• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/include/linux/
1
2
3#ifndef __LINUX__UWB_H__
4#define __LINUX__UWB_H__
5
6#include <linux/limits.h>
7#include <linux/device.h>
8#include <linux/mutex.h>
9#include <linux/timer.h>
10#include <linux/wait.h>
11#include <linux/workqueue.h>
12#include <linux/uwb/spec.h>
13
14struct uwb_dev;
15struct uwb_beca_e;
16struct uwb_rc;
17struct uwb_rsv;
18struct uwb_dbg;
19
20/**
21 * struct uwb_dev - a UWB Device
22 * @rc: UWB Radio Controller that discovered the device (kind of its
23 *     parent).
24 * @bce: a beacon cache entry for this device; or NULL if the device
25 *     is a local radio controller.
26 * @mac_addr: the EUI-48 address of this device.
27 * @dev_addr: the current DevAddr used by this device.
28 * @beacon_slot: the slot number the beacon is using.
29 * @streams: bitmap of streams allocated to reservations targeted at
30 *     this device.  For an RC, this is the streams allocated for
31 *     reservations targeted at DevAddrs.
32 *
33 * A UWB device may either by a neighbor or part of a local radio
34 * controller.
35 */
36struct uwb_dev {
37	struct mutex mutex;
38	struct list_head list_node;
39	struct device dev;
40	struct uwb_rc *rc;		/* radio controller */
41	struct uwb_beca_e *bce;		/* Beacon Cache Entry */
42
43	struct uwb_mac_addr mac_addr;
44	struct uwb_dev_addr dev_addr;
45	int beacon_slot;
46	DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
47	DECLARE_BITMAP(last_availability_bm, UWB_NUM_MAS);
48};
49#define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
50
51/**
52 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
53 *
54 * RC[CE]Bs have a 'context ID' field that matches the command with
55 * the event received to confirm it.
56 *
57 * Maximum number of context IDs
58 */
59enum { UWB_RC_CTX_MAX = 256 };
60
61
62/** Notification chain head for UWB generated events to listeners */
63struct uwb_notifs_chain {
64	struct list_head list;
65	struct mutex mutex;
66};
67
68/* Beacon cache list */
69struct uwb_beca {
70	struct list_head list;
71	size_t entries;
72	struct mutex mutex;
73};
74
75/* Event handling thread. */
76struct uwbd {
77	int pid;
78	struct task_struct *task;
79	wait_queue_head_t wq;
80	struct list_head event_list;
81	spinlock_t event_list_lock;
82};
83
84/**
85 * struct uwb_mas_bm - a bitmap of all MAS in a superframe
86 * @bm: a bitmap of length #UWB_NUM_MAS
87 */
88struct uwb_mas_bm {
89	DECLARE_BITMAP(bm, UWB_NUM_MAS);
90	DECLARE_BITMAP(unsafe_bm, UWB_NUM_MAS);
91	int safe;
92	int unsafe;
93};
94
95enum uwb_rsv_state {
96	UWB_RSV_STATE_NONE = 0,
97	UWB_RSV_STATE_O_INITIATED,
98	UWB_RSV_STATE_O_PENDING,
99	UWB_RSV_STATE_O_MODIFIED,
100	UWB_RSV_STATE_O_ESTABLISHED,
101	UWB_RSV_STATE_O_TO_BE_MOVED,
102	UWB_RSV_STATE_O_MOVE_EXPANDING,
103	UWB_RSV_STATE_O_MOVE_COMBINING,
104	UWB_RSV_STATE_O_MOVE_REDUCING,
105	UWB_RSV_STATE_T_ACCEPTED,
106	UWB_RSV_STATE_T_DENIED,
107	UWB_RSV_STATE_T_CONFLICT,
108	UWB_RSV_STATE_T_PENDING,
109	UWB_RSV_STATE_T_EXPANDING_ACCEPTED,
110	UWB_RSV_STATE_T_EXPANDING_CONFLICT,
111	UWB_RSV_STATE_T_EXPANDING_PENDING,
112	UWB_RSV_STATE_T_EXPANDING_DENIED,
113	UWB_RSV_STATE_T_RESIZED,
114
115	UWB_RSV_STATE_LAST,
116};
117
118enum uwb_rsv_target_type {
119	UWB_RSV_TARGET_DEV,
120	UWB_RSV_TARGET_DEVADDR,
121};
122
123/**
124 * struct uwb_rsv_target - the target of a reservation.
