472EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
473
474/*
475 * Allocates bounce buffer and returns its kernel virtual address.
476 */
477
478static void *
479map_single(struct device *hwdev, phys_addr_t phys, size_t size,
480	   enum dma_data_direction dir)
481{
482	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
483
484	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
485}
486
487/*
488 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
489 */
490void
491swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
492			enum dma_data_direction dir)
493{
494	unsigned long flags;
495	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
496	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
497	phys_addr_t phys = io_tlb_orig_addr[index];
498
499	/*
500	 * First, sync the memory before unmapping the entry
501	 */
502	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
503		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
504
505	/*
506	 * Return the buffer to the free list by setting the corresponding
507	 * entries to indicate the number of contiguous entries available.
508	 * While returning the entries to the free list, we merge the entries
509	 * with slots below and above the pool being returned.
510	 */
511	spin_lock_irqsave(&io_tlb_lock, flags);
512	{
513		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
514			 io_tlb_list[index + nslots] : 0);
515		/*
516		 * Step 1: return the slots to the free list, merging the
517		 * slots with superceeding slots
518		 */
519		for (i = index + nslots - 1; i >= index; i--)
520			io_tlb_list[i] = ++count;
521		/*
522		 * Step 2: merge the returned slots with the preceding slots,
523		 * if available (non zero)
524		 */
525		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
526			io_tlb_list[i] = ++count;
527	}
528	spin_unlock_irqrestore(&io_tlb_lock, flags);
529}
530EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
531
532void
533swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
534			enum dma_data_direction dir,
535			enum dma_sync_target target)
536{
537	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
538	phys_addr_t phys = io_tlb_orig_addr[index];
539
540	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
541
542	switch (target) {
543	case SYNC_FOR_CPU:
544		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
545			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
546		else
547			BUG_ON(dir != DMA_TO_DEVICE);
548		break;
549	case SYNC_FOR_DEVICE:
550		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
551			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
552		else
553			BUG_ON(dir != DMA_FROM_DEVICE);
554		break;
555	default:
556		BUG();
557	}
558}
559EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
560
561void *
562swiotlb_alloc_coherent(struct device *hwdev, size_t size,
563		       dma_addr_t *dma_handle, gfp_t flags)
564{
565	dma_addr_t dev_addr;
566	void *ret;
567	int order = get_order(size);
568	u64 dma_mask = DMA_BIT_MASK(32);
569
570	if (hwdev && hwdev->coherent_dma_mask)
571		dma_mask = hwdev->coherent_dma_mask;
572
573	ret = (void *)__get_free_pages(flags, order);
574	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
575		/*
576		 * The allocated memory isn't reachable by the device.
577		 */
578		free_pages((unsigned long) ret, order);
579		ret = NULL;
580	}
581	if (!ret) {
582		/*
583		 * We are either out of memory or the device can't DMA to
584		 * GFP_DMA memory; fall back on map_single(), which
585		 * will grab memory from the lowest available address range.
586		 */
587		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
588		if (!ret)
589			return NULL;
590	}
591
592	memset(ret, 0, size);
593	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
594
595	/* Confirm address can be DMA'd by device */
596	if (dev_addr + size - 1 > dma_mask) {
597		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
598		       (unsigned long long)dma_mask,
599		       (unsigned long long)dev_addr);
600
601		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
602		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
603		return NULL;
604	}
605	*dma_handle = dev_addr;
606	return ret;
607}
608EXPORT_SYMBOL(swiotlb_alloc_coherent);
609
610void
611swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
612		      dma_addr_t dev_addr)
613{
614	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
615
616	WARN_ON(irqs_disabled());
617	if (!is_swiotlb_buffer(paddr))
618		free_pages((unsigned long)vaddr, get_order(size));
619	else
620		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
621		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
622}
623EXPORT_SYMBOL(swiotlb_free_coherent);
624
625static void
626swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
627	     int do_panic)
628{
629	/*
630	 * Ran out of IOMMU space for this operation. This is very bad.
