• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/include/linux/
1#ifndef _LINUX_RCULIST_H
2#define _LINUX_RCULIST_H
3
4#ifdef __KERNEL__
5
6/*
7 * RCU-protected list version
8 */
9#include <linux/list.h>
10#include <linux/rcupdate.h>
11
12/*
13 * Insert a new entry between two known consecutive entries.
14 *
15 * This is only for internal list manipulation where we know
16 * the prev/next entries already!
17 */
18static inline void __list_add_rcu(struct list_head *new,
19		struct list_head *prev, struct list_head *next)
20{
21	new->next = next;
22	new->prev = prev;
23	rcu_assign_pointer(prev->next, new);
24	next->prev = new;
25}
26
27/**
28 * list_add_rcu - add a new entry to rcu-protected list
29 * @new: new entry to be added
30 * @head: list head to add it after
31 *
32 * Insert a new entry after the specified head.
33 * This is good for implementing stacks.
34 *
35 * The caller must take whatever precautions are necessary
36 * (such as holding appropriate locks) to avoid racing
37 * with another list-mutation primitive, such as list_add_rcu()
38 * or list_del_rcu(), running on this same list.
39 * However, it is perfectly legal to run concurrently with
40 * the _rcu list-traversal primitives, such as
41 * list_for_each_entry_rcu().
42 */
43static inline void list_add_rcu(struct list_head *new, struct list_head *head)
44{
45	__list_add_rcu(new, head, head->next);
46}
47
48/**
49 * list_add_tail_rcu - add a new entry to rcu-protected list
50 * @new: new entry to be added
51 * @head: list head to add it before
52 *
53 * Insert a new entry before the specified head.
54 * This is useful for implementing queues.
55 *
56 * The caller must take whatever precautions are necessary
57 * (such as holding appropriate locks) to avoid racing
58 * with another list-mutation primitive, such as list_add_tail_rcu()
59 * or list_del_rcu(), running on this same list.
60 * However, it is perfectly legal to run concurrently with
61 * the _rcu list-traversal primitives, such as
62 * list_for_each_entry_rcu().
63 */
64static inline void list_add_tail_rcu(struct list_head *new,
65					struct list_head *head)
66{
67	__list_add_rcu(new, head->prev, head);
68}
69
70/**
71 * list_del_rcu - deletes entry from list without re-initialization
72 * @entry: the element to delete from the list.
73 *
74 * Note: list_empty() on entry does not return true after this,
75 * the entry is in an undefined state. It is useful for RCU based
76 * lockfree traversal.
77 *
78 * In particular, it means that we can not poison the forward
79 * pointers that may still be used for walking the list.
80 *
81 * The caller must take whatever precautions are necessary
82 * (such as holding appropriate locks) to avoid racing
83 * with another list-mutation primitive, such as list_del_rcu()
84 * or list_add_rcu(), running on this same list.
85 * However, it is perfectly legal to run concurrently with
86 * the _rcu list-traversal primitives, such as
87 * list_for_each_entry_rcu().
88 *
89 * Note that the caller is not permitted to immediately free
90 * the newly deleted entry.  Instead, either synchronize_rcu()
91 * or call_rcu() must be used to defer freeing until an RCU
92 * grace period has elapsed.
93 */
94static inline void list_del_rcu(struct list_head *entry)
95{
96	__list_del(entry->prev, entry->next);
97	entry->prev = LIST_POISON2;
98}
99
100/**
101 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
102 * @n: the element to delete from the hash list.
103 *
104 * Note: list_unhashed() on the node return true after this. It is
105 * useful for RCU based read lockfree traversal if the writer side
106 * must know if the list entry is still hashed or already unhashed.
107 *
108 * In particular, it means that we can not poison the forward pointers
109 * that may still be used for walking the hash list and we can only
110 * zero the pprev pointer so list_unhashed() will return true after
111 * this.
112 *
113 * The caller must take whatever precautions are necessary (such as
114 * holding appropriate locks) to avoid racing with another
115 * list-mutation primitive, such as hlist_add_head_rcu() or
116 * hlist_del_rcu(), running on this same list.  However, it is
117 * perfectly legal to run concurrently with the _rcu list-traversal
118 * primitives, such as hlist_for_each_entry_rcu().