125 *
126 * Reservations unicast and targeted at a single device
127 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
128 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
129 */
130struct uwb_rsv_target {
131	enum uwb_rsv_target_type type;
132	union {
133		struct uwb_dev *dev;
134		struct uwb_dev_addr devaddr;
135	};
136};
137
138struct uwb_rsv_move {
139	struct uwb_mas_bm final_mas;
140	struct uwb_ie_drp *companion_drp_ie;
141	struct uwb_mas_bm companion_mas;
142};
143
144/*
145 * Number of streams reserved for reservations targeted at DevAddrs.
146 */
147#define UWB_NUM_GLOBAL_STREAMS 1
148
149typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
150
151/**
152 * struct uwb_rsv - a DRP reservation
153 *
154 * Data structure management:
155 *
156 * @rc:             the radio controller this reservation is for
157 *                  (as target or owner)
158 * @rc_node:        a list node for the RC
159 * @pal_node:       a list node for the PAL
160 *
161 * Owner and target parameters:
162 *
163 * @owner:          the UWB device owning this reservation
164 * @target:         the target UWB device
165 * @type:           reservation type
166 *
167 * Owner parameters:
168 *
169 * @max_mas:        maxiumum number of MAS
170 * @min_mas:        minimum number of MAS
171 * @sparsity:       owner selected sparsity
172 * @is_multicast:   true iff multicast
173 *
174 * @callback:       callback function when the reservation completes
175 * @pal_priv:       private data for the PAL making the reservation
176 *
177 * Reservation status:
178 *
179 * @status:         negotiation status
180 * @stream:         stream index allocated for this reservation
181 * @tiebreaker:     conflict tiebreaker for this reservation
182 * @mas:            reserved MAS
183 * @drp_ie:         the DRP IE
184 * @ie_valid:       true iff the DRP IE matches the reservation parameters
185 *
186 * DRP reservations are uniquely identified by the owner, target and
187 * stream index.  However, when using a DevAddr as a target (e.g., for
188 * a WUSB cluster reservation) the responses may be received from
189 * devices with different DevAddrs.  In this case, reservations are
190 * uniquely identified by just the stream index.  A number of stream
191 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
192 */
193struct uwb_rsv {
194	struct uwb_rc *rc;
195	struct list_head rc_node;
196	struct list_head pal_node;
197	struct kref kref;
198
199	struct uwb_dev *owner;
200	struct uwb_rsv_target target;
201	enum uwb_drp_type type;
202	int max_mas;
203	int min_mas;
204	int max_interval;
205	bool is_multicast;
206
207	uwb_rsv_cb_f callback;
208	void *pal_priv;
209
210	enum uwb_rsv_state state;
211	bool needs_release_companion_mas;
212	u8 stream;
213	u8 tiebreaker;
214	struct uwb_mas_bm mas;
215	struct uwb_ie_drp *drp_ie;
216	struct uwb_rsv_move mv;
217	bool ie_valid;
218	struct timer_list timer;
219	struct work_struct handle_timeout_work;
220};
221
222static const
223struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
224
225static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
226{
227	bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
228}
229
230/**
231 * struct uwb_drp_avail - a radio controller's view of MAS usage
232 * @global:   MAS unused by neighbors (excluding reservations targetted
233 *            or owned by the local radio controller) or the beaon period
234 * @local:    MAS unused by local established reservations
235 * @pending:  MAS unused by local pending reservations
236 * @ie:       DRP Availability IE to be included in the beacon
237 * @ie_valid: true iff @ie is valid and does not need to regenerated from
238 *            @global and @local
239 *
240 * Each radio controller maintains a view of MAS usage or
241 * availability. MAS available for a new reservation are determined
242 * from the intersection of @global, @local, and @pending.