631	 * Unfortunately the drivers cannot handle this operation properly.
632	 * unless they check for dma_mapping_error (most don't)
633	 * When the mapping is small enough return a static buffer to limit
634	 * the damage, or panic when the transfer is too big.
635	 */
636	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
637	       "device %s\n", size, dev ? dev_name(dev) : "?");
638
639	if (size <= io_tlb_overflow || !do_panic)
640		return;
641
642	if (dir == DMA_BIDIRECTIONAL)
643		panic("DMA: Random memory could be DMA accessed\n");
644	if (dir == DMA_FROM_DEVICE)
645		panic("DMA: Random memory could be DMA written\n");
646	if (dir == DMA_TO_DEVICE)
647		panic("DMA: Random memory could be DMA read\n");
648}
649
650/*
651 * Map a single buffer of the indicated size for DMA in streaming mode.  The
652 * physical address to use is returned.
653 *
654 * Once the device is given the dma address, the device owns this memory until
655 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
656 */
657dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
658			    unsigned long offset, size_t size,
659			    enum dma_data_direction dir,
660			    struct dma_attrs *attrs)
661{
662	phys_addr_t phys = page_to_phys(page) + offset;
663	dma_addr_t dev_addr = phys_to_dma(dev, phys);
664	void *map;
665
666	BUG_ON(dir == DMA_NONE);
667	/*
668	 * If the address happens to be in the device's DMA window,
669	 * we can safely return the device addr and not worry about bounce
670	 * buffering it.
671	 */
672	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
673		return dev_addr;
674
675	/*
676	 * Oh well, have to allocate and map a bounce buffer.
677	 */
678	map = map_single(dev, phys, size, dir);
679	if (!map) {
680		swiotlb_full(dev, size, dir, 1);
681		map = io_tlb_overflow_buffer;
682	}
683
684	dev_addr = swiotlb_virt_to_bus(dev, map);
685
686	/*
687	 * Ensure that the address returned is DMA'ble
688	 */
689	if (!dma_capable(dev, dev_addr, size))
690		panic("map_single: bounce buffer is not DMA'ble");
691
692	return dev_addr;
693}
694EXPORT_SYMBOL_GPL(swiotlb_map_page);
695
696/*
697 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
698 * match what was provided for in a previous swiotlb_map_page call.  All
699 * other usages are undefined.
700 *
701 * After this call, reads by the cpu to the buffer are guaranteed to see
702 * whatever the device wrote there.
703 */
704static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
705			 size_t size, enum dma_data_direction dir)
706{
707	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
708
709	BUG_ON(dir == DMA_NONE);
710
711	if (is_swiotlb_buffer(paddr)) {
712		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
713		return;
714	}
715
716	if (dir != DMA_FROM_DEVICE)
717		return;
718
719	/*
720	 * phys_to_virt doesn't work with hihgmem page but we could
721	 * call dma_mark_clean() with hihgmem page here. However, we
722	 * are fine since dma_mark_clean() is null on POWERPC. We can
723	 * make dma_mark_clean() take a physical address if necessary.
724	 */
725	dma_mark_clean(phys_to_virt(paddr), size);
726}
727
728void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
729			size_t size, enum dma_data_direction dir,
730			struct dma_attrs *attrs)
731{
732	unmap_single(hwdev, dev_addr, size, dir);
733}
734EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
735
736/*
737 * Make physical memory consistent for a single streaming mode DMA translation
738 * after a transfer.
739 *
740 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
741 * using the cpu, yet do not wish to teardown the dma mapping, you must
742 * call this function before doing so.  At the next point you give the dma
743 * address back to the card, you must first perform a
744 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
745 */
746static void
747swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
748		    size_t size, enum dma_data_direction dir,
749		    enum dma_sync_target target)
750{
751	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
752
753	BUG_ON(dir == DMA_NONE);
754
755	if (is_swiotlb_buffer(paddr)) {
756		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
757				       target);
758		return;
759	}
760
761	if (dir != DMA_FROM_DEVICE)
762		return;
763
764	dma_mark_clean(phys_to_virt(paddr), size);
765}
766
767void
768swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
769			    size_t size, enum dma_data_direction dir)
770{
771	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
772}
773EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
774
775void
776swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
777			       size_t size, enum dma_data_direction dir)
778{
779	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
780}
781EXPORT_SYMBOL(swiotlb_sync_single_for_device);
782
783/*
784 * Map a set of buffers described by scatterlist in streaming mode for DMA.