119 */
120static inline void hlist_del_init_rcu(struct hlist_node *n)
121{
122	if (!hlist_unhashed(n)) {
123		__hlist_del(n);
124		n->pprev = NULL;
125	}
126}
127
128/**
129 * list_replace_rcu - replace old entry by new one
130 * @old : the element to be replaced
131 * @new : the new element to insert
132 *
133 * The @old entry will be replaced with the @new entry atomically.
134 * Note: @old should not be empty.
135 */
136static inline void list_replace_rcu(struct list_head *old,
137				struct list_head *new)
138{
139	new->next = old->next;
140	new->prev = old->prev;
141	rcu_assign_pointer(new->prev->next, new);
142	new->next->prev = new;
143	old->prev = LIST_POISON2;
144}
145
146/**
147 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
148 * @list:	the RCU-protected list to splice
149 * @head:	the place in the list to splice the first list into
150 * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
151 *
152 * @head can be RCU-read traversed concurrently with this function.
153 *
154 * Note that this function blocks.
155 *
156 * Important note: the caller must take whatever action is necessary to
157 *	prevent any other updates to @head.  In principle, it is possible
158 *	to modify the list as soon as sync() begins execution.
159 *	If this sort of thing becomes necessary, an alternative version
160 *	based on call_rcu() could be created.  But only if -really-
161 *	needed -- there is no shortage of RCU API members.
162 */
163static inline void list_splice_init_rcu(struct list_head *list,
164					struct list_head *head,
165					void (*sync)(void))
166{
167	struct list_head *first = list->next;
168	struct list_head *last = list->prev;
169	struct list_head *at = head->next;
170
171	if (list_empty(head))
172		return;
173
174	/* "first" and "last" tracking list, so initialize it. */
175
176	INIT_LIST_HEAD(list);
177
178	/*
179	 * At this point, the list body still points to the source list.
180	 * Wait for any readers to finish using the list before splicing
181	 * the list body into the new list.  Any new readers will see
182	 * an empty list.
183	 */
184
185	sync();
186
187	/*
188	 * Readers are finished with the source list, so perform splice.
189	 * The order is important if the new list is global and accessible
190	 * to concurrent RCU readers.  Note that RCU readers are not
191	 * permitted to traverse the prev pointers without excluding
192	 * this function.
193	 */
194
195	last->next = at;
196	rcu_assign_pointer(head->next, first);
197	first->prev = head;
198	at->prev = last;
199}
200
201/**
202 * list_entry_rcu - get the struct for this entry
203 * @ptr:        the &struct list_head pointer.
204 * @type:       the type of the struct this is embedded in.
205 * @member:     the name of the list_struct within the struct.
206 *
207 * This primitive may safely run concurrently with the _rcu list-mutation
208 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
209 */
210#define list_entry_rcu(ptr, type, member) \
211	container_of(rcu_dereference_raw(ptr), type, member)
212
213/**
214 * list_first_entry_rcu - get the first element from a list
215 * @ptr:        the list head to take the element from.
216 * @type:       the type of the struct this is embedded in.
217 * @member:     the name of the list_struct within the struct.
218 *
219 * Note, that list is expected to be not empty.
220 *
221 * This primitive may safely run concurrently with the _rcu list-mutation
222 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
223 */
224#define list_first_entry_rcu(ptr, type, member) \
225	list_entry_rcu((ptr)->next, type, member)
226
227#define __list_for_each_rcu(pos, head) \
228	for (pos = rcu_dereference_raw((head)->next); \
229		pos != (head); \
230		pos = rcu_dereference_raw(pos->next))
231
232/**
233 * list_for_each_entry_rcu	-	iterate over rcu list of given type
234 * @pos:	the type * to use as a loop cursor.
235 * @head:	the head for your list.
236 * @member:	the name of the list_struct within the struct.
237 *
238 * This list-traversal primitive may safely run concurrently with
239 * the _rcu list-mutation primitives such as list_add_rcu()
240 * as long as the traversal is guarded by rcu_read_lock().
241 */
242#define list_for_each_entry_rcu(pos, head, member) \
243	for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
244		prefetch(pos->member.next), &pos->member != (head); \
245		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
246
247
248/**
249 * list_for_each_continue_rcu
250 * @pos:	the &struct list_head to use as a loop cursor.