243 *
244 * The radio controller must transmit a DRP Availability IE that's the
245 * intersection of @global and @local.
246 *
247 * A set bit indicates the MAS is unused and available.
248 *
249 * rc->rsvs_mutex should be held before accessing this data structure.
250 *
251 * [ECMA-368] section 17.4.3.
252 */
253struct uwb_drp_avail {
254	DECLARE_BITMAP(global, UWB_NUM_MAS);
255	DECLARE_BITMAP(local, UWB_NUM_MAS);
256	DECLARE_BITMAP(pending, UWB_NUM_MAS);
257	struct uwb_ie_drp_avail ie;
258	bool ie_valid;
259};
260
261struct uwb_drp_backoff_win {
262	u8 window;
263	u8 n;
264	int total_expired;
265	struct timer_list timer;
266	bool can_reserve_extra_mases;
267};
268
269const char *uwb_rsv_state_str(enum uwb_rsv_state state);
270const char *uwb_rsv_type_str(enum uwb_drp_type type);
271
272struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
273			       void *pal_priv);
274void uwb_rsv_destroy(struct uwb_rsv *rsv);
275
276int uwb_rsv_establish(struct uwb_rsv *rsv);
277int uwb_rsv_modify(struct uwb_rsv *rsv,
278		   int max_mas, int min_mas, int sparsity);
279void uwb_rsv_terminate(struct uwb_rsv *rsv);
280
281void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
282
283void uwb_rsv_get_usable_mas(struct uwb_rsv *orig_rsv, struct uwb_mas_bm *mas);
284
285/**
286 * Radio Control Interface instance
287 *
288 *
289 * Life cycle rules: those of the UWB Device.
290 *
291 * @index:    an index number for this radio controller, as used in the
292 *            device name.
293 * @version:  version of protocol supported by this device
294 * @priv:     Backend implementation; rw with uwb_dev.dev.sem taken.
295 * @cmd:      Backend implementation to execute commands; rw and call
296 *            only  with uwb_dev.dev.sem taken.
297 * @reset:    Hardware reset of radio controller and any PAL controllers.
298 * @filter:   Backend implementation to manipulate data to and from device
299 *            to be compliant to specification assumed by driver (WHCI
300 *            0.95).
301 *
302 *            uwb_dev.dev.mutex is used to execute commands and update
303 *            the corresponding structures; can't use a spinlock
304 *            because rc->cmd() can sleep.
305 * @ies:         This is a dynamically allocated array cacheing the
306 *               IEs (settable by the host) that the beacon of this
307 *               radio controller is currently sending.
308 *
309 *               In reality, we store here the full command we set to
310 *               the radio controller (which is basically a command
311 *               prefix followed by all the IEs the beacon currently
312 *               contains). This way we don't have to realloc and
313 *               memcpy when setting it.
314 *
315 *               We set this up in uwb_rc_ie_setup(), where we alloc
316 *               this struct, call get_ie() [so we know which IEs are
317 *               currently being sent, if any].
318 *
319 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
320 *               amount used is given by sizeof(*ies) plus ies->wIELength
321 *               (which is a little endian quantity all the time).
