• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/include/linux/
1/*
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
4 * (C) SGI 2006, Christoph Lameter
5 * 	Cleaned up and restructured to ease the addition of alternative
6 * 	implementations of SLAB allocators.
7 */
8
9#ifndef _LINUX_SLAB_H
10#define	_LINUX_SLAB_H
11
12#include <linux/gfp.h>
13#include <linux/types.h>
14
15/*
16 * Flags to pass to kmem_cache_create().
17 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
18 */
19#define SLAB_DEBUG_FREE		0x00000100UL	/* DEBUG: Perform (expensive) checks on free */
20#define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
21#define SLAB_POISON		0x00000800UL	/* DEBUG: Poison objects */
22#define SLAB_HWCACHE_ALIGN	0x00002000UL	/* Align objs on cache lines */
23#define SLAB_CACHE_DMA		0x00004000UL	/* Use GFP_DMA memory */
24#define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
25#define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
26/*
27 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
28 *
29 * This delays freeing the SLAB page by a grace period, it does _NOT_
30 * delay object freeing. This means that if you do kmem_cache_free()
31 * that memory location is free to be reused at any time. Thus it may
32 * be possible to see another object there in the same RCU grace period.
33 *
34 * This feature only ensures the memory location backing the object
35 * stays valid, the trick to using this is relying on an independent
36 * object validation pass. Something like:
37 *
38 *  rcu_read_lock()
39 * again:
40 *  obj = lockless_lookup(key);
41 *  if (obj) {
42 *    if (!try_get_ref(obj)) // might fail for free objects
43 *      goto again;
44 *
45 *    if (obj->key != key) { // not the object we expected
46 *      put_ref(obj);
47 *      goto again;
48 *    }
49 *  }
50 *  rcu_read_unlock();
51 *
52 * See also the comment on struct slab_rcu in mm/slab.c.
53 */
54#define SLAB_DESTROY_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
55#define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
56#define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */
57
58/* Flag to prevent checks on free */
59#ifdef CONFIG_DEBUG_OBJECTS
60# define SLAB_DEBUG_OBJECTS	0x00400000UL
61#else
62# define SLAB_DEBUG_OBJECTS	0x00000000UL
63#endif
64
65#define SLAB_NOLEAKTRACE	0x00800000UL	/* Avoid kmemleak tracing */
66
67/* Don't track use of uninitialized memory */
68#ifdef CONFIG_KMEMCHECK
69# define SLAB_NOTRACK		0x01000000UL
70#else
71# define SLAB_NOTRACK		0x00000000UL
72#endif
73#ifdef CONFIG_FAILSLAB
74# define SLAB_FAILSLAB		0x02000000UL	/* Fault injection mark */
75#else
76# define SLAB_FAILSLAB		0x00000000UL
77#endif
78
79/* The following flags affect the page allocator grouping pages by mobility */
80#define SLAB_RECLAIM_ACCOUNT	0x00020000UL		/* Objects are reclaimable */
81#define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
82/*
83 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
84 *
85 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
86 *
87 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
88 * Both make kfree a no-op.
89 */
90#define ZERO_SIZE_PTR ((void *)16)
91
92#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
93				(unsigned long)ZERO_SIZE_PTR)
94
95/*
96 * struct kmem_cache related prototypes
97 */
98void __init kmem_cache_init(void);
99int slab_is_available(void);
100
101struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
102			unsigned long,
103			void (*)(void *));
104void kmem_cache_destroy(struct kmem_cache *);
105int kmem_cache_shrink(struct kmem_cache *);
106void kmem_cache_free(struct kmem_cache *, void *);
107unsigned int kmem_cache_size(struct kmem_cache *);
108const char *kmem_cache_name(struct kmem_cache *);
109int kern_ptr_validate(const void *ptr, unsigned long size);
110int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
111
112/*
113 * Please use this macro to create slab caches. Simply specify the
114 * name of the structure and maybe some flags that are listed above.
115 *
116 * The alignment of the struct determines object alignment. If you
117 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
118 * then the objects will be properly aligned in SMP configurations.
119 */
120#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
121		sizeof(struct __struct), __alignof__(struct __struct),\
122		(__flags), NULL)
123
124#define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
125				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
126
127#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
128#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
129
130/*
131 * Common kmalloc functions provided by all allocators
132 */
133void * __must_check __krealloc(const void *, size_t, gfp_t);
134void * __must_check krealloc(const void *, size_t, gfp_t);
135void kfree(const void *);
136void kzfree(const void *);
137size_t ksize(const void *);
138
139/*
140 * Allocator specific definitions. These are mainly used to establish optimized
141 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
142 * selecting the appropriate general cache at compile time.
143 *
144 * Allocators must define at least:
145 *
146 *	kmem_cache_alloc()
147 *	__kmalloc()
148 *	kmalloc()
149 *
150 * Those wishing to support NUMA must also define:
151 *
152 *	kmem_cache_alloc_node()
153 *	kmalloc_node()
154 *
155 * See each allocator definition file for additional comments and
156 * implementation notes.