251 * @head:	the head for your list.
252 *
253 * Iterate over an rcu-protected list, continuing after current point.
254 *
255 * This list-traversal primitive may safely run concurrently with
256 * the _rcu list-mutation primitives such as list_add_rcu()
257 * as long as the traversal is guarded by rcu_read_lock().
258 */
259#define list_for_each_continue_rcu(pos, head) \
260	for ((pos) = rcu_dereference_raw((pos)->next); \
261		prefetch((pos)->next), (pos) != (head); \
262		(pos) = rcu_dereference_raw((pos)->next))
263
264/**
265 * list_for_each_entry_continue_rcu - continue iteration over list of given type
266 * @pos:	the type * to use as a loop cursor.
267 * @head:	the head for your list.
268 * @member:	the name of the list_struct within the struct.
269 *
270 * Continue to iterate over list of given type, continuing after
271 * the current position.
272 */
273#define list_for_each_entry_continue_rcu(pos, head, member) 		\
274	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
275	     prefetch(pos->member.next), &pos->member != (head);	\
276	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
277
278/**
279 * hlist_del_rcu - deletes entry from hash list without re-initialization
280 * @n: the element to delete from the hash list.
281 *
282 * Note: list_unhashed() on entry does not return true after this,
283 * the entry is in an undefined state. It is useful for RCU based
284 * lockfree traversal.
285 *
286 * In particular, it means that we can not poison the forward
287 * pointers that may still be used for walking the hash list.
288 *
289 * The caller must take whatever precautions are necessary
290 * (such as holding appropriate locks) to avoid racing
291 * with another list-mutation primitive, such as hlist_add_head_rcu()
292 * or hlist_del_rcu(), running on this same list.
293 * However, it is perfectly legal to run concurrently with
294 * the _rcu list-traversal primitives, such as
295 * hlist_for_each_entry().
296 */
297static inline void hlist_del_rcu(struct hlist_node *n)
298{
299	__hlist_del(n);
300	n->pprev = LIST_POISON2;
301}
302
303/**
304 * hlist_replace_rcu - replace old entry by new one
305 * @old : the element to be replaced
306 * @new : the new element to insert
307 *
308 * The @old entry will be replaced with the @new entry atomically.
309 */
310static inline void hlist_replace_rcu(struct hlist_node *old,
311					struct hlist_node *new)
312{
313	struct hlist_node *next = old->next;
314
315	new->next = next;
316	new->pprev = old->pprev;
317	rcu_assign_pointer(*new->pprev, new);
318	if (next)
319		new->next->pprev = &new->next;
320	old->pprev = LIST_POISON2;
321}
322
323/**
324 * hlist_add_head_rcu
325 * @n: the element to add to the hash list.
326 * @h: the list to add to.
327 *
328 * Description:
329 * Adds the specified element to the specified hlist,
330 * while permitting racing traversals.
331 *
332 * The caller must take whatever precautions are necessary
333 * (such as holding appropriate locks) to avoid racing
334 * with another list-mutation primitive, such as hlist_add_head_rcu()
335 * or hlist_del_rcu(), running on this same list.
336 * However, it is perfectly legal to run concurrently with
337 * the _rcu list-traversal primitives, such as
338 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
339 * problems on Alpha CPUs.  Regardless of the type of CPU, the
340 * list-traversal primitive must be guarded by rcu_read_lock().
341 */
342static inline void hlist_add_head_rcu(struct hlist_node *n,
343					struct hlist_head *h)
344{
345	struct hlist_node *first = h->first;
346
347	n->next = first;
348	n->pprev = &h->first;
349	rcu_assign_pointer(h->first, n);
350	if (first)
351		first->pprev = &n->next;
352}
353
354/**
355 * hlist_add_before_rcu
356 * @n: the new element to add to the hash list.
357 * @next: the existing element to add the new element before.
358 *
359 * Description:
360 * Adds the specified element to the specified hlist
361 * before the specified node while permitting racing traversals.
362 *
363 * The caller must take whatever precautions are necessary
364 * (such as holding appropriate locks) to avoid racing
365 * with another list-mutation primitive, such as hlist_add_head_rcu()
366 * or hlist_del_rcu(), running on this same list.