322 * @ies_mutex:   protect the IE cache
323 * @dbg:         information for the debug interface
324 */
325struct uwb_rc {
326	struct uwb_dev uwb_dev;
327	int index;
328	u16 version;
329
330	struct module *owner;
331	void *priv;
332	int (*start)(struct uwb_rc *rc);
333	void (*stop)(struct uwb_rc *rc);
334	int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
335	int (*reset)(struct uwb_rc *rc);
336	int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
337	int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
338			    size_t *, size_t *);
339
340	spinlock_t neh_lock;		/* protects neh_* and ctx_* */
341	struct list_head neh_list;	/* Open NE handles */
342	unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
343	u8 ctx_roll;
344
345	int beaconing;			/* Beaconing state [channel number] */
346	int beaconing_forced;
347	int scanning;
348	enum uwb_scan_type scan_type:3;
349	unsigned ready:1;
350	struct uwb_notifs_chain notifs_chain;
351	struct uwb_beca uwb_beca;
352
353	struct uwbd uwbd;
354
355	struct uwb_drp_backoff_win bow;
356	struct uwb_drp_avail drp_avail;
357	struct list_head reservations;
358	struct list_head cnflt_alien_list;
359	struct uwb_mas_bm cnflt_alien_bitmap;
360	struct mutex rsvs_mutex;
361	spinlock_t rsvs_lock;
362	struct workqueue_struct *rsv_workq;
363
364	struct delayed_work rsv_update_work;
365	struct delayed_work rsv_alien_bp_work;
366	int set_drp_ie_pending;
367	struct mutex ies_mutex;
368	struct uwb_rc_cmd_set_ie *ies;
369	size_t ies_capacity;
370
371	struct list_head pals;
372	int active_pals;
373
374	struct uwb_dbg *dbg;
375};
376
377
378/**
379 * struct uwb_pal - a UWB PAL
380 * @name:    descriptive name for this PAL (wusbhc, wlp, etc.).
381 * @device:  a device for the PAL.  Used to link the PAL and the radio
382 *           controller in sysfs.
383 * @rc:      the radio controller the PAL uses.
384 * @channel_changed: called when the channel used by the radio changes.
385 *           A channel of -1 means the channel has been stopped.
386 * @new_rsv: called when a peer requests a reservation (may be NULL if
387 *           the PAL cannot accept reservation requests).
388 * @channel: channel being used by the PAL; 0 if the PAL isn't using
389 *           the radio; -1 if the PAL wishes to use the radio but
390 *           cannot.
391 * @debugfs_dir: a debugfs directory which the PAL can use for its own
392 *           debugfs files.
393 *
394 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
395 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
396 *
397 * The PALs using a radio controller must register themselves to
398 * permit the UWB stack to coordinate usage of the radio between the
399 * various PALs or to allow PALs to response to certain requests from
400 * peers.
401 *
402 * A struct uwb_pal should be embedded in a containing structure
403 * belonging to the PAL and initialized with uwb_pal_init()).  Fields
404 * should be set appropriately by the PAL before registering the PAL
405 * with uwb_pal_register().
406 */
407struct uwb_pal {
408	struct list_head node;
409	const char *name;
410	struct device *device;
411	struct uwb_rc *rc;
412
413	void (*channel_changed)(struct uwb_pal *pal, int channel);
414	void (*new_rsv)(struct uwb_pal *pal, struct uwb_rsv *rsv);
415
416	int channel;
417	struct dentry *debugfs_dir;
418};
419
420void uwb_pal_init(struct uwb_pal *pal);
421int uwb_pal_register(struct uwb_pal *pal);
422void uwb_pal_unregister(struct uwb_pal *pal);
423
424int uwb_radio_start(struct uwb_pal *pal);
425void uwb_radio_stop(struct uwb_pal *pal);
426
427/*
428 * General public API
429 *
430 * This API can be used by UWB device drivers or by those implementing
431 * UWB Radio Controllers
432 */
433struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
434				       const struct uwb_dev_addr *devaddr);
435struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
436static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
437{
438	get_device(&uwb_dev->dev);
439}
440static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
441{
442	put_device(&uwb_dev->dev);
443}
444struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
445
446/**
447 * Callback function for 'uwb_{dev,rc}_foreach()'.
448 *
449 * @dev:  Linux device instance
450 *        'uwb_dev = container_of(dev, struct uwb_dev, dev)'
451 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
452 *
453 * @returns: 0 to continue the iterations, any other val to stop
454 *           iterating and return the value to the caller of
455 *           _foreach().