785 * This is the scatter-gather version of the above swiotlb_map_page
786 * interface.  Here the scatter gather list elements are each tagged with the
787 * appropriate dma address and length.  They are obtained via
788 * sg_dma_{address,length}(SG).
789 *
790 * NOTE: An implementation may be able to use a smaller number of
791 *       DMA address/length pairs than there are SG table elements.
792 *       (for example via virtual mapping capabilities)
793 *       The routine returns the number of addr/length pairs actually
794 *       used, at most nents.
795 *
796 * Device ownership issues as mentioned above for swiotlb_map_page are the
797 * same here.
798 */
799int
800swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
801		     enum dma_data_direction dir, struct dma_attrs *attrs)
802{
803	struct scatterlist *sg;
804	int i;
805
806	BUG_ON(dir == DMA_NONE);
807
808	for_each_sg(sgl, sg, nelems, i) {
809		phys_addr_t paddr = sg_phys(sg);
810		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
811
812		if (swiotlb_force ||
813		    !dma_capable(hwdev, dev_addr, sg->length)) {
814			void *map = map_single(hwdev, sg_phys(sg),
815					       sg->length, dir);
816			if (!map) {
817				/* Don't panic here, we expect map_sg users
818				   to do proper error handling. */
819				swiotlb_full(hwdev, sg->length, dir, 0);
820				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
821						       attrs);
822				sgl[0].dma_length = 0;
823				return 0;
824			}
825			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
826		} else
827			sg->dma_address = dev_addr;
828		sg->dma_length = sg->length;
829	}
830	return nelems;
831}
832EXPORT_SYMBOL(swiotlb_map_sg_attrs);
833
834int
835swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
836	       enum dma_data_direction dir)
837{
838	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
839}
840EXPORT_SYMBOL(swiotlb_map_sg);
841
842/*
843 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
844 * concerning calls here are the same as for swiotlb_unmap_page() above.
845 */
846void
847swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
848		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
849{
850	struct scatterlist *sg;
851	int i;
852
853	BUG_ON(dir == DMA_NONE);
854
855	for_each_sg(sgl, sg, nelems, i)
856		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
857
858}
859EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
860
861void
862swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
863		 enum dma_data_direction dir)
864{
865	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
866}
867EXPORT_SYMBOL(swiotlb_unmap_sg);
868
869/*
870 * Make physical memory consistent for a set of streaming mode DMA translations
871 * after a transfer.
872 *
873 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
874 * and usage.
875 */
876static void
877swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
878		int nelems, enum dma_data_direction dir,
879		enum dma_sync_target target)
880{
881	struct scatterlist *sg;
882	int i;
883
884	for_each_sg(sgl, sg, nelems, i)
885		swiotlb_sync_single(hwdev, sg->dma_address,
886				    sg->dma_length, dir, target);
887}
888
889void
890swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
891			int nelems, enum dma_data_direction dir)
892{
893	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
894}
895EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
896
897void
898swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
899			   int nelems, enum dma_data_direction dir)
900{
901	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
902}
903EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
904
905int
906swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
907{
908	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
909}
910EXPORT_SYMBOL(swiotlb_dma_mapping_error);
911
912/*
913 * Return whether the given device DMA address mask can be supported
914 * properly.  For example, if your device can only drive the low 24-bits
915 * during bus mastering, then you would pass 0x00ffffff as the mask to
916 * this function.
917 */
918int
919swiotlb_dma_supported(struct device *hwdev, u64 mask)
920{
921	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
922}
923EXPORT_SYMBOL(swiotlb_dma_supported);
924