367 * However, it is perfectly legal to run concurrently with
368 * the _rcu list-traversal primitives, such as
369 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
370 * problems on Alpha CPUs.
371 */
372static inline void hlist_add_before_rcu(struct hlist_node *n,
373					struct hlist_node *next)
374{
375	n->pprev = next->pprev;
376	n->next = next;
377	rcu_assign_pointer(*(n->pprev), n);
378	next->pprev = &n->next;
379}
380
381/**
382 * hlist_add_after_rcu
383 * @prev: the existing element to add the new element after.
384 * @n: the new element to add to the hash list.
385 *
386 * Description:
387 * Adds the specified element to the specified hlist
388 * after the specified node while permitting racing traversals.
389 *
390 * The caller must take whatever precautions are necessary
391 * (such as holding appropriate locks) to avoid racing
392 * with another list-mutation primitive, such as hlist_add_head_rcu()
393 * or hlist_del_rcu(), running on this same list.
394 * However, it is perfectly legal to run concurrently with
395 * the _rcu list-traversal primitives, such as
396 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
397 * problems on Alpha CPUs.
398 */
399static inline void hlist_add_after_rcu(struct hlist_node *prev,
400				       struct hlist_node *n)
401{
402	n->next = prev->next;
403	n->pprev = &prev->next;
404	rcu_assign_pointer(prev->next, n);
405	if (n->next)
406		n->next->pprev = &n->next;
407}
408
409#define __hlist_for_each_rcu(pos, head)			\
410	for (pos = rcu_dereference((head)->first);	\
411	     pos && ({ prefetch(pos->next); 1; });	\
412	     pos = rcu_dereference(pos->next))
413
414/**
415 * hlist_for_each_entry_rcu - iterate over rcu list of given type
416 * @tpos:	the type * to use as a loop cursor.
417 * @pos:	the &struct hlist_node to use as a loop cursor.
418 * @head:	the head for your list.
419 * @member:	the name of the hlist_node within the struct.
420 *
421 * This list-traversal primitive may safely run concurrently with
422 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
423 * as long as the traversal is guarded by rcu_read_lock().
424 */
425#define hlist_for_each_entry_rcu(tpos, pos, head, member)		 \
426	for (pos = rcu_dereference_raw((head)->first);			 \
427		pos && ({ prefetch(pos->next); 1; }) &&			 \
428		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
429		pos = rcu_dereference_raw(pos->next))
430
431/**
432 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
433 * @tpos:	the type * to use as a loop cursor.
434 * @pos:	the &struct hlist_node to use as a loop cursor.
435 * @head:	the head for your list.
436 * @member:	the name of the hlist_node within the struct.
437 *
438 * This list-traversal primitive may safely run concurrently with
439 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
440 * as long as the traversal is guarded by rcu_read_lock().
441 */
442#define hlist_for_each_entry_rcu_bh(tpos, pos, head, member)		 \
443	for (pos = rcu_dereference_bh((head)->first);			 \
444		pos && ({ prefetch(pos->next); 1; }) &&			 \
445		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
446		pos = rcu_dereference_bh(pos->next))
447
448/**
449 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
450 * @tpos:	the type * to use as a loop cursor.
451 * @pos:	the &struct hlist_node to use as a loop cursor.
452 * @member:	the name of the hlist_node within the struct.
453 */
454#define hlist_for_each_entry_continue_rcu(tpos, pos, member)		\
455	for (pos = rcu_dereference((pos)->next);			\
456	     pos && ({ prefetch(pos->next); 1; }) &&			\
457	     ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });  \
458	     pos = rcu_dereference(pos->next))
459
460/**
461 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
462 * @tpos:	the type * to use as a loop cursor.
463 * @pos:	the &struct hlist_node to use as a loop cursor.
464 * @member:	the name of the hlist_node within the struct.
465 */
466#define hlist_for_each_entry_continue_rcu_bh(tpos, pos, member)		\
467	for (pos = rcu_dereference_bh((pos)->next);			\
468	     pos && ({ prefetch(pos->next); 1; }) &&			\
469	     ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });  \
470	     pos = rcu_dereference_bh(pos->next))
471
472
473#endif	/* __KERNEL__ */
474#endif
475