• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/include/linux/
1#ifndef _LINUX_PTRACE_H
2#define _LINUX_PTRACE_H
3/* ptrace.h */
4/* structs and defines to help the user use the ptrace system call. */
5
6/* has the defines to get at the registers. */
7
8#define PTRACE_TRACEME		   0
9#define PTRACE_PEEKTEXT		   1
10#define PTRACE_PEEKDATA		   2
11#define PTRACE_PEEKUSR		   3
12#define PTRACE_POKETEXT		   4
13#define PTRACE_POKEDATA		   5
14#define PTRACE_POKEUSR		   6
15#define PTRACE_CONT		   7
16#define PTRACE_KILL		   8
17#define PTRACE_SINGLESTEP	   9
18
19#define PTRACE_ATTACH		  16
20#define PTRACE_DETACH		  17
21
22#define PTRACE_SYSCALL		  24
23
24/* 0x4200-0x4300 are reserved for architecture-independent additions.  */
25#define PTRACE_SETOPTIONS	0x4200
26#define PTRACE_GETEVENTMSG	0x4201
27#define PTRACE_GETSIGINFO	0x4202
28#define PTRACE_SETSIGINFO	0x4203
29
30/*
31 * Generic ptrace interface that exports the architecture specific regsets
32 * using the corresponding NT_* types (which are also used in the core dump).
33 * Please note that the NT_PRSTATUS note type in a core dump contains a full
34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36 * other user_regset flavors, the user_regset layout and the ELF core dump note
37 * payload are exactly the same layout.
38 *
39 * This interface usage is as follows:
40 *	struct iovec iov = { buf, len};
41 *
42 *	ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
43 *
44 * On the successful completion, iov.len will be updated by the kernel,
45 * specifying how much the kernel has written/read to/from the user's iov.buf.
46 */
47#define PTRACE_GETREGSET	0x4204
48#define PTRACE_SETREGSET	0x4205
49
50/* options set using PTRACE_SETOPTIONS */
51#define PTRACE_O_TRACESYSGOOD	0x00000001
52#define PTRACE_O_TRACEFORK	0x00000002
53#define PTRACE_O_TRACEVFORK	0x00000004
54#define PTRACE_O_TRACECLONE	0x00000008
55#define PTRACE_O_TRACEEXEC	0x00000010
56#define PTRACE_O_TRACEVFORKDONE	0x00000020
57#define PTRACE_O_TRACEEXIT	0x00000040
58
59#define PTRACE_O_MASK		0x0000007f
60
61/* Wait extended result codes for the above trace options.  */
62#define PTRACE_EVENT_FORK	1
63#define PTRACE_EVENT_VFORK	2
64#define PTRACE_EVENT_CLONE	3
65#define PTRACE_EVENT_EXEC	4
66#define PTRACE_EVENT_VFORK_DONE	5
67#define PTRACE_EVENT_EXIT	6
68
69#include <asm/ptrace.h>
70
71#ifdef __KERNEL__
72/*
73 * Ptrace flags
74 *
75 * The owner ship rules for task->ptrace which holds the ptrace
76 * flags is simple.  When a task is running it owns it's task->ptrace
77 * flags.  When the a task is stopped the ptracer owns task->ptrace.
