1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 *  Interactivity improvements by Mike Galbraith
7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 *  Various enhancements by Dmitry Adamushko.
10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 *  Group scheduling enhancements by Srivatsa Vaddagiri
13 *  Copyright IBM Corporation, 2007
14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 *  Scaled math optimizations by Thomas Gleixner
17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25
26/*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 *  run vmstat and monitor the context-switches (cs) field)
37 */
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51	= SCHED_TUNABLESCALING_LOG;
52
53/*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57unsigned int sysctl_sched_min_granularity = 750000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
59
60/*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63static unsigned int sched_nr_latency = 8;
64
65/*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
79/*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92static const struct sched_class fair_sched_class;
93
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98#ifdef CONFIG_FAIR_GROUP_SCHED
99
100/* cpu runqueue to which this cfs_rq is attached */
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
103	return cfs_rq->rq;
104}
105
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se)	(!se->my_q)
108
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112	WARN_ON_ONCE(!entity_is_task(se));
113#endif
114	return container_of(se, struct task_struct, se);
115}
116
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119		for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123	return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129	return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135	return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143	return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154	if (se->cfs_rq == pse->cfs_rq)
155		return 1;
156
157	return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162	return se->parent;
163}
164
165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168	int depth = 0;
169
170	for_each_sched_entity(se)
171		depth++;
172
173	return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179	int se_depth, pse_depth;
180
181	/*
182	 * preemption test can be made between sibling entities who are in the
183	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184	 * both tasks until we find their ancestors who are siblings of common
185	 * parent.
186	 */
187
188	/* First walk up until both entities are at same depth */
189	se_depth = depth_se(*se);
190	pse_depth = depth_se(*pse);
191
192	while (se_depth > pse_depth) {
193		se_depth--;
194		*se = parent_entity(*se);
195	}
196
197	while (pse_depth > se_depth) {
198		pse_depth--;
199		*pse = parent_entity(*pse);
200	}
201
202	while (!is_same_group(*se, *pse)) {
203		*se = parent_entity(*se);
204		*pse = parent_entity(*pse);
205	}
206}
207
208#else	/* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212	return container_of(se, struct task_struct, se);
213}
214
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217	return container_of(cfs_rq, struct rq, cfs);
218}
219
220#define entity_is_task(se)	1
221
222#define for_each_sched_entity(se) \
223		for (; se; se = NULL)
224
225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226{
227	return &task_rq(p)->cfs;
228}
229
230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232	struct task_struct *p = task_of(se);
233	struct rq *rq = task_rq(p);
234
235	return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241	return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246	return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255	return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260	return NULL;
261}
262
263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
268#endif	/* CONFIG_FAIR_GROUP_SCHED */
269
270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276{
277	s64 delta = (s64)(vruntime - min_vruntime);
278	if (delta > 0)
279		min_vruntime = vruntime;
280
281	return min_vruntime;
282}
283
284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
285{
286	s64 delta = (s64)(vruntime - min_vruntime);
287	if (delta < 0)
288		min_vruntime = vruntime;
289
290	return min_vruntime;
291}
292
293static inline int entity_before(struct sched_entity *a,
294				struct sched_entity *b)
295{
296	return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300{
301	return se->vruntime - cfs_rq->min_vruntime;
302}
303
304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306	u64 vruntime = cfs_rq->min_vruntime;
307
308	if (cfs_rq->curr)
309		vruntime = cfs_rq->curr->vruntime;
310
311	if (cfs_rq->rb_leftmost) {
312		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313						   struct sched_entity,
314						   run_node);
315
316		if (!cfs_rq->curr)
317			vruntime = se->vruntime;
318		else
319			vruntime = min_vruntime(vruntime, se->vruntime);
320	}
321
322	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
325/*
326 * Enqueue an entity into the rb-tree:
327 */
328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329{
330	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331	struct rb_node *parent = NULL;
332	struct sched_entity *entry;
333	s64 key = entity_key(cfs_rq, se);
334	int leftmost = 1;
335
336	/*
337	 * Find the right place in the rbtree:
338	 */
339	while (*link) {
340		parent = *link;
341		entry = rb_entry(parent, struct sched_entity, run_node);
342		/*
343		 * We dont care about collisions. Nodes with
344		 * the same key stay together.
345		 */
346		if (key < entity_key(cfs_rq, entry)) {
347			link = &parent->rb_left;
348		} else {
349			link = &parent->rb_right;
350			leftmost = 0;
351		}
352	}
353
354	/*
355	 * Maintain a cache of leftmost tree entries (it is frequently
356	 * used):
357	 */
358	if (leftmost)
359		cfs_rq->rb_leftmost = &se->run_node;
360
361	rb_link_node(&se->run_node, parent, link);
362	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
363}
364
365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366{
367	if (cfs_rq->rb_leftmost == &se->run_node) {
368		struct rb_node *next_node;
369
370		next_node = rb_next(&se->run_node);
371		cfs_rq->rb_leftmost = next_node;
372	}
373
374	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
375}
376
377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
379	struct rb_node *left = cfs_rq->rb_leftmost;
380
381	if (!left)
382		return NULL;
383
384	return rb_entry(left, struct sched_entity, run_node);
385}
386
387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388{
389	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390
391	if (!last)
392		return NULL;
393
394	return rb_entry(last, struct sched_entity, run_node);
395}
396
397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
401#ifdef CONFIG_SCHED_DEBUG
402int sched_proc_update_handler(struct ctl_table *table, int write,
403		void __user *buffer, size_t *lenp,
404		loff_t *ppos)
405{
406	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407	int factor = get_update_sysctl_factor();
408
409	if (ret || !write)
410		return ret;
411
412	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413					sysctl_sched_min_granularity);
414
415#define WRT_SYSCTL(name) \
416	(normalized_sysctl_##name = sysctl_##name / (factor))
417	WRT_SYSCTL(sched_min_granularity);
418	WRT_SYSCTL(sched_latency);
419	WRT_SYSCTL(sched_wakeup_granularity);
420	WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
423	return 0;
424}
425#endif
426
427/*
428 * delta /= w
429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
433	if (unlikely(se->load.weight != NICE_0_LOAD))
434		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435
436	return delta;
437}
438
439/*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
447static u64 __sched_period(unsigned long nr_running)
448{
449	u64 period = sysctl_sched_latency;
450	unsigned long nr_latency = sched_nr_latency;
451
452	if (unlikely(nr_running > nr_latency)) {
453		period = sysctl_sched_min_granularity;
454		period *= nr_running;
455	}
456
457	return period;
458}
459
460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
464 * s = p*P[w/rw]
465 */
466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467{
468	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469
470	for_each_sched_entity(se) {
471		struct load_weight *load;
472		struct load_weight lw;
473
474		cfs_rq = cfs_rq_of(se);
475		load = &cfs_rq->load;
476
477		if (unlikely(!se->on_rq)) {
478			lw = cfs_rq->load;
479
480			update_load_add(&lw, se->load.weight);
481			load = &lw;
482		}
483		slice = calc_delta_mine(slice, se->load.weight, load);
484	}
485	return slice;
486}
487
488/*
489 * We calculate the vruntime slice of a to be inserted task
490 *
491 * vs = s/w
492 */
493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
494{
495	return calc_delta_fair(sched_slice(cfs_rq, se), se);
496}
497
498/*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504	      unsigned long delta_exec)
505{
506	unsigned long delta_exec_weighted;
507
508	schedstat_set(curr->statistics.exec_max,
509		      max((u64)delta_exec, curr->statistics.exec_max));
510
511	curr->sum_exec_runtime += delta_exec;
512	schedstat_add(cfs_rq, exec_clock, delta_exec);
513	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514
515	curr->vruntime += delta_exec_weighted;
516	update_min_vruntime(cfs_rq);
517}
518
519static void update_curr(struct cfs_rq *cfs_rq)
520{
521	struct sched_entity *curr = cfs_rq->curr;
522	u64 now = rq_of(cfs_rq)->clock;
523	unsigned long delta_exec;
524
525	if (unlikely(!curr))
526		return;
527
528	/*
529	 * Get the amount of time the current task was running
530	 * since the last time we changed load (this cannot
531	 * overflow on 32 bits):
532	 */
533	delta_exec = (unsigned long)(now - curr->exec_start);
534	if (!delta_exec)
535		return;
536
537	__update_curr(cfs_rq, curr, delta_exec);
538	curr->exec_start = now;
539
540	if (entity_is_task(curr)) {
541		struct task_struct *curtask = task_of(curr);
542
543		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
544		cpuacct_charge(curtask, delta_exec);
545		account_group_exec_runtime(curtask, delta_exec);
546	}
547}
548
549static inline void
550update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551{
552	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
553}
554
555/*
556 * Task is being enqueued - update stats:
557 */
558static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559{
560	/*
561	 * Are we enqueueing a waiting task? (for current tasks
562	 * a dequeue/enqueue event is a NOP)
563	 */
564	if (se != cfs_rq->curr)
565		update_stats_wait_start(cfs_rq, se);
566}
567
568static void
569update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570{
571	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572			rq_of(cfs_rq)->clock - se->statistics.wait_start));
573	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575			rq_of(cfs_rq)->clock - se->statistics.wait_start);
576#ifdef CONFIG_SCHEDSTATS
577	if (entity_is_task(se)) {
578		trace_sched_stat_wait(task_of(se),
579			rq_of(cfs_rq)->clock - se->statistics.wait_start);
580	}
581#endif
582	schedstat_set(se->statistics.wait_start, 0);
583}
584
585static inline void
586update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
587{
588	/*
589	 * Mark the end of the wait period if dequeueing a
590	 * waiting task:
591	 */
592	if (se != cfs_rq->curr)
593		update_stats_wait_end(cfs_rq, se);
594}
595
596/*
597 * We are picking a new current task - update its stats:
598 */
599static inline void
600update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
601{
602	/*
603	 * We are starting a new run period:
604	 */
605	se->exec_start = rq_of(cfs_rq)->clock;
606}
607
608/**************************************************
609 * Scheduling class queueing methods:
610 */
611
612#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613static void
614add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615{
616	cfs_rq->task_weight += weight;
617}
618#else
619static inline void
620add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621{
622}
623#endif
624
625static void
626account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628	update_load_add(&cfs_rq->load, se->load.weight);
629	if (!parent_entity(se))
630		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
631	if (entity_is_task(se)) {
632		add_cfs_task_weight(cfs_rq, se->load.weight);
633		list_add(&se->group_node, &cfs_rq->tasks);
634	}
635	cfs_rq->nr_running++;
636	se->on_rq = 1;
637}
638
639static void
640account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641{
642	update_load_sub(&cfs_rq->load, se->load.weight);
643	if (!parent_entity(se))
644		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
645	if (entity_is_task(se)) {
646		add_cfs_task_weight(cfs_rq, -se->load.weight);
647		list_del_init(&se->group_node);
648	}
649	cfs_rq->nr_running--;
650	se->on_rq = 0;
651}
652
653static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654{
655#ifdef CONFIG_SCHEDSTATS
656	struct task_struct *tsk = NULL;
657
658	if (entity_is_task(se))
659		tsk = task_of(se);
660
661	if (se->statistics.sleep_start) {
662		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
663
664		if ((s64)delta < 0)
665			delta = 0;
666
667		if (unlikely(delta > se->statistics.sleep_max))
668			se->statistics.sleep_max = delta;
669
670		se->statistics.sleep_start = 0;
671		se->statistics.sum_sleep_runtime += delta;
672
673		if (tsk) {
674			account_scheduler_latency(tsk, delta >> 10, 1);
675			trace_sched_stat_sleep(tsk, delta);
676		}
677	}
678	if (se->statistics.block_start) {
679		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
680
681		if ((s64)delta < 0)
682			delta = 0;
683
684		if (unlikely(delta > se->statistics.block_max))
685			se->statistics.block_max = delta;
686
687		se->statistics.block_start = 0;
688		se->statistics.sum_sleep_runtime += delta;
689
690		if (tsk) {
691			if (tsk->in_iowait) {
692				se->statistics.iowait_sum += delta;
693				se->statistics.iowait_count++;
694				trace_sched_stat_iowait(tsk, delta);
695			}
696
697			/*
698			 * Blocking time is in units of nanosecs, so shift by
699			 * 20 to get a milliseconds-range estimation of the
700			 * amount of time that the task spent sleeping:
701			 */
702			if (unlikely(prof_on == SLEEP_PROFILING)) {
703				profile_hits(SLEEP_PROFILING,
704						(void *)get_wchan(tsk),
705						delta >> 20);
706			}
707			account_scheduler_latency(tsk, delta >> 10, 0);
708		}
709	}
710#endif
711}
712
713static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714{
715#ifdef CONFIG_SCHED_DEBUG
716	s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718	if (d < 0)
719		d = -d;
720
721	if (d > 3*sysctl_sched_latency)
722		schedstat_inc(cfs_rq, nr_spread_over);
723#endif
724}
725
726static void
727place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728{
729	u64 vruntime = cfs_rq->min_vruntime;
730
731	/*
732	 * The 'current' period is already promised to the current tasks,
733	 * however the extra weight of the new task will slow them down a
734	 * little, place the new task so that it fits in the slot that
735	 * stays open at the end.
736	 */
737	if (initial && sched_feat(START_DEBIT))
738		vruntime += sched_vslice(cfs_rq, se);
739
740	/* sleeps up to a single latency don't count. */
741	if (!initial) {
742		unsigned long thresh = sysctl_sched_latency;
743
744		/*
745		 * Halve their sleep time's effect, to allow
746		 * for a gentler effect of sleepers:
747		 */
748		if (sched_feat(GENTLE_FAIR_SLEEPERS))
749			thresh >>= 1;
750
751		vruntime -= thresh;
752	}
753
754	/* ensure we never gain time by being placed backwards. */
755	vruntime = max_vruntime(se->vruntime, vruntime);
756
757	se->vruntime = vruntime;
758}
759
760static void
761enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
762{
763	/*
764	 * Update the normalized vruntime before updating min_vruntime
765	 * through callig update_curr().