157 */
158#ifdef CONFIG_SLUB
159#include <linux/slub_def.h>
160#elif defined(CONFIG_SLOB)
161#include <linux/slob_def.h>
162#else
163#include <linux/slab_def.h>
164#endif
165
166/**
167 * kcalloc - allocate memory for an array. The memory is set to zero.
168 * @n: number of elements.
169 * @size: element size.
170 * @flags: the type of memory to allocate.
171 *
172 * The @flags argument may be one of:
173 *
174 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
175 *
176 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
177 *
178 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
179 *   For example, use this inside interrupt handlers.
180 *
181 * %GFP_HIGHUSER - Allocate pages from high memory.
182 *
183 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
184 *
185 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
186 *
187 * %GFP_NOWAIT - Allocation will not sleep.
188 *
189 * %GFP_THISNODE - Allocate node-local memory only.
190 *
191 * %GFP_DMA - Allocation suitable for DMA.
192 *   Should only be used for kmalloc() caches. Otherwise, use a
193 *   slab created with SLAB_DMA.
194 *
195 * Also it is possible to set different flags by OR'ing
196 * in one or more of the following additional @flags:
197 *
198 * %__GFP_COLD - Request cache-cold pages instead of
199 *   trying to return cache-warm pages.
200 *
201 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
202 *
203 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
204 *   (think twice before using).
205 *
206 * %__GFP_NORETRY - If memory is not immediately available,
207 *   then give up at once.
208 *
209 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
210 *
211 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
212 *
213 * There are other flags available as well, but these are not intended
214 * for general use, and so are not documented here. For a full list of
215 * potential flags, always refer to linux/gfp.h.
216 */
217static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
218{
219	if (size != 0 && n > ULONG_MAX / size)
220		return NULL;
221	return __kmalloc(n * size, flags | __GFP_ZERO);
222}
223
224#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
225/**
226 * kmalloc_node - allocate memory from a specific node
227 * @size: how many bytes of memory are required.
228 * @flags: the type of memory to allocate (see kcalloc).
229 * @node: node to allocate from.
230 *
231 * kmalloc() for non-local nodes, used to allocate from a specific node
232 * if available. Equivalent to kmalloc() in the non-NUMA single-node
233 * case.
234 */
235static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
236{
237	return kmalloc(size, flags);
238}
239
240static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
241{
242	return __kmalloc(size, flags);
243}
244
245void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
246
247static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
248					gfp_t flags, int node)
249{
250	return kmem_cache_alloc(cachep, flags);
251}
252#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
253
254/*
255 * kmalloc_track_caller is a special version of kmalloc that records the
256 * calling function of the routine calling it for slab leak tracking instead
257 * of just the calling function (confusing, eh?).
258 * It's useful when the call to kmalloc comes from a widely-used standard
259 * allocator where we care about the real place the memory allocation
260 * request comes from.
261 */
262#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || (defined(CONFIG_SLAB) && \
263	defined(CONFIG_TRACING))
264extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
265#define kmalloc_track_caller(size, flags) \
266	__kmalloc_track_caller(size, flags, _RET_IP_)
267#else
268#define kmalloc_track_caller(size, flags) \
269	__kmalloc(size, flags)
270#endif /* DEBUG_SLAB */
271
272#ifdef CONFIG_NUMA
273/*
274 * kmalloc_node_track_caller is a special version of kmalloc_node that
275 * records the calling function of the routine calling it for slab leak
276 * tracking instead of just the calling function (confusing, eh?).
277 * It's useful when the call to kmalloc_node comes from a widely-used
278 * standard allocator where we care about the real place the memory
279 * allocation request comes from.
280 */
281#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || (defined(CONFIG_SLAB) && \
282	defined(CONFIG_TRACING))
283extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
284#define kmalloc_node_track_caller(size, flags, node) \
285	__kmalloc_node_track_caller(size, flags, node, \
286			_RET_IP_)
287#else
288#define kmalloc_node_track_caller(size, flags, node) \
289	__kmalloc_node(size, flags, node)
290#endif
291
292#else /* CONFIG_NUMA */
293
294#define kmalloc_node_track_caller(size, flags, node) \
295	kmalloc_track_caller(size, flags)
296
297#endif /* CONFIG_NUMA */
298
299/*
300 * Shortcuts
301 */
302static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
303{
304	return kmem_cache_alloc(k, flags | __GFP_ZERO);
305}
306
307/**
308 * kzalloc - allocate memory. The memory is set to zero.
309 * @size: how many bytes of memory are required.
310 * @flags: the type of memory to allocate (see kmalloc).
311 */
312static inline void *kzalloc(size_t size, gfp_t flags)
313{
314	return kmalloc(size, flags | __GFP_ZERO);
315}
316
317/**
318 * kzalloc_node - allocate zeroed memory from a particular memory node.
319 * @size: how many bytes of memory are required.
320 * @flags: the type of memory to allocate (see kmalloc).
321 * @node: memory node from which to allocate
322 */
323static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
324{
325	return kmalloc_node(size, flags | __GFP_ZERO, node);
326}
327
328void __init kmem_cache_init_late(void);
329
330#endif	/* _LINUX_SLAB_H */
331