456 */
457typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
458int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
459
460struct uwb_rc *uwb_rc_alloc(void);
461struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
462struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
463void uwb_rc_put(struct uwb_rc *rc);
464
465typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
466                                struct uwb_rceb *reply, ssize_t reply_size);
467
468int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
469		     struct uwb_rccb *cmd, size_t cmd_size,
470		     u8 expected_type, u16 expected_event,
471		     uwb_rc_cmd_cb_f cb, void *arg);
472ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
473		   struct uwb_rccb *cmd, size_t cmd_size,
474		   struct uwb_rceb *reply, size_t reply_size);
475ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
476		    struct uwb_rccb *cmd, size_t cmd_size,
477		    u8 expected_type, u16 expected_event,
478		    struct uwb_rceb **preply);
479
480size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
481
482int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
483int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
484int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
485int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
486int __uwb_mac_addr_assigned_check(struct device *, void *);
487int __uwb_dev_addr_assigned_check(struct device *, void *);
488
489/* Print in @buf a pretty repr of @addr */
490static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
491					const struct uwb_dev_addr *addr)
492{
493	return __uwb_addr_print(buf, buf_size, addr->data, 0);
494}
495
496/* Print in @buf a pretty repr of @addr */
497static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
498					const struct uwb_mac_addr *addr)
499{
500	return __uwb_addr_print(buf, buf_size, addr->data, 1);
501}
502
503/* @returns 0 if device addresses @addr2 and @addr1 are equal */
504static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
505				   const struct uwb_dev_addr *addr2)
506{
507	return memcmp(addr1, addr2, sizeof(*addr1));
508}
509
510/* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
511static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
512				   const struct uwb_mac_addr *addr2)
513{
514	return memcmp(addr1, addr2, sizeof(*addr1));
515}
516
517/* @returns !0 if a MAC @addr is a broadcast address */
518static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
519{
520	struct uwb_mac_addr bcast = {
521		.data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
522	};
523	return !uwb_mac_addr_cmp(addr, &bcast);
524}
525
526/* @returns !0 if a MAC @addr is all zeroes*/
527static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
528{
529	struct uwb_mac_addr unset = {
530		.data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
531	};
532	return !uwb_mac_addr_cmp(addr, &unset);
533}
534
535/* @returns !0 if the address is in use. */
536static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
537					       struct uwb_dev_addr *addr)
538{
539	return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
540}
541
542/*
543 * UWB Radio Controller API
544 *
545 * This API is used (in addition to the general API) to implement UWB
546 * Radio Controllers.
547 */
548void uwb_rc_init(struct uwb_rc *);
549int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
550void uwb_rc_rm(struct uwb_rc *);
551void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
552void uwb_rc_neh_error(struct uwb_rc *, int);
553void uwb_rc_reset_all(struct uwb_rc *rc);
554void uwb_rc_pre_reset(struct uwb_rc *rc);
555int uwb_rc_post_reset(struct uwb_rc *rc);
556
557/**
558 * uwb_rsv_is_owner - is the owner of this reservation the RC?
559 * @rsv: the reservation
560 */
561static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
562{
563	return rsv->owner == &rsv->rc->uwb_dev;
564}
565
566/**
567 * enum uwb_notifs - UWB events that can be passed to any listeners
568 * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
569 * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
570 *
571 * Higher layers can register callback functions with the radio
572 * controller using uwb_notifs_register(). The radio controller
573 * maintains a list of all registered handlers and will notify all
574 * nodes when an event occurs.
575 */
576enum uwb_notifs {
577	UWB_NOTIF_ONAIR,
578	UWB_NOTIF_OFFAIR,
579};
580
581/* Callback function registered with UWB */
582struct uwb_notifs_handler {
583	struct list_head list_node;
584	void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
585	void *data;
586};
587
588int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
589int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
590
591
592/**
593 * UWB radio controller Event Size Entry (for creating entry tables)
594 *
595 * WUSB and WHCI define events and notifications, and they might have
596 * fixed or variable size.
597 *
598 * Each event/notification has a size which is not necessarily known
599 * in advance based on the event code. As well, vendor specific
600 * events/notifications will have a size impossible to determine
601 * unless we know about the device's specific details.
602 *
603 * It was way too smart of the spec writers not to think that it would
604 * be impossible for a generic driver to skip over vendor specific
605 * events/notifications if there are no LENGTH fields in the HEADER of
606 * each message...the transaction size cannot be counted on as the
607 * spec does not forbid to pack more than one event in a single
608 * transaction.