766	 */
767	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
768		se->vruntime += cfs_rq->min_vruntime;
769
770	/*
771	 * Update run-time statistics of the 'current'.
772	 */
773	update_curr(cfs_rq);
774	account_entity_enqueue(cfs_rq, se);
775
776	if (flags & ENQUEUE_WAKEUP) {
777		place_entity(cfs_rq, se, 0);
778		enqueue_sleeper(cfs_rq, se);
779	}
780
781	update_stats_enqueue(cfs_rq, se);
782	check_spread(cfs_rq, se);
783	if (se != cfs_rq->curr)
784		__enqueue_entity(cfs_rq, se);
785}
786
787static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
788{
789	if (!se || cfs_rq->last == se)
790		cfs_rq->last = NULL;
791
792	if (!se || cfs_rq->next == se)
793		cfs_rq->next = NULL;
794}
795
796static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
797{
798	for_each_sched_entity(se)
799		__clear_buddies(cfs_rq_of(se), se);
800}
801
802static void
803dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
804{
805	/*
806	 * Update run-time statistics of the 'current'.
807	 */
808	update_curr(cfs_rq);
809
810	update_stats_dequeue(cfs_rq, se);
811	if (flags & DEQUEUE_SLEEP) {
812#ifdef CONFIG_SCHEDSTATS
813		if (entity_is_task(se)) {
814			struct task_struct *tsk = task_of(se);
815
816			if (tsk->state & TASK_INTERRUPTIBLE)
817				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
818			if (tsk->state & TASK_UNINTERRUPTIBLE)
819				se->statistics.block_start = rq_of(cfs_rq)->clock;
820		}
821#endif
822	}
823
824	clear_buddies(cfs_rq, se);
825
826	if (se != cfs_rq->curr)
827		__dequeue_entity(cfs_rq, se);
828	account_entity_dequeue(cfs_rq, se);
829	update_min_vruntime(cfs_rq);
830
831	/*
832	 * Normalize the entity after updating the min_vruntime because the
833	 * update can refer to the ->curr item and we need to reflect this
834	 * movement in our normalized position.
835	 */
836	if (!(flags & DEQUEUE_SLEEP))
837		se->vruntime -= cfs_rq->min_vruntime;
838}
839
840/*
841 * Preempt the current task with a newly woken task if needed:
842 */
843static void
844check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
845{
846	unsigned long ideal_runtime, delta_exec;
847
848	ideal_runtime = sched_slice(cfs_rq, curr);
849	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
850	if (delta_exec > ideal_runtime) {
851		resched_task(rq_of(cfs_rq)->curr);
852		/*
853		 * The current task ran long enough, ensure it doesn't get
854		 * re-elected due to buddy favours.
855		 */
856		clear_buddies(cfs_rq, curr);
857		return;
858	}
859
860	/*
861	 * Ensure that a task that missed wakeup preemption by a
862	 * narrow margin doesn't have to wait for a full slice.
863	 * This also mitigates buddy induced latencies under load.
864	 */
865	if (!sched_feat(WAKEUP_PREEMPT))
866		return;
867
868	if (delta_exec < sysctl_sched_min_granularity)
869		return;
870
871	if (cfs_rq->nr_running > 1) {
872		struct sched_entity *se = __pick_next_entity(cfs_rq);
873		s64 delta = curr->vruntime - se->vruntime;
874
875		if (delta > ideal_runtime)
876			resched_task(rq_of(cfs_rq)->curr);
877	}
878}
879
880static void
881set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
882{
883	/* 'current' is not kept within the tree. */
884	if (se->on_rq) {
885		/*
886		 * Any task has to be enqueued before it get to execute on
887		 * a CPU. So account for the time it spent waiting on the
888		 * runqueue.
889		 */
890		update_stats_wait_end(cfs_rq, se);
891		__dequeue_entity(cfs_rq, se);
892	}
893
894	update_stats_curr_start(cfs_rq, se);
895	cfs_rq->curr = se;
896#ifdef CONFIG_SCHEDSTATS
897	/*
898	 * Track our maximum slice length, if the CPU's load is at
899	 * least twice that of our own weight (i.e. dont track it
900	 * when there are only lesser-weight tasks around):
901	 */
902	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
903		se->statistics.slice_max = max(se->statistics.slice_max,
904			se->sum_exec_runtime - se->prev_sum_exec_runtime);
905	}
906#endif
907	se->prev_sum_exec_runtime = se->sum_exec_runtime;
908}
909
910static int
911wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
912
913static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
914{
915	struct sched_entity *se = __pick_next_entity(cfs_rq);
916	struct sched_entity *left = se;
917
918	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
919		se = cfs_rq->next;
920
921	/*
922	 * Prefer last buddy, try to return the CPU to a preempted task.
923	 */
924	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
925		se = cfs_rq->last;
926
927	clear_buddies(cfs_rq, se);
928
929	return se;
930}
931
932static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
933{
934	/*
935	 * If still on the runqueue then deactivate_task()
936	 * was not called and update_curr() has to be done:
937	 */
938	if (prev->on_rq)
939		update_curr(cfs_rq);
940
941	check_spread(cfs_rq, prev);
942	if (prev->on_rq) {
943		update_stats_wait_start(cfs_rq, prev);
944		/* Put 'current' back into the tree. */
945		__enqueue_entity(cfs_rq, prev);
946	}
947	cfs_rq->curr = NULL;
948}
949
950static void
951entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
952{
953	/*
954	 * Update run-time statistics of the 'current'.
955	 */
956	update_curr(cfs_rq);
957
958#ifdef CONFIG_SCHED_HRTICK
959	/*
960	 * queued ticks are scheduled to match the slice, so don't bother
961	 * validating it and just reschedule.
962	 */
963	if (queued) {
964		resched_task(rq_of(cfs_rq)->curr);
965		return;
966	}
967	/*
968	 * don't let the period tick interfere with the hrtick preemption
969	 */
970	if (!sched_feat(DOUBLE_TICK) &&
971			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
972		return;
973#endif
974
975	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
976		check_preempt_tick(cfs_rq, curr);
977}
978
979/**************************************************
980 * CFS operations on tasks:
981 */
982
983#ifdef CONFIG_SCHED_HRTICK
984static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
985{
986	struct sched_entity *se = &p->se;
987	struct cfs_rq *cfs_rq = cfs_rq_of(se);
988
989	WARN_ON(task_rq(p) != rq);
990
991	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
992		u64 slice = sched_slice(cfs_rq, se);
993		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
994		s64 delta = slice - ran;
995
996		if (delta < 0) {
997			if (rq->curr == p)
998				resched_task(p);
999			return;
1000		}
1001
1002		/*
1003		 * Don't schedule slices shorter than 10000ns, that just
1004		 * doesn't make sense. Rely on vruntime for fairness.
1005		 */
1006		if (rq->curr != p)
1007			delta = max_t(s64, 10000LL, delta);
1008
1009		hrtick_start(rq, delta);
1010	}
1011}
1012
1013/*
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1016 * to matter.
1017 */
1018static void hrtick_update(struct rq *rq)
1019{
1020	struct task_struct *curr = rq->curr;
1021
1022	if (curr->sched_class != &fair_sched_class)
1023		return;
1024
1025	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1026		hrtick_start_fair(rq, curr);
1027}
1028#else /* !CONFIG_SCHED_HRTICK */
1029static inline void
1030hrtick_start_fair(struct rq *rq, struct task_struct *p)
1031{
1032}
1033
1034static inline void hrtick_update(struct rq *rq)
1035{
1036}
1037#endif
1038
1039/*
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1043 */
1044static void
1045enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1046{
1047	struct cfs_rq *cfs_rq;
1048	struct sched_entity *se = &p->se;
1049
1050	for_each_sched_entity(se) {
1051		if (se->on_rq)
1052			break;
1053		cfs_rq = cfs_rq_of(se);
1054		enqueue_entity(cfs_rq, se, flags);
1055		flags = ENQUEUE_WAKEUP;
1056	}
1057
1058	hrtick_update(rq);
1059}
1060
1061/*
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1065 */
1066static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1067{
1068	struct cfs_rq *cfs_rq;
1069	struct sched_entity *se = &p->se;
1070
1071	for_each_sched_entity(se) {
1072		cfs_rq = cfs_rq_of(se);
1073		dequeue_entity(cfs_rq, se, flags);
1074		/* Don't dequeue parent if it has other entities besides us */
1075		if (cfs_rq->load.weight)
1076			break;
1077		flags |= DEQUEUE_SLEEP;
1078	}
1079
1080	hrtick_update(rq);
1081}
1082
1083/*
1084 * sched_yield() support is very simple - we dequeue and enqueue.
1085 *
1086 * If compat_yield is turned on then we requeue to the end of the tree.
1087 */
1088static void yield_task_fair(struct rq *rq)
1089{
1090	struct task_struct *curr = rq->curr;
1091	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1092	struct sched_entity *rightmost, *se = &curr->se;
1093
1094	/*
1095	 * Are we the only task in the tree?
1096	 */
1097	if (unlikely(cfs_rq->nr_running == 1))
1098		return;
1099
1100	clear_buddies(cfs_rq, se);
1101
1102	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1103		update_rq_clock(rq);
1104		/*
1105		 * Update run-time statistics of the 'current'.
1106		 */
1107		update_curr(cfs_rq);
1108
1109		return;
1110	}
1111	/*
1112	 * Find the rightmost entry in the rbtree:
1113	 */
1114	rightmost = __pick_last_entity(cfs_rq);
1115	/*
1116	 * Already in the rightmost position?
1117	 */
1118	if (unlikely(!rightmost || entity_before(rightmost, se)))
1119		return;
1120
1121	/*
1122	 * Minimally necessary key value to be last in the tree:
1123	 * Upon rescheduling, sched_class::put_prev_task() will place
1124	 * 'current' within the tree based on its new key value.
1125	 */
1126	se->vruntime = rightmost->vruntime + 1;
1127}
1128
1129#ifdef CONFIG_SMP
1130
1131static void task_waking_fair(struct rq *rq, struct task_struct *p)
1132{
1133	struct sched_entity *se = &p->se;
1134	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135
1136	se->vruntime -= cfs_rq->min_vruntime;
1137}
1138
1139#ifdef CONFIG_FAIR_GROUP_SCHED
1140/*
1141 * effective_load() calculates the load change as seen from the root_task_group
1142 *
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1146 *
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1149 * this change.
1150 *
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1153 * now.
1154 *
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1159 *
1160 */
1161static long effective_load(struct task_group *tg, int cpu,
1162		long wl, long wg)
1163{
1164	struct sched_entity *se = tg->se[cpu];
1165
1166	if (!tg->parent)
1167		return wl;
1168
1169	/*
1170	 * By not taking the decrease of shares on the other cpu into
1171	 * account our error leans towards reducing the affine wakeups.
1172	 */
1173	if (!wl && sched_feat(ASYM_EFF_LOAD))
1174		return wl;
1175
1176	for_each_sched_entity(se) {
1177		long S, rw, s, a, b;
1178		long more_w;
1179
1180		/*
1181		 * Instead of using this increment, also add the difference
1182		 * between when the shares were last updated and now.
1183		 */
1184		more_w = se->my_q->load.weight - se->my_q->rq_weight;
1185		wl += more_w;
1186		wg += more_w;
1187
1188		S = se->my_q->tg->shares;
1189		s = se->my_q->shares;
1190		rw = se->my_q->rq_weight;
1191
1192		a = S*(rw + wl);
1193		b = S*rw + s*wg;
1194
1195		wl = s*(a-b);
1196
1197		if (likely(b))
1198			wl /= b;
1199
1200		/*
1201		 * Assume the group is already running and will
1202		 * thus already be accounted for in the weight.
1203		 *
1204		 * That is, moving shares between CPUs, does not
1205		 * alter the group weight.
1206		 */
1207		wg = 0;
1208	}
1209
1210	return wl;
1211}
1212
1213#else
1214
1215static inline unsigned long effective_load(struct task_group *tg, int cpu,
1216		unsigned long wl, unsigned long wg)
1217{
1218	return wl;
1219}
1220
1221#endif
1222
1223static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1224{
1225	unsigned long this_load, load;
1226	int idx, this_cpu, prev_cpu;
1227	unsigned long tl_per_task;
1228	struct task_group *tg;
1229	unsigned long weight;
1230	int balanced;
1231
1232	idx	  = sd->wake_idx;
1233	this_cpu  = smp_processor_id();
1234	prev_cpu  = task_cpu(p);
1235	load	  = source_load(prev_cpu, idx);
1236	this_load = target_load(this_cpu, idx);
1237
1238	/*
1239	 * If sync wakeup then subtract the (maximum possible)
1240	 * effect of the currently running task from the load
1241	 * of the current CPU:
1242	 */
1243	rcu_read_lock();
1244	if (sync) {
1245		tg = task_group(current);
1246		weight = current->se.load.weight;
1247
1248		this_load += effective_load(tg, this_cpu, -weight, -weight);
1249		load += effective_load(tg, prev_cpu, 0, -weight);
1250	}
1251
1252	tg = task_group(p);
1253	weight = p->se.load.weight;
1254
1255	/*
1256	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1257	 * due to the sync cause above having dropped this_load to 0, we'll
1258	 * always have an imbalance, but there's really nothing you can do
1259	 * about that, so that's good too.
1260	 *
1261	 * Otherwise check if either cpus are near enough in load to allow this
1262	 * task to be woken on this_cpu.
1263	 */
1264	if (this_load) {
1265		unsigned long this_eff_load, prev_eff_load;
1266
1267		this_eff_load = 100;
1268		this_eff_load *= power_of(prev_cpu);
1269		this_eff_load *= this_load +
1270			effective_load(tg, this_cpu, weight, weight);
1271
1272		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1273		prev_eff_load *= power_of(this_cpu);
1274		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1275
1276		balanced = this_eff_load <= prev_eff_load;
1277	} else
1278		balanced = true;
1279	rcu_read_unlock();
1280
1281	/*
1282	 * If the currently running task will sleep within
1283	 * a reasonable amount of time then attract this newly
1284	 * woken task:
1285	 */
1286	if (sync && balanced)
1287		return 1;
1288
1289	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1290	tl_per_task = cpu_avg_load_per_task(this_cpu);
1291
1292	if (balanced ||
1293	    (this_load <= load &&
1294	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1295		/*
1296		 * This domain has SD_WAKE_AFFINE and
1297		 * p is cache cold in this domain, and
1298		 * there is no bad imbalance.
1299		 */
1300		schedstat_inc(sd, ttwu_move_affine);
1301		schedstat_inc(p, se.statistics.nr_wakeups_affine);
1302
1303		return 1;
1304	}
1305	return 0;
1306}
1307
1308/*
1309 * find_idlest_group finds and returns the least busy CPU group within the
1310 * domain.
1311 */
1312static struct sched_group *
1313find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1314		  int this_cpu, int load_idx)
1315{
1316	struct sched_group *idlest = NULL, *group = sd->groups;
1317	unsigned long min_load = ULONG_MAX, this_load = 0;
1318	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1319
1320	do {
1321		unsigned long load, avg_load;
1322		int local_group;
1323		int i;
1324
1325		/* Skip over this group if it has no CPUs allowed */
1326		if (!cpumask_intersects(sched_group_cpus(group),
1327					&p->cpus_allowed))
1328			continue;
1329
1330		local_group = cpumask_test_cpu(this_cpu,
1331					       sched_group_cpus(group));
1332
1333		/* Tally up the load of all CPUs in the group */
1334		avg_load = 0;
1335
1336		for_each_cpu(i, sched_group_cpus(group)) {
1337			/* Bias balancing toward cpus of our domain */
1338			if (local_group)
1339				load = source_load(i, load_idx);
1340			else
1341				load = target_load(i, load_idx);
1342
1343			avg_load += load;
1344		}
1345
1346		/* Adjust by relative CPU power of the group */
1347		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1348
1349		if (local_group) {
1350			this_load = avg_load;
1351		} else if (avg_load < min_load) {
1352			min_load = avg_load;
1353			idlest = group;
1354		}
1355	} while (group = group->next, group != sd->groups);
1356
1357	if (!idlest || 100*this_load < imbalance*min_load)
1358		return NULL;
1359	return idlest;
1360}
1361
1362/*
1363 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1364 */
1365static int
1366find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1367{
1368	unsigned long load, min_load = ULONG_MAX;
1369	int idlest = -1;
1370	int i;
1371
1372	/* Traverse only the allowed CPUs */
1373	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1374		load = weighted_cpuload(i);
1375
1376		if (load < min_load || (load == min_load && i == this_cpu)) {
1377			min_load = load;
1378			idlest = i;
1379		}
1380	}
1381
1382	return idlest;
1383}
1384
1385/*
1386 * Try and locate an idle CPU in the sched_domain.
1387 */
1388static int select_idle_sibling(struct task_struct *p, int target)
1389{
1390	int cpu = smp_processor_id();
1391	int prev_cpu = task_cpu(p);
1392	struct sched_domain *sd;
1393	int i;
1394
1395	/*
1396	 * If the task is going to be woken-up on this cpu and if it is
1397	 * already idle, then it is the right target.
1398	 */
1399	if (target == cpu && idle_cpu(cpu))
1400		return cpu;
1401
1402	/*
1403	 * If the task is going to be woken-up on the cpu where it previously
1404	 * ran and if it is currently idle, then it the right target.
1405	 */
1406	if (target == prev_cpu && idle_cpu(prev_cpu))
1407		return prev_cpu;
1408
1409	/*
1410	 * Otherwise, iterate the domains and find an elegible idle cpu.
1411	 */
1412	for_each_domain(target, sd) {
1413		if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1414			break;
1415
1416		for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1417			if (idle_cpu(i)) {
1418				target = i;
1419				break;
1420			}
1421		}
1422
1423		/*
1424		 * Lets stop looking for an idle sibling when we reached
1425		 * the domain that spans the current cpu and prev_cpu.
1426		 */
1427		if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1428		    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1429			break;
1430	}
1431
1432	return target;
1433}
1434
1435/*
1436 * sched_balance_self: balance the current task (running on cpu) in domains
1437 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1438 * SD_BALANCE_EXEC.
1439 *
1440 * Balance, ie. select the least loaded group.
1441 *
1442 * Returns the target CPU number, or the same CPU if no balancing is needed.
1443 *
1444 * preempt must be disabled.
1445 */
1446static int
1447select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1448{
1449	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1450	int cpu = smp_processor_id();
1451	int prev_cpu = task_cpu(p);
1452	int new_cpu = cpu;
1453	int want_affine = 0;
1454	int want_sd = 1;
1455	int sync = wake_flags & WF_SYNC;
1456
1457	if (sd_flag & SD_BALANCE_WAKE) {
1458		if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1459			want_affine = 1;
1460		new_cpu = prev_cpu;
1461	}
1462
1463	for_each_domain(cpu, tmp) {
1464		if (!(tmp->flags & SD_LOAD_BALANCE))
1465			continue;
1466
1467		/*
1468		 * If power savings logic is enabled for a domain, see if we
1469		 * are not overloaded, if so, don't balance wider.
1470		 */
1471		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1472			unsigned long power = 0;
1473			unsigned long nr_running = 0;
1474			unsigned long capacity;
1475			int i;
1476
1477			for_each_cpu(i, sched_domain_span(tmp)) {
1478				power += power_of(i);
1479				nr_running += cpu_rq(i)->cfs.nr_running;
1480			}
1481
1482			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1483
1484			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1485				nr_running /= 2;
1486
1487			if (nr_running < capacity)
1488				want_sd = 0;
1489		}
1490
1491		/*
1492		 * If both cpu and prev_cpu are part of this domain,
1493		 * cpu is a valid SD_WAKE_AFFINE target.
1494		 */
1495		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1496		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1497			affine_sd = tmp;
1498			want_affine = 0;
1499		}
1500
1501		if (!want_sd && !want_affine)
1502			break;
1503
1504		if (!(tmp->flags & sd_flag))
1505			continue;
1506
1507		if (want_sd)
1508			sd = tmp;
1509	}
1510
1511#ifdef CONFIG_FAIR_GROUP_SCHED
1512	if (sched_feat(LB_SHARES_UPDATE)) {
1513		/*
1514		 * Pick the largest domain to update shares over
1515		 */
1516		tmp = sd;
1517		if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1518			tmp = affine_sd;
1519
1520		if (tmp) {
1521			raw_spin_unlock(&rq->lock);
1522			update_shares(tmp);
1523			raw_spin_lock(&rq->lock);
1524		}
1525	}
1526#endif
1527
1528	if (affine_sd) {
1529		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1530			return select_idle_sibling(p, cpu);
1531		else
1532			return select_idle_sibling(p, prev_cpu);
1533	}
1534
1535	while (sd) {
1536		int load_idx = sd->forkexec_idx;
1537		struct sched_group *group;
1538		int weight;
1539
1540		if (!(sd->flags & sd_flag)) {
1541			sd = sd->child;
1542			continue;
1543		}
1544
1545		if (sd_flag & SD_BALANCE_WAKE)
1546			load_idx = sd->wake_idx;
1547
1548		group = find_idlest_group(sd, p, cpu, load_idx);
1549		if (!group) {
1550			sd = sd->child;
1551			continue;
1552		}
1553
1554		new_cpu = find_idlest_cpu(group, p, cpu);
1555		if (new_cpu == -1 || new_cpu == cpu) {
1556			/* Now try balancing at a lower domain level of cpu */
1557			sd = sd->child;
1558			continue;
1559		}
1560
1561		/* Now try balancing at a lower domain level of new_cpu */
1562		cpu = new_cpu;
1563		weight = sd->span_weight;
1564		sd = NULL;
1565		for_each_domain(cpu, tmp) {
1566			if (weight <= tmp->span_weight)
1567				break;
1568			if (tmp->flags & sd_flag)
1569				sd = tmp;
1570		}
1571		/* while loop will break here if sd == NULL */
1572	}
1573
1574	return new_cpu;
1575}
1576#endif /* CONFIG_SMP */
1577
1578static unsigned long
1579wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1580{
1581	unsigned long gran = sysctl_sched_wakeup_granularity;
1582
1583	/*
1584	 * Since its curr running now, convert the gran from real-time
1585	 * to virtual-time in his units.
1586	 *
1587	 * By using 'se' instead of 'curr' we penalize light tasks, so
1588	 * they get preempted easier. That is, if 'se' < 'curr' then
1589	 * the resulting gran will be larger, therefore penalizing the
1590	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1591	 * be smaller, again penalizing the lighter task.
1592	 *
1593	 * This is especially important for buddies when the leftmost
1594	 * task is higher priority than the buddy.
1595	 */
1596	if (unlikely(se->load.weight != NICE_0_LOAD))
1597		gran = calc_delta_fair(gran, se);
1598
1599	return gran;
1600}
1601
1602/*
1603 * Should 'se' preempt 'curr'.
1604 *
1605 *             |s1
1606 *        |s2
1607 *   |s3
1608 *         g
1609 *      |<--->|c
1610 *
1611 *  w(c, s1) = -1
1612 *  w(c, s2) =  0
1613 *  w(c, s3) =  1
1614 *
1615 */
1616static int
1617wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1618{
1619	s64 gran, vdiff = curr->vruntime - se->vruntime;
1620
1621	if (vdiff <= 0)
1622		return -1;
1623
1624	gran = wakeup_gran(curr, se);
1625	if (vdiff > gran)
1626		return 1;
1627
1628	return 0;
1629}
1630
1631static void set_last_buddy(struct sched_entity *se)
1632{
1633	if (likely(task_of(se)->policy != SCHED_IDLE)) {
1634		for_each_sched_entity(se)
1635			cfs_rq_of(se)->last = se;
1636	}
1637}
1638
1639static void set_next_buddy(struct sched_entity *se)
1640{
1641	if (likely(task_of(se)->policy != SCHED_IDLE)) {
1642		for_each_sched_entity(se)
1643			cfs_rq_of(se)->next = se;
1644	}
1645}
1646
1647/*
1648 * Preempt the current task with a newly woken task if needed:
1649 */
1650static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1651{
1652	struct task_struct *curr = rq->curr;
1653	struct sched_entity *se = &curr->se, *pse = &p->se;
1654	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1655	int scale = cfs_rq->nr_running >= sched_nr_latency;
1656
1657	if (unlikely(rt_prio(p->prio)))
1658		goto preempt;
1659
1660	if (unlikely(p->sched_class != &fair_sched_class))
1661		return;
1662
1663	if (unlikely(se == pse))
1664		return;
1665
1666	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1667		set_next_buddy(pse);
1668
1669	/*
1670	 * We can come here with TIF_NEED_RESCHED already set from new task
1671	 * wake up path.
1672	 */
1673	if (test_tsk_need_resched(curr))
1674		return;
1675
1676	/*
1677	 * Batch and idle tasks do not preempt (their preemption is driven by
1678	 * the tick):
1679	 */
1680	if (unlikely(p->policy != SCHED_NORMAL))
1681		return;
1682
1683	/* Idle tasks are by definition preempted by everybody. */
1684	if (unlikely(curr->policy == SCHED_IDLE))
1685		goto preempt;
1686
1687	if (!sched_feat(WAKEUP_PREEMPT))
1688		return;
1689
1690	update_curr(cfs_rq);
1691	find_matching_se(&se, &pse);
1692	BUG_ON(!pse);
1693	if (wakeup_preempt_entity(se, pse) == 1)
1694		goto preempt;
1695
1696	return;
1697
1698preempt:
1699	resched_task(curr);
1700	/*
1701	 * Only set the backward buddy when the current task is still
1702	 * on the rq. This can happen when a wakeup gets interleaved
1703	 * with schedule on the ->pre_schedule() or idle_balance()
1704	 * point, either of which can * drop the rq lock.
1705	 *
1706	 * Also, during early boot the idle thread is in the fair class,
1707	 * for obvious reasons its a bad idea to schedule back to it.
1708	 */
1709	if (unlikely(!se->on_rq || curr == rq->idle))
1710		return;
1711
1712	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1713		set_last_buddy(se);
1714}
1715
1716static struct task_struct *pick_next_task_fair(struct rq *rq)
1717{
1718	struct task_struct *p;
1719	struct cfs_rq *cfs_rq = &rq->cfs;
1720	struct sched_entity *se;
1721
1722	if (!cfs_rq->nr_running)
1723		return NULL;
1724
1725	do {
1726		se = pick_next_entity(cfs_rq);
1727		set_next_entity(cfs_rq, se);
1728		cfs_rq = group_cfs_rq(se);
1729	} while (cfs_rq);
1730
1731	p = task_of(se);
1732	hrtick_start_fair(rq, p);
1733
1734	return p;
1735}
1736
1737/*
1738 * Account for a descheduled task:
1739 */
1740static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1741{
1742	struct sched_entity *se = &prev->se;
1743	struct cfs_rq *cfs_rq;
1744
1745	for_each_sched_entity(se) {
1746		cfs_rq = cfs_rq_of(se);
1747		put_prev_entity(cfs_rq, se);
1748	}
1749}
1750
1751#ifdef CONFIG_SMP
1752/**************************************************
1753 * Fair scheduling class load-balancing methods:
1754 */
1755
1756/*
1757 * pull_task - move a task from a remote runqueue to the local runqueue.