609 *
610 * Thus, we guess sizes with tables (or for events, when you know the
611 * size ahead of time you can use uwb_rc_neh_extra_size*()). We
612 * register tables with the known events and their sizes, and then we
613 * traverse those tables. For those with variable length, we provide a
614 * way to lookup the size inside the event/notification's
615 * payload. This allows device-specific event size tables to be
616 * registered.
617 *
618 * @size:   Size of the payload
619 *
620 * @offset: if != 0, at offset @offset-1 starts a field with a length
621 *          that has to be added to @size. The format of the field is
622 *          given by @type.
623 *
624 * @type:   Type and length of the offset field. Most common is LE 16
625 *          bits (that's why that is zero); others are there mostly to
626 *          cover for bugs and weirdos.
627 */
628struct uwb_est_entry {
629	size_t size;
630	unsigned offset;
631	enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
632};
633
634int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
635		     const struct uwb_est_entry *, size_t entries);
636int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
637		       const struct uwb_est_entry *, size_t entries);
638ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
639			  size_t len);
640
641/* -- Misc */
642
643enum {
644	EDC_MAX_ERRORS = 10,
645	EDC_ERROR_TIMEFRAME = HZ,
646};
647
648/* error density counter */
649struct edc {
650	unsigned long timestart;
651	u16 errorcount;
652};
653
654static inline
655void edc_init(struct edc *edc)
656{
657	edc->timestart = jiffies;
658}
659
660/* Called when an error occured.
661 * This is way to determine if the number of acceptable errors per time
662 * period has been exceeded. It is not accurate as there are cases in which
663 * this scheme will not work, for example if there are periodic occurences
664 * of errors that straddle updates to the start time. This scheme is
665 * sufficient for our usage.
666 *
667 * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
668 */
669static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
670{
671	unsigned long now;
672
673	now = jiffies;
674	if (now - err_hist->timestart > timeframe) {
675		err_hist->errorcount = 1;
676		err_hist->timestart = now;
677	} else if (++err_hist->errorcount > max_err) {
678			err_hist->errorcount = 0;
679			err_hist->timestart = now;
680			return 1;
681	}
682	return 0;
683}
684
685
686/* Information Element handling */
687
688struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
689int uwb_rc_ie_add(struct uwb_rc *uwb_rc, const struct uwb_ie_hdr *ies, size_t size);
690int uwb_rc_ie_rm(struct uwb_rc *uwb_rc, enum uwb_ie element_id);
691
692struct stats {
693	s8 min, max;
694	s16 sigma;
695	atomic_t samples;
696};
697
698static inline
699void stats_init(struct stats *stats)
700{
701	atomic_set(&stats->samples, 0);
702	wmb();
703}
704
705static inline
706void stats_add_sample(struct stats *stats, s8 sample)
707{
708	s8 min, max;
709	s16 sigma;
710	unsigned samples = atomic_read(&stats->samples);
711	if (samples == 0) {	/* it was zero before, so we initialize */
712		min = 127;
713		max = -128;
714		sigma = 0;
715	} else {
716		min = stats->min;
717		max = stats->max;
718		sigma = stats->sigma;
719	}
720
721	if (sample < min)	/* compute new values */
722		min = sample;
723	else if (sample > max)
724		max = sample;
725	sigma += sample;
726
727	stats->min = min;	/* commit */
728	stats->max = max;
729	stats->sigma = sigma;
730	if (atomic_add_return(1, &stats->samples) > 255) {
731		/* wrapped around! reset */
732		stats->sigma = sigma / 256;
733		atomic_set(&stats->samples, 1);
734	}
735}
736
737static inline ssize_t stats_show(struct stats *stats, char *buf)
738{
739	int min, max, avg;
740	int samples = atomic_read(&stats->samples);
741	if (samples == 0)
742		min = max = avg = 0;
743	else {
744		min = stats->min;
745		max = stats->max;
746		avg = stats->sigma / samples;
747	}
748	return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
749}
750
751static inline ssize_t stats_store(struct stats *stats, const char *buf,
752				  size_t size)
753{
754	stats_init(stats);
755	return size;
756}
757
758#endif /* #ifndef __LINUX__UWB_H__ */
759