1758 * Both runqueues must be locked.
1759 */
1760static void pull_task(struct rq *src_rq, struct task_struct *p,
1761		      struct rq *this_rq, int this_cpu)
1762{
1763	deactivate_task(src_rq, p, 0);
1764	set_task_cpu(p, this_cpu);
1765	activate_task(this_rq, p, 0);
1766	check_preempt_curr(this_rq, p, 0);
1767}
1768
1769/*
1770 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1771 */
1772static
1773int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1774		     struct sched_domain *sd, enum cpu_idle_type idle,
1775		     int *all_pinned)
1776{
1777	int tsk_cache_hot = 0;
1778	/*
1779	 * We do not migrate tasks that are:
1780	 * 1) running (obviously), or
1781	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1782	 * 3) are cache-hot on their current CPU.
1783	 */
1784	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1785		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1786		return 0;
1787	}
1788	*all_pinned = 0;
1789
1790	if (task_running(rq, p)) {
1791		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1792		return 0;
1793	}
1794
1795	/*
1796	 * Aggressive migration if:
1797	 * 1) task is cache cold, or
1798	 * 2) too many balance attempts have failed.
1799	 */
1800
1801	tsk_cache_hot = task_hot(p, rq->clock, sd);
1802	if (!tsk_cache_hot ||
1803		sd->nr_balance_failed > sd->cache_nice_tries) {
1804#ifdef CONFIG_SCHEDSTATS
1805		if (tsk_cache_hot) {
1806			schedstat_inc(sd, lb_hot_gained[idle]);
1807			schedstat_inc(p, se.statistics.nr_forced_migrations);
1808		}
1809#endif
1810		return 1;
1811	}
1812
1813	if (tsk_cache_hot) {
1814		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1815		return 0;
1816	}
1817	return 1;
1818}
1819
1820/*
1821 * move_one_task tries to move exactly one task from busiest to this_rq, as
1822 * part of active balancing operations within "domain".
1823 * Returns 1 if successful and 0 otherwise.
1824 *
1825 * Called with both runqueues locked.
1826 */
1827static int
1828move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1829	      struct sched_domain *sd, enum cpu_idle_type idle)
1830{
1831	struct task_struct *p, *n;
1832	struct cfs_rq *cfs_rq;
1833	int pinned = 0;
1834
1835	for_each_leaf_cfs_rq(busiest, cfs_rq) {
1836		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1837
1838			if (!can_migrate_task(p, busiest, this_cpu,
1839						sd, idle, &pinned))
1840				continue;
1841
1842			pull_task(busiest, p, this_rq, this_cpu);
1843			/*
1844			 * Right now, this is only the second place pull_task()
1845			 * is called, so we can safely collect pull_task()
1846			 * stats here rather than inside pull_task().
1847			 */
1848			schedstat_inc(sd, lb_gained[idle]);
1849			return 1;
1850		}
1851	}
1852
1853	return 0;
1854}
1855
1856static unsigned long
1857balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1858	      unsigned long max_load_move, struct sched_domain *sd,
1859	      enum cpu_idle_type idle, int *all_pinned,
1860	      int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1861{
1862	int loops = 0, pulled = 0, pinned = 0;
1863	long rem_load_move = max_load_move;
1864	struct task_struct *p, *n;
1865
1866	if (max_load_move == 0)
1867		goto out;
1868
1869	pinned = 1;
1870
1871	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1872		if (loops++ > sysctl_sched_nr_migrate)
1873			break;
1874
1875		if ((p->se.load.weight >> 1) > rem_load_move ||
1876		    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1877			continue;
1878
1879		pull_task(busiest, p, this_rq, this_cpu);
1880		pulled++;
1881		rem_load_move -= p->se.load.weight;
1882
1883#ifdef CONFIG_PREEMPT
1884		/*
1885		 * NEWIDLE balancing is a source of latency, so preemptible
1886		 * kernels will stop after the first task is pulled to minimize
1887		 * the critical section.
1888		 */
1889		if (idle == CPU_NEWLY_IDLE)
1890			break;
1891#endif
1892
1893		/*
1894		 * We only want to steal up to the prescribed amount of
1895		 * weighted load.
1896		 */
1897		if (rem_load_move <= 0)
1898			break;
1899
1900		if (p->prio < *this_best_prio)
1901			*this_best_prio = p->prio;
1902	}
1903out:
1904	/*
1905	 * Right now, this is one of only two places pull_task() is called,
1906	 * so we can safely collect pull_task() stats here rather than
1907	 * inside pull_task().
1908	 */
1909	schedstat_add(sd, lb_gained[idle], pulled);
1910
1911	if (all_pinned)
1912		*all_pinned = pinned;
1913
1914	return max_load_move - rem_load_move;
1915}
1916
1917#ifdef CONFIG_FAIR_GROUP_SCHED
1918static unsigned long
1919load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1920		  unsigned long max_load_move,
1921		  struct sched_domain *sd, enum cpu_idle_type idle,
1922		  int *all_pinned, int *this_best_prio)
1923{
1924	long rem_load_move = max_load_move;
1925	int busiest_cpu = cpu_of(busiest);
1926	struct task_group *tg;
1927
1928	rcu_read_lock();
1929	update_h_load(busiest_cpu);
1930
1931	list_for_each_entry_rcu(tg, &task_groups, list) {
1932		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1933		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1934		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1935		u64 rem_load, moved_load;
1936
1937		/*
1938		 * empty group
1939		 */
1940		if (!busiest_cfs_rq->task_weight)
1941			continue;
1942
1943		rem_load = (u64)rem_load_move * busiest_weight;
1944		rem_load = div_u64(rem_load, busiest_h_load + 1);
1945
1946		moved_load = balance_tasks(this_rq, this_cpu, busiest,
1947				rem_load, sd, idle, all_pinned, this_best_prio,
1948				busiest_cfs_rq);
1949
1950		if (!moved_load)
1951			continue;
1952
1953		moved_load *= busiest_h_load;
1954		moved_load = div_u64(moved_load, busiest_weight + 1);
1955
1956		rem_load_move -= moved_load;
1957		if (rem_load_move < 0)
1958			break;
1959	}
1960	rcu_read_unlock();
1961
1962	return max_load_move - rem_load_move;
1963}
1964#else
1965static unsigned long
1966load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1967		  unsigned long max_load_move,
1968		  struct sched_domain *sd, enum cpu_idle_type idle,
1969		  int *all_pinned, int *this_best_prio)
1970{
1971	return balance_tasks(this_rq, this_cpu, busiest,
1972			max_load_move, sd, idle, all_pinned,
1973			this_best_prio, &busiest->cfs);
1974}
1975#endif
1976
1977/*
1978 * move_tasks tries to move up to max_load_move weighted load from busiest to
1979 * this_rq, as part of a balancing operation within domain "sd".
1980 * Returns 1 if successful and 0 otherwise.
1981 *
1982 * Called with both runqueues locked.
1983 */
1984static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1985		      unsigned long max_load_move,
1986		      struct sched_domain *sd, enum cpu_idle_type idle,
1987		      int *all_pinned)
1988{
1989	unsigned long total_load_moved = 0, load_moved;
1990	int this_best_prio = this_rq->curr->prio;
1991
1992	do {
1993		load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1994				max_load_move - total_load_moved,
1995				sd, idle, all_pinned, &this_best_prio);
1996
1997		total_load_moved += load_moved;
1998
1999#ifdef CONFIG_PREEMPT
2000		/*
2001		 * NEWIDLE balancing is a source of latency, so preemptible
2002		 * kernels will stop after the first task is pulled to minimize
2003		 * the critical section.
2004		 */
2005		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2006			break;
2007
2008		if (raw_spin_is_contended(&this_rq->lock) ||
2009				raw_spin_is_contended(&busiest->lock))
2010			break;
2011#endif
2012	} while (load_moved && max_load_move > total_load_moved);
2013
2014	return total_load_moved > 0;
2015}
2016
2017/********** Helpers for find_busiest_group ************************/
2018/*
2019 * sd_lb_stats - Structure to store the statistics of a sched_domain
2020 * 		during load balancing.
2021 */
2022struct sd_lb_stats {
2023	struct sched_group *busiest; /* Busiest group in this sd */
2024	struct sched_group *this;  /* Local group in this sd */
2025	unsigned long total_load;  /* Total load of all groups in sd */
2026	unsigned long total_pwr;   /*	Total power of all groups in sd */
2027	unsigned long avg_load;	   /* Average load across all groups in sd */
2028
2029	/** Statistics of this group */
2030	unsigned long this_load;
2031	unsigned long this_load_per_task;
2032	unsigned long this_nr_running;
2033
2034	/* Statistics of the busiest group */
2035	unsigned long max_load;
2036	unsigned long busiest_load_per_task;
2037	unsigned long busiest_nr_running;
2038	unsigned long busiest_group_capacity;
2039
2040	int group_imb; /* Is there imbalance in this sd */
2041#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2042	int power_savings_balance; /* Is powersave balance needed for this sd */
2043	struct sched_group *group_min; /* Least loaded group in sd */
2044	struct sched_group *group_leader; /* Group which relieves group_min */
2045	unsigned long min_load_per_task; /* load_per_task in group_min */
2046	unsigned long leader_nr_running; /* Nr running of group_leader */
2047	unsigned long min_nr_running; /* Nr running of group_min */
2048#endif
2049};
2050
2051/*
2052 * sg_lb_stats - stats of a sched_group required for load_balancing
2053 */
2054struct sg_lb_stats {
2055	unsigned long avg_load; /*Avg load across the CPUs of the group */
2056	unsigned long group_load; /* Total load over the CPUs of the group */
2057	unsigned long sum_nr_running; /* Nr tasks running in the group */
2058	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2059	unsigned long group_capacity;
2060	int group_imb; /* Is there an imbalance in the group ? */
2061};
2062
2063/**
2064 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2065 * @group: The group whose first cpu is to be returned.
2066 */
2067static inline unsigned int group_first_cpu(struct sched_group *group)
2068{
2069	return cpumask_first(sched_group_cpus(group));
2070}
2071
2072/**
2073 * get_sd_load_idx - Obtain the load index for a given sched domain.
2074 * @sd: The sched_domain whose load_idx is to be obtained.
2075 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2076 */
2077static inline int get_sd_load_idx(struct sched_domain *sd,
2078					enum cpu_idle_type idle)
2079{
2080	int load_idx;
2081
2082	switch (idle) {
2083	case CPU_NOT_IDLE:
2084		load_idx = sd->busy_idx;
2085		break;
2086
2087	case CPU_NEWLY_IDLE:
2088		load_idx = sd->newidle_idx;
2089		break;
2090	default:
2091		load_idx = sd->idle_idx;
2092		break;
2093	}
2094
2095	return load_idx;
2096}
2097
2098
2099#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2100/**
2101 * init_sd_power_savings_stats - Initialize power savings statistics for
2102 * the given sched_domain, during load balancing.
2103 *
2104 * @sd: Sched domain whose power-savings statistics are to be initialized.
2105 * @sds: Variable containing the statistics for sd.
2106 * @idle: Idle status of the CPU at which we're performing load-balancing.
2107 */
2108static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2109	struct sd_lb_stats *sds, enum cpu_idle_type idle)
2110{
2111	/*
2112	 * Busy processors will not participate in power savings
2113	 * balance.
2114	 */
2115	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2116		sds->power_savings_balance = 0;
2117	else {
2118		sds->power_savings_balance = 1;
2119		sds->min_nr_running = ULONG_MAX;
2120		sds->leader_nr_running = 0;
2121	}
2122}
2123
2124/**
2125 * update_sd_power_savings_stats - Update the power saving stats for a
2126 * sched_domain while performing load balancing.
2127 *
2128 * @group: sched_group belonging to the sched_domain under consideration.
2129 * @sds: Variable containing the statistics of the sched_domain
2130 * @local_group: Does group contain the CPU for which we're performing
2131 * 		load balancing ?
2132 * @sgs: Variable containing the statistics of the group.
2133 */
2134static inline void update_sd_power_savings_stats(struct sched_group *group,
2135	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2136{
2137
2138	if (!sds->power_savings_balance)
2139		return;
2140
2141	/*
2142	 * If the local group is idle or completely loaded
2143	 * no need to do power savings balance at this domain
2144	 */
2145	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2146				!sds->this_nr_running))
2147		sds->power_savings_balance = 0;
2148
2149	/*
2150	 * If a group is already running at full capacity or idle,
2151	 * don't include that group in power savings calculations
2152	 */
2153	if (!sds->power_savings_balance ||
2154		sgs->sum_nr_running >= sgs->group_capacity ||
2155		!sgs->sum_nr_running)
2156		return;
2157
2158	/*
2159	 * Calculate the group which has the least non-idle load.
2160	 * This is the group from where we need to pick up the load
2161	 * for saving power
2162	 */
2163	if ((sgs->sum_nr_running < sds->min_nr_running) ||
2164	    (sgs->sum_nr_running == sds->min_nr_running &&
2165	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2166		sds->group_min = group;
2167		sds->min_nr_running = sgs->sum_nr_running;
2168		sds->min_load_per_task = sgs->sum_weighted_load /
2169						sgs->sum_nr_running;
2170	}
2171
2172	/*
2173	 * Calculate the group which is almost near its
2174	 * capacity but still has some space to pick up some load
2175	 * from other group and save more power
2176	 */
2177	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2178		return;
2179
2180	if (sgs->sum_nr_running > sds->leader_nr_running ||
2181	    (sgs->sum_nr_running == sds->leader_nr_running &&
2182	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2183		sds->group_leader = group;
2184		sds->leader_nr_running = sgs->sum_nr_running;
2185	}
2186}
2187
2188/**
2189 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2190 * @sds: Variable containing the statistics of the sched_domain
2191 *	under consideration.
2192 * @this_cpu: Cpu at which we're currently performing load-balancing.
2193 * @imbalance: Variable to store the imbalance.
2194 *
2195 * Description:
2196 * Check if we have potential to perform some power-savings balance.
2197 * If yes, set the busiest group to be the least loaded group in the
2198 * sched_domain, so that it's CPUs can be put to idle.
2199 *
2200 * Returns 1 if there is potential to perform power-savings balance.
2201 * Else returns 0.
2202 */
2203static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2204					int this_cpu, unsigned long *imbalance)
2205{
2206	if (!sds->power_savings_balance)
2207		return 0;
2208
2209	if (sds->this != sds->group_leader ||
2210			sds->group_leader == sds->group_min)
2211		return 0;
2212
2213	*imbalance = sds->min_load_per_task;
2214	sds->busiest = sds->group_min;
2215
2216	return 1;
2217
2218}
2219#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2220static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2221	struct sd_lb_stats *sds, enum cpu_idle_type idle)
2222{
2223	return;
2224}
2225
2226static inline void update_sd_power_savings_stats(struct sched_group *group,
2227	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2228{
2229	return;
2230}
2231
2232static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2233					int this_cpu, unsigned long *imbalance)
2234{
2235	return 0;
2236}
2237#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2238
2239
2240unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2241{
2242	return SCHED_LOAD_SCALE;
2243}
2244
2245unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2246{
2247	return default_scale_freq_power(sd, cpu);
2248}
2249
2250unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2251{
2252	unsigned long weight = sd->span_weight;
2253	unsigned long smt_gain = sd->smt_gain;
2254
2255	smt_gain /= weight;
2256
2257	return smt_gain;
2258}
2259
2260unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2261{
2262	return default_scale_smt_power(sd, cpu);
2263}
2264
2265unsigned long scale_rt_power(int cpu)
2266{
2267	struct rq *rq = cpu_rq(cpu);
2268	u64 total, available;
2269
2270	total = sched_avg_period() + (rq->clock - rq->age_stamp);
2271	available = total - rq->rt_avg;
2272
2273	if (unlikely((s64)total < SCHED_LOAD_SCALE))
2274		total = SCHED_LOAD_SCALE;
2275
2276	total >>= SCHED_LOAD_SHIFT;
2277
2278	return div_u64(available, total);
2279}
2280
2281static void update_cpu_power(struct sched_domain *sd, int cpu)
2282{
2283	unsigned long weight = sd->span_weight;
2284	unsigned long power = SCHED_LOAD_SCALE;
2285	struct sched_group *sdg = sd->groups;
2286
2287	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2288		if (sched_feat(ARCH_POWER))
2289			power *= arch_scale_smt_power(sd, cpu);
2290		else
2291			power *= default_scale_smt_power(sd, cpu);
2292
2293		power >>= SCHED_LOAD_SHIFT;
2294	}
2295
2296	sdg->cpu_power_orig = power;
2297
2298	if (sched_feat(ARCH_POWER))
2299		power *= arch_scale_freq_power(sd, cpu);
2300	else
2301		power *= default_scale_freq_power(sd, cpu);
2302
2303	power >>= SCHED_LOAD_SHIFT;
2304
2305	power *= scale_rt_power(cpu);
2306	power >>= SCHED_LOAD_SHIFT;
2307
2308	if (!power)
2309		power = 1;
2310
2311	cpu_rq(cpu)->cpu_power = power;
2312	sdg->cpu_power = power;
2313}
2314
2315static void update_group_power(struct sched_domain *sd, int cpu)
2316{
2317	struct sched_domain *child = sd->child;
2318	struct sched_group *group, *sdg = sd->groups;
2319	unsigned long power;
2320
2321	if (!child) {
2322		update_cpu_power(sd, cpu);
2323		return;
2324	}
2325
2326	power = 0;
2327
2328	group = child->groups;
2329	do {
2330		power += group->cpu_power;
2331		group = group->next;
2332	} while (group != child->groups);
2333
2334	sdg->cpu_power = power;
2335}
2336
2337/*
2338 * Try and fix up capacity for tiny siblings, this is needed when
2339 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2340 * which on its own isn't powerful enough.
2341 *
2342 * See update_sd_pick_busiest() and check_asym_packing().
2343 */
2344static inline int
2345fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2346{
2347	/*
2348	 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2349	 */
2350	if (sd->level != SD_LV_SIBLING)
2351		return 0;
2352
2353	/*
2354	 * If ~90% of the cpu_power is still there, we're good.
2355	 */
2356	if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2357		return 1;
2358
2359	return 0;
2360}
2361
2362/**
2363 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2364 * @sd: The sched_domain whose statistics are to be updated.
2365 * @group: sched_group whose statistics are to be updated.
2366 * @this_cpu: Cpu for which load balance is currently performed.
2367 * @idle: Idle status of this_cpu
2368 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2369 * @sd_idle: Idle status of the sched_domain containing group.
2370 * @local_group: Does group contain this_cpu.
2371 * @cpus: Set of cpus considered for load balancing.
2372 * @balance: Should we balance.
2373 * @sgs: variable to hold the statistics for this group.
2374 */
2375static inline void update_sg_lb_stats(struct sched_domain *sd,
2376			struct sched_group *group, int this_cpu,
2377			enum cpu_idle_type idle, int load_idx, int *sd_idle,
2378			int local_group, const struct cpumask *cpus,
2379			int *balance, struct sg_lb_stats *sgs)
2380{
2381	unsigned long load, max_cpu_load, min_cpu_load;
2382	int i;
2383	unsigned int balance_cpu = -1, first_idle_cpu = 0;
2384	unsigned long avg_load_per_task = 0;
2385
2386	if (local_group)
2387		balance_cpu = group_first_cpu(group);
2388
2389	/* Tally up the load of all CPUs in the group */
2390	max_cpu_load = 0;
2391	min_cpu_load = ~0UL;
2392
2393	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2394		struct rq *rq = cpu_rq(i);
2395
2396		if (*sd_idle && rq->nr_running)
2397			*sd_idle = 0;
2398
2399		/* Bias balancing toward cpus of our domain */
2400		if (local_group) {
2401			if (idle_cpu(i) && !first_idle_cpu) {
2402				first_idle_cpu = 1;
2403				balance_cpu = i;
2404			}
2405
2406			load = target_load(i, load_idx);
2407		} else {
2408			load = source_load(i, load_idx);
2409			if (load > max_cpu_load)
2410				max_cpu_load = load;
2411			if (min_cpu_load > load)
2412				min_cpu_load = load;
2413		}
2414
2415		sgs->group_load += load;
2416		sgs->sum_nr_running += rq->nr_running;
2417		sgs->sum_weighted_load += weighted_cpuload(i);
2418
2419	}
2420
2421	/*
2422	 * First idle cpu or the first cpu(busiest) in this sched group
2423	 * is eligible for doing load balancing at this and above
2424	 * domains. In the newly idle case, we will allow all the cpu's
2425	 * to do the newly idle load balance.
2426	 */
2427	if (idle != CPU_NEWLY_IDLE && local_group) {
2428		if (balance_cpu != this_cpu) {
2429			*balance = 0;
2430			return;
2431		}
2432		update_group_power(sd, this_cpu);
2433	}
2434
2435	/* Adjust by relative CPU power of the group */
2436	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2437
2438	/*
2439	 * Consider the group unbalanced when the imbalance is larger
2440	 * than the average weight of two tasks.
2441	 *
2442	 * APZ: with cgroup the avg task weight can vary wildly and
2443	 *      might not be a suitable number - should we keep a
2444	 *      normalized nr_running number somewhere that negates
2445	 *      the hierarchy?
2446	 */
2447	if (sgs->sum_nr_running)
2448		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2449
2450	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2451		sgs->group_imb = 1;
2452
2453	sgs->group_capacity =
2454		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2455	if (!sgs->group_capacity)
2456		sgs->group_capacity = fix_small_capacity(sd, group);
2457}
2458
2459/**
2460 * update_sd_pick_busiest - return 1 on busiest group
2461 * @sd: sched_domain whose statistics are to be checked
2462 * @sds: sched_domain statistics
2463 * @sg: sched_group candidate to be checked for being the busiest
2464 * @sgs: sched_group statistics
2465 * @this_cpu: the current cpu
2466 *
2467 * Determine if @sg is a busier group than the previously selected
2468 * busiest group.
2469 */
2470static bool update_sd_pick_busiest(struct sched_domain *sd,
2471				   struct sd_lb_stats *sds,
2472				   struct sched_group *sg,
2473				   struct sg_lb_stats *sgs,
2474				   int this_cpu)
2475{
2476	if (sgs->avg_load <= sds->max_load)
2477		return false;
2478
2479	if (sgs->sum_nr_running > sgs->group_capacity)
2480		return true;
2481
2482	if (sgs->group_imb)
2483		return true;
2484
2485	/*
2486	 * ASYM_PACKING needs to move all the work to the lowest
2487	 * numbered CPUs in the group, therefore mark all groups
2488	 * higher than ourself as busy.
2489	 */
2490	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2491	    this_cpu < group_first_cpu(sg)) {
2492		if (!sds->busiest)
2493			return true;
2494
2495		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2496			return true;
2497	}
2498
2499	return false;
2500}
2501
2502/**
2503 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2504 * @sd: sched_domain whose statistics are to be updated.
2505 * @this_cpu: Cpu for which load balance is currently performed.
2506 * @idle: Idle status of this_cpu
2507 * @sd_idle: Idle status of the sched_domain containing sg.
2508 * @cpus: Set of cpus considered for load balancing.
2509 * @balance: Should we balance.
2510 * @sds: variable to hold the statistics for this sched_domain.
2511 */
2512static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2513			enum cpu_idle_type idle, int *sd_idle,
2514			const struct cpumask *cpus, int *balance,
2515			struct sd_lb_stats *sds)
2516{
2517	struct sched_domain *child = sd->child;
2518	struct sched_group *sg = sd->groups;
2519	struct sg_lb_stats sgs;
2520	int load_idx, prefer_sibling = 0;
2521
2522	if (child && child->flags & SD_PREFER_SIBLING)
2523		prefer_sibling = 1;
2524
2525	init_sd_power_savings_stats(sd, sds, idle);
2526	load_idx = get_sd_load_idx(sd, idle);
2527
2528	do {
2529		int local_group;
2530
2531		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2532		memset(&sgs, 0, sizeof(sgs));
2533		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2534				local_group, cpus, balance, &sgs);
2535
2536		if (local_group && !(*balance))
2537			return;
2538
2539		sds->total_load += sgs.group_load;
2540		sds->total_pwr += sg->cpu_power;
2541
2542		/*
2543		 * In case the child domain prefers tasks go to siblings
2544		 * first, lower the sg capacity to one so that we'll try
2545		 * and move all the excess tasks away.
2546		 */
2547		if (prefer_sibling)
2548			sgs.group_capacity = min(sgs.group_capacity, 1UL);
2549
2550		if (local_group) {
2551			sds->this_load = sgs.avg_load;
2552			sds->this = sg;
2553			sds->this_nr_running = sgs.sum_nr_running;
2554			sds->this_load_per_task = sgs.sum_weighted_load;
2555		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2556			sds->max_load = sgs.avg_load;
2557			sds->busiest = sg;
2558			sds->busiest_nr_running = sgs.sum_nr_running;
2559			sds->busiest_group_capacity = sgs.group_capacity;
2560			sds->busiest_load_per_task = sgs.sum_weighted_load;
2561			sds->group_imb = sgs.group_imb;
2562		}
2563
2564		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2565		sg = sg->next;
2566	} while (sg != sd->groups);
2567}
2568
2569int __weak arch_sd_sibling_asym_packing(void)
2570{
2571       return 0*SD_ASYM_PACKING;
2572}
2573
2574/**
2575 * check_asym_packing - Check to see if the group is packed into the
2576 *			sched doman.
2577 *
2578 * This is primarily intended to used at the sibling level.  Some
2579 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
2580 * case of POWER7, it can move to lower SMT modes only when higher
2581 * threads are idle.  When in lower SMT modes, the threads will
2582 * perform better since they share less core resources.  Hence when we
2583 * have idle threads, we want them to be the higher ones.
2584 *
2585 * This packing function is run on idle threads.  It checks to see if
2586 * the busiest CPU in this domain (core in the P7 case) has a higher
2587 * CPU number than the packing function is being run on.  Here we are
2588 * assuming lower CPU number will be equivalent to lower a SMT thread
2589 * number.
2590 *
2591 * Returns 1 when packing is required and a task should be moved to
2592 * this CPU.  The amount of the imbalance is returned in *imbalance.
2593 *
2594 * @sd: The sched_domain whose packing is to be checked.
2595 * @sds: Statistics of the sched_domain which is to be packed
2596 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2597 * @imbalance: returns amount of imbalanced due to packing.
2598 */
2599static int check_asym_packing(struct sched_domain *sd,
2600			      struct sd_lb_stats *sds,
2601			      int this_cpu, unsigned long *imbalance)
2602{
2603	int busiest_cpu;
2604
2605	if (!(sd->flags & SD_ASYM_PACKING))
2606		return 0;
2607
2608	if (!sds->busiest)
2609		return 0;
2610
2611	busiest_cpu = group_first_cpu(sds->busiest);
2612	if (this_cpu > busiest_cpu)
2613		return 0;
2614
2615	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2616				       SCHED_LOAD_SCALE);
2617	return 1;
2618}
2619
2620/**
2621 * fix_small_imbalance - Calculate the minor imbalance that exists
2622 *			amongst the groups of a sched_domain, during
2623 *			load balancing.
2624 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2625 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2626 * @imbalance: Variable to store the imbalance.
2627 */
2628static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2629				int this_cpu, unsigned long *imbalance)
2630{
2631	unsigned long tmp, pwr_now = 0, pwr_move = 0;
2632	unsigned int imbn = 2;
2633	unsigned long scaled_busy_load_per_task;
2634
2635	if (sds->this_nr_running) {
2636		sds->this_load_per_task /= sds->this_nr_running;
2637		if (sds->busiest_load_per_task >
2638				sds->this_load_per_task)
2639			imbn = 1;
2640	} else
2641		sds->this_load_per_task =
2642			cpu_avg_load_per_task(this_cpu);
2643
2644	scaled_busy_load_per_task = sds->busiest_load_per_task
2645						 * SCHED_LOAD_SCALE;
2646	scaled_busy_load_per_task /= sds->busiest->cpu_power;
2647
2648	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2649			(scaled_busy_load_per_task * imbn)) {
2650		*imbalance = sds->busiest_load_per_task;
2651		return;
2652	}
2653
2654	/*
2655	 * OK, we don't have enough imbalance to justify moving tasks,
2656	 * however we may be able to increase total CPU power used by
2657	 * moving them.
2658	 */
2659
2660	pwr_now += sds->busiest->cpu_power *
2661			min(sds->busiest_load_per_task, sds->max_load);
2662	pwr_now += sds->this->cpu_power *
2663			min(sds->this_load_per_task, sds->this_load);
2664	pwr_now /= SCHED_LOAD_SCALE;
2665
2666	/* Amount of load we'd subtract */
2667	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2668		sds->busiest->cpu_power;
2669	if (sds->max_load > tmp)
2670		pwr_move += sds->busiest->cpu_power *
2671			min(sds->busiest_load_per_task, sds->max_load - tmp);
2672
2673	/* Amount of load we'd add */
2674	if (sds->max_load * sds->busiest->cpu_power <
2675		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2676		tmp = (sds->max_load * sds->busiest->cpu_power) /
2677			sds->this->cpu_power;
2678	else
2679		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2680			sds->this->cpu_power;
2681	pwr_move += sds->this->cpu_power *
2682			min(sds->this_load_per_task, sds->this_load + tmp);
2683	pwr_move /= SCHED_LOAD_SCALE;
2684
2685	/* Move if we gain throughput */
2686	if (pwr_move > pwr_now)
2687		*imbalance = sds->busiest_load_per_task;
2688}
2689
2690/**
2691 * calculate_imbalance - Calculate the amount of imbalance present within the
2692 *			 groups of a given sched_domain during load balance.
2693 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2694 * @this_cpu: Cpu for which currently load balance is being performed.
2695 * @imbalance: The variable to store the imbalance.
2696 */
2697static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2698		unsigned long *imbalance)
2699{
2700	unsigned long max_pull, load_above_capacity = ~0UL;
2701
2702	sds->busiest_load_per_task /= sds->busiest_nr_running;
2703	if (sds->group_imb) {
2704		sds->busiest_load_per_task =
2705			min(sds->busiest_load_per_task, sds->avg_load);
2706	}
2707
2708	/*
2709	 * In the presence of smp nice balancing, certain scenarios can have
2710	 * max load less than avg load(as we skip the groups at or below
2711	 * its cpu_power, while calculating max_load..)
2712	 */
2713	if (sds->max_load < sds->avg_load) {
2714		*imbalance = 0;
2715		return fix_small_imbalance(sds, this_cpu, imbalance);
2716	}
2717
2718	if (!sds->group_imb) {
2719		/*
2720		 * Don't want to pull so many tasks that a group would go idle.
2721		 */
2722		load_above_capacity = (sds->busiest_nr_running -
2723						sds->busiest_group_capacity);
2724
2725		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2726
2727		load_above_capacity /= sds->busiest->cpu_power;
2728	}
2729
2730	/*
2731	 * We're trying to get all the cpus to the average_load, so we don't
2732	 * want to push ourselves above the average load, nor do we wish to
2733	 * reduce the max loaded cpu below the average load. At the same time,
2734	 * we also don't want to reduce the group load below the group capacity
2735	 * (so that we can implement power-savings policies etc). Thus we look
2736	 * for the minimum possible imbalance.
2737	 * Be careful of negative numbers as they'll appear as very large values
2738	 * with unsigned longs.
2739	 */
2740	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2741
2742	/* How much load to actually move to equalise the imbalance */
2743	*imbalance = min(max_pull * sds->busiest->cpu_power,
2744		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
2745			/ SCHED_LOAD_SCALE;
2746
2747	/*
2748	 * if *imbalance is less than the average load per runnable task
2749	 * there is no gaurantee that any tasks will be moved so we'll have
2750	 * a think about bumping its value to force at least one task to be
2751	 * moved
2752	 */
2753	if (*imbalance < sds->busiest_load_per_task)
2754		return fix_small_imbalance(sds, this_cpu, imbalance);
2755
2756}
2757/******* find_busiest_group() helpers end here *********************/
2758
2759/**
2760 * find_busiest_group - Returns the busiest group within the sched_domain
2761 * if there is an imbalance. If there isn't an imbalance, and
2762 * the user has opted for power-savings, it returns a group whose
2763 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2764 * such a group exists.
2765 *
2766 * Also calculates the amount of weighted load which should be moved
2767 * to restore balance.
2768 *
2769 * @sd: The sched_domain whose busiest group is to be returned.
2770 * @this_cpu: The cpu for which load balancing is currently being performed.
2771 * @imbalance: Variable which stores amount of weighted load which should
2772 *		be moved to restore balance/put a group to idle.
2773 * @idle: The idle status of this_cpu.
2774 * @sd_idle: The idleness of sd
2775 * @cpus: The set of CPUs under consideration for load-balancing.
2776 * @balance: Pointer to a variable indicating if this_cpu
2777 *	is the appropriate cpu to perform load balancing at this_level.
2778 *
2779 * Returns:	- the busiest group if imbalance exists.
2780 *		- If no imbalance and user has opted for power-savings balance,
2781 *		   return the least loaded group whose CPUs can be
2782 *		   put to idle by rebalancing its tasks onto our group.
2783 */
2784static struct sched_group *
2785find_busiest_group(struct sched_domain *sd, int this_cpu,
2786		   unsigned long *imbalance, enum cpu_idle_type idle,
2787		   int *sd_idle, const struct cpumask *cpus, int *balance)
2788{
2789	struct sd_lb_stats sds;
2790
2791	memset(&sds, 0, sizeof(sds));
2792
2793	/*
2794	 * Compute the various statistics relavent for load balancing at
2795	 * this level.
2796	 */
2797	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2798					balance, &sds);
2799
2800	/* Cases where imbalance does not exist from POV of this_cpu */
2801	/* 1) this_cpu is not the appropriate cpu to perform load balancing
2802	 *    at this level.
2803	 * 2) There is no busy sibling group to pull from.
2804	 * 3) This group is the busiest group.
2805	 * 4) This group is more busy than the avg busieness at this
2806	 *    sched_domain.
2807	 * 5) The imbalance is within the specified limit.
2808	 */
2809	if (!(*balance))
2810		goto ret;
2811
2812	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
2813	    check_asym_packing(sd, &sds, this_cpu, imbalance))
2814		return sds.busiest;
2815
2816	if (!sds.busiest || sds.busiest_nr_running == 0)
2817		goto out_balanced;
2818
2819	if (sds.this_load >= sds.max_load)
2820		goto out_balanced;
2821
2822	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2823
2824	if (sds.this_load >= sds.avg_load)
2825		goto out_balanced;
2826
2827	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2828		goto out_balanced;
2829
2830	/* Looks like there is an imbalance. Compute it */
2831	calculate_imbalance(&sds, this_cpu, imbalance);
2832	return sds.busiest;
2833
2834out_balanced:
2835	/*
2836	 * There is no obvious imbalance. But check if we can do some balancing
2837	 * to save power.
2838	 */
2839	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2840		return sds.busiest;
2841ret:
2842	*imbalance = 0;
2843	return NULL;
2844}
2845
2846/*
2847 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2848 */
2849static struct rq *
2850find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
2851		   enum cpu_idle_type idle, unsigned long imbalance,
2852		   const struct cpumask *cpus)
2853{
2854	struct rq *busiest = NULL, *rq;
2855	unsigned long max_load = 0;
2856	int i;
2857
2858	for_each_cpu(i, sched_group_cpus(group)) {
2859		unsigned long power = power_of(i);
2860		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2861		unsigned long wl;
2862
2863		if (!capacity)
2864			capacity = fix_small_capacity(sd, group);
2865
2866		if (!cpumask_test_cpu(i, cpus))
2867			continue;
2868
2869		rq = cpu_rq(i);
2870		wl = weighted_cpuload(i);
2871
2872		/*
2873		 * When comparing with imbalance, use weighted_cpuload()
2874		 * which is not scaled with the cpu power.
2875		 */
2876		if (capacity && rq->nr_running == 1 && wl > imbalance)
2877			continue;
2878
2879		/*
2880		 * For the load comparisons with the other cpu's, consider
2881		 * the weighted_cpuload() scaled with the cpu power, so that
2882		 * the load can be moved away from the cpu that is potentially
2883		 * running at a lower capacity.
2884		 */
2885		wl = (wl * SCHED_LOAD_SCALE) / power;
2886
2887		if (wl > max_load) {
2888			max_load = wl;
2889			busiest = rq;
2890		}
2891	}
2892
2893	return busiest;
2894}
2895
2896/*
2897 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2898 * so long as it is large enough.
2899 */
2900#define MAX_PINNED_INTERVAL	512
2901
2902/* Working cpumask for load_balance and load_balance_newidle. */
2903static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2904
2905static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
2906			       int busiest_cpu, int this_cpu)
2907{
2908	if (idle == CPU_NEWLY_IDLE) {
2909
2910		/*
2911		 * ASYM_PACKING needs to force migrate tasks from busy but
2912		 * higher numbered CPUs in order to pack all tasks in the
2913		 * lowest numbered CPUs.
2914		 */
2915		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
2916			return 1;
2917
2918		/*
2919		 * The only task running in a non-idle cpu can be moved to this
2920		 * cpu in an attempt to completely freeup the other CPU
2921		 * package.
2922		 *
2923		 * The package power saving logic comes from
2924		 * find_busiest_group(). If there are no imbalance, then
2925		 * f_b_g() will return NULL. However when sched_mc={1,2} then
2926		 * f_b_g() will select a group from which a running task may be
2927		 * pulled to this cpu in order to make the other package idle.
2928		 * If there is no opportunity to make a package idle and if
2929		 * there are no imbalance, then f_b_g() will return NULL and no
2930		 * action will be taken in load_balance_newidle().
2931		 *
2932		 * Under normal task pull operation due to imbalance, there
2933		 * will be more than one task in the source run queue and
2934		 * move_tasks() will succeed.  ld_moved will be true and this
2935		 * active balance code will not be triggered.
2936		 */
2937		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2938		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2939			return 0;
2940
2941		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2942			return 0;
2943	}
2944
2945	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2946}
2947
2948static int active_load_balance_cpu_stop(void *data);
2949
2950/*
2951 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2952 * tasks if there is an imbalance.
2953 */
2954static int load_balance(int this_cpu, struct rq *this_rq,
2955			struct sched_domain *sd, enum cpu_idle_type idle,
2956			int *balance)
2957{
2958	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2959	struct sched_group *group;
2960	unsigned long imbalance;
2961	struct rq *busiest;
2962	unsigned long flags;
2963	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2964
2965	cpumask_copy(cpus, cpu_active_mask);
2966
2967	/*
2968	 * When power savings policy is enabled for the parent domain, idle
2969	 * sibling can pick up load irrespective of busy siblings. In this case,
2970	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2971	 * portraying it as CPU_NOT_IDLE.
2972	 */
2973	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2974	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2975		sd_idle = 1;
2976
2977	schedstat_inc(sd, lb_count[idle]);
2978
2979redo:
2980	update_shares(sd);
2981	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2982				   cpus, balance);
2983
2984	if (*balance == 0)
2985		goto out_balanced;
2986
2987	if (!group) {
2988		schedstat_inc(sd, lb_nobusyg[idle]);
2989		goto out_balanced;
2990	}
2991
2992	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
2993	if (!busiest) {
2994		schedstat_inc(sd, lb_nobusyq[idle]);
2995		goto out_balanced;
2996	}
2997
2998	BUG_ON(busiest == this_rq);
2999
3000	schedstat_add(sd, lb_imbalance[idle], imbalance);
3001
3002	ld_moved = 0;
3003	if (busiest->nr_running > 1) {
3004		/*
3005		 * Attempt to move tasks. If find_busiest_group has found
3006		 * an imbalance but busiest->nr_running <= 1, the group is
3007		 * still unbalanced. ld_moved simply stays zero, so it is
3008		 * correctly treated as an imbalance.
3009		 */
3010		local_irq_save(flags);
3011		double_rq_lock(this_rq, busiest);
3012		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3013				      imbalance, sd, idle, &all_pinned);
3014		double_rq_unlock(this_rq, busiest);
3015		local_irq_restore(flags);
3016
3017		/*
3018		 * some other cpu did the load balance for us.
3019		 */
3020		if (ld_moved && this_cpu != smp_processor_id())
3021			resched_cpu(this_cpu);
3022
3023		/* All tasks on this runqueue were pinned by CPU affinity */
3024		if (unlikely(all_pinned)) {
3025			cpumask_clear_cpu(cpu_of(busiest), cpus);
3026			if (!cpumask_empty(cpus))
3027				goto redo;
3028			goto out_balanced;
3029		}
3030	}
3031
3032	if (!ld_moved) {
3033		schedstat_inc(sd, lb_failed[idle]);
3034		sd->nr_balance_failed++;
3035
3036		if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3037					this_cpu)) {
3038			raw_spin_lock_irqsave(&busiest->lock, flags);
3039
3040			/* don't kick the active_load_balance_cpu_stop,
3041			 * if the curr task on busiest cpu can't be
3042			 * moved to this_cpu
3043			 */
3044			if (!cpumask_test_cpu(this_cpu,
3045					      &busiest->curr->cpus_allowed)) {
3046				raw_spin_unlock_irqrestore(&busiest->lock,
3047							    flags);
3048				all_pinned = 1;
3049				goto out_one_pinned;
3050			}
3051
3052			/*
3053			 * ->active_balance synchronizes accesses to
3054			 * ->active_balance_work.  Once set, it's cleared
3055			 * only after active load balance is finished.
3056			 */
3057			if (!busiest->active_balance) {
3058				busiest->active_balance = 1;
3059				busiest->push_cpu = this_cpu;
3060				active_balance = 1;
3061			}
3062			raw_spin_unlock_irqrestore(&busiest->lock, flags);
3063
3064			if (active_balance)
3065				stop_one_cpu_nowait(cpu_of(busiest),
3066					active_load_balance_cpu_stop, busiest,
3067					&busiest->active_balance_work);
3068
3069			/*
3070			 * We've kicked active balancing, reset the failure
3071			 * counter.
3072			 */
3073			sd->nr_balance_failed = sd->cache_nice_tries+1;
3074		}
3075	} else
3076		sd->nr_balance_failed = 0;
3077
3078	if (likely(!active_balance)) {
3079		/* We were unbalanced, so reset the balancing interval */
3080		sd->balance_interval = sd->min_interval;
3081	} else {
3082		/*
3083		 * If we've begun active balancing, start to back off. This
3084		 * case may not be covered by the all_pinned logic if there
3085		 * is only 1 task on the busy runqueue (because we don't call
3086		 * move_tasks).
3087		 */
3088		if (sd->balance_interval < sd->max_interval)
3089			sd->balance_interval *= 2;
3090	}
3091
3092	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3093	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3094		ld_moved = -1;
3095
3096	goto out;
3097
3098out_balanced:
3099	schedstat_inc(sd, lb_balanced[idle]);
3100
3101	sd->nr_balance_failed = 0;
3102
3103out_one_pinned:
3104	/* tune up the balancing interval */
3105	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3106			(sd->balance_interval < sd->max_interval))
3107		sd->balance_interval *= 2;
3108
3109	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3110	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3111		ld_moved = -1;
3112	else
3113		ld_moved = 0;
3114out:
3115	if (ld_moved)
3116		update_shares(sd);
3117	return ld_moved;
3118}
3119
3120/*
3121 * idle_balance is called by schedule() if this_cpu is about to become
3122 * idle. Attempts to pull tasks from other CPUs.
3123 */
3124static void idle_balance(int this_cpu, struct rq *this_rq)
3125{
3126	struct sched_domain *sd;
3127	int pulled_task = 0;
3128	unsigned long next_balance = jiffies + HZ;
3129
3130	this_rq->idle_stamp = this_rq->clock;
3131
3132	if (this_rq->avg_idle < sysctl_sched_migration_cost)
3133		return;
3134
3135	/*
3136	 * Drop the rq->lock, but keep IRQ/preempt disabled.
3137	 */
3138	raw_spin_unlock(&this_rq->lock);
3139
3140	for_each_domain(this_cpu, sd) {
3141		unsigned long interval;
3142		int balance = 1;
3143
3144		if (!(sd->flags & SD_LOAD_BALANCE))
3145			continue;
3146
3147		if (sd->flags & SD_BALANCE_NEWIDLE) {
3148			/* If we've pulled tasks over stop searching: */
3149			pulled_task = load_balance(this_cpu, this_rq,
3150						   sd, CPU_NEWLY_IDLE, &balance);
3151		}
3152
3153		interval = msecs_to_jiffies(sd->balance_interval);
3154		if (time_after(next_balance, sd->last_balance + interval))
3155			next_balance = sd->last_balance + interval;
3156		if (pulled_task) {
3157			this_rq->idle_stamp = 0;
3158			break;
3159		}
3160	}
3161
3162	raw_spin_lock(&this_rq->lock);
3163
3164	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3165		/*
3166		 * We are going idle. next_balance may be set based on
3167		 * a busy processor. So reset next_balance.
3168		 */
3169		this_rq->next_balance = next_balance;
3170	}
3171}
3172
3173/*
3174 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3175 * running tasks off the busiest CPU onto idle CPUs. It requires at
3176 * least 1 task to be running on each physical CPU where possible, and
3177 * avoids physical / logical imbalances.
3178 */
3179static int active_load_balance_cpu_stop(void *data)
3180{
3181	struct rq *busiest_rq = data;
3182	int busiest_cpu = cpu_of(busiest_rq);
3183	int target_cpu = busiest_rq->push_cpu;
3184	struct rq *target_rq = cpu_rq(target_cpu);
3185	struct sched_domain *sd;
3186
3187	raw_spin_lock_irq(&busiest_rq->lock);
3188
3189	/* make sure the requested cpu hasn't gone down in the meantime */
3190	if (unlikely(busiest_cpu != smp_processor_id() ||
3191		     !busiest_rq->active_balance))
3192		goto out_unlock;
3193
3194	/* Is there any task to move? */
3195	if (busiest_rq->nr_running <= 1)
3196		goto out_unlock;
3197
3198	/*
3199	 * This condition is "impossible", if it occurs
3200	 * we need to fix it. Originally reported by
3201	 * Bjorn Helgaas on a 128-cpu setup.
3202	 */
3203	BUG_ON(busiest_rq == target_rq);
3204
3205	/* move a task from busiest_rq to target_rq */
3206	double_lock_balance(busiest_rq, target_rq);
3207
3208	/* Search for an sd spanning us and the target CPU. */
3209	for_each_domain(target_cpu, sd) {
3210		if ((sd->flags & SD_LOAD_BALANCE) &&
3211		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3212				break;
3213	}
3214
3215	if (likely(sd)) {
3216		schedstat_inc(sd, alb_count);
3217
3218		if (move_one_task(target_rq, target_cpu, busiest_rq,
3219				  sd, CPU_IDLE))
3220			schedstat_inc(sd, alb_pushed);
3221		else
3222			schedstat_inc(sd, alb_failed);
3223	}
3224	double_unlock_balance(busiest_rq, target_rq);
3225out_unlock:
3226	busiest_rq->active_balance = 0;
3227	raw_spin_unlock_irq(&busiest_rq->lock);
3228	return 0;
3229}
3230
3231#ifdef CONFIG_NO_HZ
3232
3233static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3234
3235static void trigger_sched_softirq(void *data)
3236{
3237	raise_softirq_irqoff(SCHED_SOFTIRQ);
3238}
3239
3240static inline void init_sched_softirq_csd(struct call_single_data *csd)
3241{
3242	csd->func = trigger_sched_softirq;
3243	csd->info = NULL;
3244	csd->flags = 0;
3245	csd->priv = 0;
3246}
3247
3248/*
3249 * idle load balancing details
3250 * - One of the idle CPUs nominates itself as idle load_balancer, while
3251 *   entering idle.
3252 * - This idle load balancer CPU will also go into tickless mode when
3253 *   it is idle, just like all other idle CPUs
3254 * - When one of the busy CPUs notice that there may be an idle rebalancing
3255 *   needed, they will kick the idle load balancer, which then does idle
3256 *   load balancing for all the idle CPUs.
3257 */
3258static struct {
3259	atomic_t load_balancer;
3260	atomic_t first_pick_cpu;
3261	atomic_t second_pick_cpu;
3262	cpumask_var_t idle_cpus_mask;
3263	cpumask_var_t grp_idle_mask;
3264	unsigned long next_balance;     /* in jiffy units */
3265} nohz ____cacheline_aligned;
3266
3267int get_nohz_load_balancer(void)
3268{
3269	return atomic_read(&nohz.load_balancer);
3270}
3271
3272#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3273/**
3274 * lowest_flag_domain - Return lowest sched_domain containing flag.
3275 * @cpu:	The cpu whose lowest level of sched domain is to
3276 *		be returned.
3277 * @flag:	The flag to check for the lowest sched_domain
3278 *		for the given cpu.
3279 *
3280 * Returns the lowest sched_domain of a cpu which contains the given flag.
3281 */
3282static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3283{
3284	struct sched_domain *sd;
3285
3286	for_each_domain(cpu, sd)
3287		if (sd && (sd->flags & flag))
3288			break;
3289
3290	return sd;
3291}
3292
3293/**
3294 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3295 * @cpu:	The cpu whose domains we're iterating over.
3296 * @sd:		variable holding the value of the power_savings_sd
3297 *		for cpu.
3298 * @flag:	The flag to filter the sched_domains to be iterated.
3299 *
3300 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3301 * set, starting from the lowest sched_domain to the highest.
3302 */
3303#define for_each_flag_domain(cpu, sd, flag) \
3304	for (sd = lowest_flag_domain(cpu, flag); \
3305		(sd && (sd->flags & flag)); sd = sd->parent)
3306
3307/**
3308 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3309 * @ilb_group:	group to be checked for semi-idleness
3310 *
3311 * Returns:	1 if the group is semi-idle. 0 otherwise.
3312 *
3313 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3314 * and atleast one non-idle CPU. This helper function checks if the given
3315 * sched_group is semi-idle or not.
3316 */
3317static inline int is_semi_idle_group(struct sched_group *ilb_group)
3318{
3319	cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3320					sched_group_cpus(ilb_group));
3321
3322	/*
3323	 * A sched_group is semi-idle when it has atleast one busy cpu
3324	 * and atleast one idle cpu.
3325	 */
3326	if (cpumask_empty(nohz.grp_idle_mask))
3327		return 0;
3328
3329	if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3330		return 0;
3331
3332	return 1;
3333}
3334/**
3335 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3336 * @cpu:	The cpu which is nominating a new idle_load_balancer.
3337 *
3338 * Returns:	Returns the id of the idle load balancer if it exists,
3339 *		Else, returns >= nr_cpu_ids.
3340 *
3341 * This algorithm picks the idle load balancer such that it belongs to a
3342 * semi-idle powersavings sched_domain. The idea is to try and avoid
3343 * completely idle packages/cores just for the purpose of idle load balancing
3344 * when there are other idle cpu's which are better suited for that job.
3345 */
3346static int find_new_ilb(int cpu)
3347{
3348	struct sched_domain *sd;
3349	struct sched_group *ilb_group;
3350
3351	/*
3352	 * Have idle load balancer selection from semi-idle packages only
3353	 * when power-aware load balancing is enabled
3354	 */
3355	if (!(sched_smt_power_savings || sched_mc_power_savings))
3356		goto out_done;
3357
3358	/*
3359	 * Optimize for the case when we have no idle CPUs or only one
3360	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3361	 */
3362	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3363		goto out_done;
3364
3365	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3366		ilb_group = sd->groups;
3367
3368		do {
3369			if (is_semi_idle_group(ilb_group))
3370				return cpumask_first(nohz.grp_idle_mask);
3371
3372			ilb_group = ilb_group->next;
3373
3374		} while (ilb_group != sd->groups);
3375	}
3376
3377out_done:
3378	return nr_cpu_ids;
3379}
3380#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3381static inline int find_new_ilb(int call_cpu)
3382{
3383	return nr_cpu_ids;
3384}
3385#endif
3386
3387/*
3388 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3389 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3390 * CPU (if there is one).
3391 */
3392static void nohz_balancer_kick(int cpu)
3393{
3394	int ilb_cpu;
3395
3396	nohz.next_balance++;
3397
3398	ilb_cpu = get_nohz_load_balancer();
3399
3400	if (ilb_cpu >= nr_cpu_ids) {
3401		ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3402		if (ilb_cpu >= nr_cpu_ids)
3403			return;
3404	}
3405
3406	if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3407		struct call_single_data *cp;
3408
3409		cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3410		cp = &per_cpu(remote_sched_softirq_cb, cpu);
3411		__smp_call_function_single(ilb_cpu, cp, 0);
3412	}
3413	return;
3414}
3415
3416/*
3417 * This routine will try to nominate the ilb (idle load balancing)
3418 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3419 * load balancing on behalf of all those cpus.
3420 *
3421 * When the ilb owner becomes busy, we will not have new ilb owner until some
3422 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3423 * idle load balancing by kicking one of the idle CPUs.
3424 *
3425 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3426 * ilb owner CPU in future (when there is a need for idle load balancing on
3427 * behalf of all idle CPUs).
3428 */
3429void select_nohz_load_balancer(int stop_tick)
3430{
3431	int cpu = smp_processor_id();
3432
3433	if (stop_tick) {
3434		if (!cpu_active(cpu)) {
3435			if (atomic_read(&nohz.load_balancer) != cpu)
3436				return;
3437
3438			/*
3439			 * If we are going offline and still the leader,
3440			 * give up!
3441			 */
3442			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3443					   nr_cpu_ids) != cpu)
3444				BUG();
3445
3446			return;
3447		}
3448
3449		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3450
3451		if (atomic_read(&nohz.first_pick_cpu) == cpu)
3452			atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3453		if (atomic_read(&nohz.second_pick_cpu) == cpu)
3454			atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3455
3456		if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3457			int new_ilb;
3458
3459			/* make me the ilb owner */
3460			if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3461					   cpu) != nr_cpu_ids)
3462				return;
3463
3464			/*
3465			 * Check to see if there is a more power-efficient
3466			 * ilb.
3467			 */
3468			new_ilb = find_new_ilb(cpu);
3469			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3470				atomic_set(&nohz.load_balancer, nr_cpu_ids);
3471				resched_cpu(new_ilb);
3472				return;
3473			}
3474			return;
3475		}
3476	} else {
3477		if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3478			return;
3479
3480		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3481
3482		if (atomic_read(&nohz.load_balancer) == cpu)
3483			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3484					   nr_cpu_ids) != cpu)
3485				BUG();
3486	}
3487	return;
3488}
3489#endif
3490
3491static DEFINE_SPINLOCK(balancing);
3492
3493/*
3494 * It checks each scheduling domain to see if it is due to be balanced,
3495 * and initiates a balancing operation if so.
3496 *
3497 * Balancing parameters are set up in arch_init_sched_domains.
3498 */
3499static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3500{
3501	int balance = 1;
3502	struct rq *rq = cpu_rq(cpu);
3503	unsigned long interval;
3504	struct sched_domain *sd;
3505	/* Earliest time when we have to do rebalance again */
3506	unsigned long next_balance = jiffies + 60*HZ;
3507	int update_next_balance = 0;
3508	int need_serialize;
3509
3510	for_each_domain(cpu, sd) {
3511		if (!(sd->flags & SD_LOAD_BALANCE))
3512			continue;
3513
3514		interval = sd->balance_interval;
3515		if (idle != CPU_IDLE)
3516			interval *= sd->busy_factor;
3517
3518		/* scale ms to jiffies */
3519		interval = msecs_to_jiffies(interval);
3520		if (unlikely(!interval))
3521			interval = 1;
3522		if (interval > HZ*NR_CPUS/10)
3523			interval = HZ*NR_CPUS/10;
3524
3525		need_serialize = sd->flags & SD_SERIALIZE;
3526
3527		if (need_serialize) {
3528			if (!spin_trylock(&balancing))
3529				goto out;
3530		}
3531
3532		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3533			if (load_balance(cpu, rq, sd, idle, &balance)) {
3534				/*
3535				 * We've pulled tasks over so either we're no
3536				 * longer idle, or one of our SMT siblings is
3537				 * not idle.
3538				 */
3539				idle = CPU_NOT_IDLE;
3540			}
3541			sd->last_balance = jiffies;
3542		}
3543		if (need_serialize)
3544			spin_unlock(&balancing);
3545out:
3546		if (time_after(next_balance, sd->last_balance + interval)) {
3547			next_balance = sd->last_balance + interval;
3548			update_next_balance = 1;
3549		}
3550
3551		/*
3552		 * Stop the load balance at this level. There is another
3553		 * CPU in our sched group which is doing load balancing more
3554		 * actively.
3555		 */
3556		if (!balance)
3557			break;
3558	}
3559
3560	/*
3561	 * next_balance will be updated only when there is a need.
3562	 * When the cpu is attached to null domain for ex, it will not be
3563	 * updated.
3564	 */
3565	if (likely(update_next_balance))
3566		rq->next_balance = next_balance;
3567}
3568
3569#ifdef CONFIG_NO_HZ
3570/*
3571 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3572 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3573 */
3574static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3575{
3576	struct rq *this_rq = cpu_rq(this_cpu);
3577	struct rq *rq;
3578	int balance_cpu;
3579
3580	if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3581		return;
3582
3583	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3584		if (balance_cpu == this_cpu)
3585			continue;
3586
3587		/*
3588		 * If this cpu gets work to do, stop the load balancing
3589		 * work being done for other cpus. Next load
3590		 * balancing owner will pick it up.
3591		 */
3592		if (need_resched()) {
3593			this_rq->nohz_balance_kick = 0;
3594			break;
3595		}
3596
3597		raw_spin_lock_irq(&this_rq->lock);
3598		update_rq_clock(this_rq);
3599		update_cpu_load(this_rq);
3600		raw_spin_unlock_irq(&this_rq->lock);
3601
3602		rebalance_domains(balance_cpu, CPU_IDLE);
3603
3604		rq = cpu_rq(balance_cpu);
3605		if (time_after(this_rq->next_balance, rq->next_balance))
3606			this_rq->next_balance = rq->next_balance;
3607	}
3608	nohz.next_balance = this_rq->next_balance;
3609	this_rq->nohz_balance_kick = 0;
3610}
3611
3612/*
3613 * Current heuristic for kicking the idle load balancer
3614 * - first_pick_cpu is the one of the busy CPUs. It will kick
3615 *   idle load balancer when it has more than one process active. This
3616 *   eliminates the need for idle load balancing altogether when we have
3617 *   only one running process in the system (common case).
3618 * - If there are more than one busy CPU, idle load balancer may have
3619 *   to run for active_load_balance to happen (i.e., two busy CPUs are
3620 *   SMT or core siblings and can run better if they move to different
3621 *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3622 *   which will kick idle load balancer as soon as it has any load.
3623 */
3624static inline int nohz_kick_needed(struct rq *rq, int cpu)
3625{
3626	unsigned long now = jiffies;
3627	int ret;
3628	int first_pick_cpu, second_pick_cpu;
3629
3630	if (time_before(now, nohz.next_balance))
3631		return 0;
3632
3633	if (rq->idle_at_tick)
3634		return 0;
3635
3636	first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3637	second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3638
3639	if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3640	    second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3641		return 0;
3642
3643	ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3644	if (ret == nr_cpu_ids || ret == cpu) {
3645		atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3646		if (rq->nr_running > 1)
3647			return 1;
3648	} else {
3649		ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3650		if (ret == nr_cpu_ids || ret == cpu) {
3651			if (rq->nr_running)
3652				return 1;
3653		}
3654	}
3655	return 0;
3656}
3657#else
3658static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3659#endif
3660
3661/*
3662 * run_rebalance_domains is triggered when needed from the scheduler tick.
3663 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3664 */
3665static void run_rebalance_domains(struct softirq_action *h)
3666{
3667	int this_cpu = smp_processor_id();
3668	struct rq *this_rq = cpu_rq(this_cpu);
3669	enum cpu_idle_type idle = this_rq->idle_at_tick ?
3670						CPU_IDLE : CPU_NOT_IDLE;
3671
3672	rebalance_domains(this_cpu, idle);
3673
3674	/*
3675	 * If this cpu has a pending nohz_balance_kick, then do the
3676	 * balancing on behalf of the other idle cpus whose ticks are
3677	 * stopped.
3678	 */
3679	nohz_idle_balance(this_cpu, idle);
3680}
3681
3682static inline int on_null_domain(int cpu)
3683{
3684	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3685}
3686
3687/*
3688 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3689 */
3690static inline void trigger_load_balance(struct rq *rq, int cpu)
3691{
3692	/* Don't need to rebalance while attached to NULL domain */
3693	if (time_after_eq(jiffies, rq->next_balance) &&
3694	    likely(!on_null_domain(cpu)))
3695		raise_softirq(SCHED_SOFTIRQ);
3696#ifdef CONFIG_NO_HZ
3697	else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3698		nohz_balancer_kick(cpu);
3699#endif
3700}
3701
3702static void rq_online_fair(struct rq *rq)
3703{
3704	update_sysctl();
3705}
3706
3707static void rq_offline_fair(struct rq *rq)
3708{
3709	update_sysctl();
3710}
3711
3712#else	/* CONFIG_SMP */
3713
3714/*
3715 * on UP we do not need to balance between CPUs:
3716 */
3717static inline void idle_balance(int cpu, struct rq *rq)
3718{
3719}
3720
3721#endif /* CONFIG_SMP */
3722
3723/*
3724 * scheduler tick hitting a task of our scheduling class:
3725 */
3726static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3727{
3728	struct cfs_rq *cfs_rq;
3729	struct sched_entity *se = &curr->se;
3730
3731	for_each_sched_entity(se) {
3732		cfs_rq = cfs_rq_of(se);
3733		entity_tick(cfs_rq, se, queued);
3734	}
3735}
3736
3737/*
3738 * called on fork with the child task as argument from the parent's context
3739 *  - child not yet on the tasklist
3740 *  - preemption disabled
3741 */
3742static void task_fork_fair(struct task_struct *p)
3743{
3744	struct cfs_rq *cfs_rq = task_cfs_rq(current);
3745	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3746	int this_cpu = smp_processor_id();
3747	struct rq *rq = this_rq();
3748	unsigned long flags;
3749
3750	raw_spin_lock_irqsave(&rq->lock, flags);
3751
3752	update_rq_clock(rq);
3753
3754	if (unlikely(task_cpu(p) != this_cpu))
3755		__set_task_cpu(p, this_cpu);
3756
3757	update_curr(cfs_rq);
3758
3759	if (curr)
3760		se->vruntime = curr->vruntime;
3761	place_entity(cfs_rq, se, 1);
3762
3763	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3764		/*
3765		 * Upon rescheduling, sched_class::put_prev_task() will place
3766		 * 'current' within the tree based on its new key value.
3767		 */
3768		swap(curr->vruntime, se->vruntime);
3769		resched_task(rq->curr);
3770	}
3771
3772	se->vruntime -= cfs_rq->min_vruntime;
3773
3774	raw_spin_unlock_irqrestore(&rq->lock, flags);
3775}
3776
3777/*
3778 * Priority of the task has changed. Check to see if we preempt
3779 * the current task.
3780 */
3781static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3782			      int oldprio, int running)
3783{
3784	/*
3785	 * Reschedule if we are currently running on this runqueue and
3786	 * our priority decreased, or if we are not currently running on
3787	 * this runqueue and our priority is higher than the current's
3788	 */
3789	if (running) {
3790		if (p->prio > oldprio)
3791			resched_task(rq->curr);
3792	} else
3793		check_preempt_curr(rq, p, 0);
3794}
3795
3796/*
3797 * We switched to the sched_fair class.
3798 */
3799static void switched_to_fair(struct rq *rq, struct task_struct *p,
3800			     int running)
3801{
3802	/*
3803	 * We were most likely switched from sched_rt, so
3804	 * kick off the schedule if running, otherwise just see
3805	 * if we can still preempt the current task.
3806	 */
3807	if (running)
3808		resched_task(rq->curr);
3809	else
3810		check_preempt_curr(rq, p, 0);
3811}
3812
3813/* Account for a task changing its policy or group.
3814 *
3815 * This routine is mostly called to set cfs_rq->curr field when a task
3816 * migrates between groups/classes.
3817 */
3818static void set_curr_task_fair(struct rq *rq)
3819{
3820	struct sched_entity *se = &rq->curr->se;
3821
3822	for_each_sched_entity(se)
3823		set_next_entity(cfs_rq_of(se), se);
3824}
3825
3826#ifdef CONFIG_FAIR_GROUP_SCHED
3827static void moved_group_fair(struct task_struct *p, int on_rq)
3828{
3829	struct cfs_rq *cfs_rq = task_cfs_rq(p);
3830
3831	update_curr(cfs_rq);
3832	if (!on_rq)
3833		place_entity(cfs_rq, &p->se, 1);
3834}
3835#endif
3836
3837static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3838{
3839	struct sched_entity *se = &task->se;
3840	unsigned int rr_interval = 0;
3841
3842	/*
3843	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3844	 * idle runqueue:
3845	 */
3846	if (rq->cfs.load.weight)
3847		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3848
3849	return rr_interval;
3850}
3851
3852/*
3853 * All the scheduling class methods:
3854 */
3855static const struct sched_class fair_sched_class = {
3856	.next			= &idle_sched_class,
3857	.enqueue_task		= enqueue_task_fair,
3858	.dequeue_task		= dequeue_task_fair,
3859	.yield_task		= yield_task_fair,
3860
3861	.check_preempt_curr	= check_preempt_wakeup,
3862
3863	.pick_next_task		= pick_next_task_fair,
3864	.put_prev_task		= put_prev_task_fair,
3865
3866#ifdef CONFIG_SMP
3867	.select_task_rq		= select_task_rq_fair,
3868
3869	.rq_online		= rq_online_fair,
3870	.rq_offline		= rq_offline_fair,
3871
3872	.task_waking		= task_waking_fair,
3873#endif
3874
3875	.set_curr_task          = set_curr_task_fair,
3876	.task_tick		= task_tick_fair,
3877	.task_fork		= task_fork_fair,
3878
3879	.prio_changed		= prio_changed_fair,
3880	.switched_to		= switched_to_fair,
3881
3882	.get_rr_interval	= get_rr_interval_fair,
3883
3884#ifdef CONFIG_FAIR_GROUP_SCHED
3885	.moved_group		= moved_group_fair,
3886#endif
3887};
3888
3889#ifdef CONFIG_SCHED_DEBUG
3890static void print_cfs_stats(struct seq_file *m, int cpu)
3891{
3892	struct cfs_rq *cfs_rq;
3893
3894	rcu_read_lock();
3895	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3896		print_cfs_rq(m, cpu, cfs_rq);
3897	rcu_read_unlock();
3898}
3899#endif
3900