78 */
79
80#define PT_PTRACED	0x00000001
81#define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
82#define PT_TRACESYSGOOD	0x00000004
83#define PT_PTRACE_CAP	0x00000008	/* ptracer can follow suid-exec */
84#define PT_TRACE_FORK	0x00000010
85#define PT_TRACE_VFORK	0x00000020
86#define PT_TRACE_CLONE	0x00000040
87#define PT_TRACE_EXEC	0x00000080
88#define PT_TRACE_VFORK_DONE	0x00000100
89#define PT_TRACE_EXIT	0x00000200
90
91#define PT_TRACE_MASK	0x000003f4
92
93/* single stepping state bits (used on ARM and PA-RISC) */
94#define PT_SINGLESTEP_BIT	31
95#define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
96#define PT_BLOCKSTEP_BIT	30
97#define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
98
99#include <linux/compiler.h>		/* For unlikely.  */
100#include <linux/sched.h>		/* For struct task_struct.  */
101
102
103extern long arch_ptrace(struct task_struct *child, long request, long addr, long data);
104extern int ptrace_traceme(void);
105extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
106extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
107extern int ptrace_attach(struct task_struct *tsk);
108extern int ptrace_detach(struct task_struct *, unsigned int);
109extern void ptrace_disable(struct task_struct *);
110extern int ptrace_check_attach(struct task_struct *task, int kill);
111extern int ptrace_request(struct task_struct *child, long request, long addr, long data);
112extern void ptrace_notify(int exit_code);
113extern void __ptrace_link(struct task_struct *child,
114			  struct task_struct *new_parent);
115extern void __ptrace_unlink(struct task_struct *child);
116extern void exit_ptrace(struct task_struct *tracer);
117#define PTRACE_MODE_READ   1
118#define PTRACE_MODE_ATTACH 2
119/* Returns 0 on success, -errno on denial. */
120extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
121/* Returns true on success, false on denial. */
122extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
123
124static inline int ptrace_reparented(struct task_struct *child)
125{
126	return child->real_parent != child->parent;
127}
128
129static inline void ptrace_unlink(struct task_struct *child)
130{
131	if (unlikely(child->ptrace))
132		__ptrace_unlink(child);
133}
134
135int generic_ptrace_peekdata(struct task_struct *tsk, long addr, long data);
136int generic_ptrace_pokedata(struct task_struct *tsk, long addr, long data);
137
138/**
139 * task_ptrace - return %PT_* flags that apply to a task
140 * @task:	pointer to &task_struct in question
141 *
142 * Returns the %PT_* flags that apply to @task.
143 */
144static inline int task_ptrace(struct task_struct *task)
145{
146	return task->ptrace;
147}
148
149/**
150 * ptrace_event - possibly stop for a ptrace event notification
151 * @mask:	%PT_* bit to check in @current->ptrace
152 * @event:	%PTRACE_EVENT_* value to report if @mask is set
153 * @message:	value for %PTRACE_GETEVENTMSG to return
154 *
155 * This checks the @mask bit to see if ptrace wants stops for this event.
156 * If so we stop, reporting @event and @message to the ptrace parent.
157 *
158 * Returns nonzero if we did a ptrace notification, zero if not.
159 *
160 * Called without locks.
161 */
162static inline int ptrace_event(int mask, int event, unsigned long message)
163{
164	if (mask && likely(!(current->ptrace & mask)))
165		return 0;
166	current->ptrace_message = message;
167	ptrace_notify((event << 8) | SIGTRAP);
168	return 1;
169}
170
171/**
172 * ptrace_init_task - initialize ptrace state for a new child
173 * @child:		new child task
174 * @ptrace:		true if child should be ptrace'd by parent's tracer
175 *
176 * This is called immediately after adding @child to its parent's children
177 * list.  @ptrace is false in the normal case, and true to ptrace @child.
178 *
179 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
180 */
181static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
182{
183	INIT_LIST_HEAD(&child->ptrace_entry);
184	INIT_LIST_HEAD(&child->ptraced);
185	child->parent = child->real_parent;
186	child->ptrace = 0;
187	if (unlikely(ptrace) && (current->ptrace & PT_PTRACED)) {
188		child->ptrace = current->ptrace;
189		__ptrace_link(child, current->parent);
190	}
191}
192
193/**
194 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
195 * @task:	task in %EXIT_DEAD state
196 *
197 * Called with write_lock(&tasklist_lock) held.
198 */
199static inline void ptrace_release_task(struct task_struct *task)
200{
201	BUG_ON(!list_empty(&task->ptraced));
202	ptrace_unlink(task);
203	BUG_ON(!list_empty(&task->ptrace_entry));
204}
205
206#ifndef force_successful_syscall_return
207/*
208 * System call handlers that, upon successful completion, need to return a
209 * negative value should call force_successful_syscall_return() right before
210 * returning.  On architectures where the syscall convention provides for a
211 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
212 * others), this macro can be used to ensure that the error flag will not get
213 * set.  On architectures which do not support a separate error flag, the macro
214 * is a no-op and the spurious error condition needs to be filtered out by some
215 * other means (e.g., in user-level, by passing an extra argument to the
216 * syscall handler, or something along those lines).
217 */
218#define force_successful_syscall_return() do { } while (0)
219#endif
220
221/*
222 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
223 *
224 * These do-nothing inlines are used when the arch does not
225 * implement single-step.  The kerneldoc comments are here
226 * to document the interface for all arch definitions.
227 */
228
229#ifndef arch_has_single_step
230/**
231 * arch_has_single_step - does this CPU support user-mode single-step?
232 *
233 * If this is defined, then there must be function declarations or
234 * inlines for user_enable_single_step() and user_disable_single_step().
235 * arch_has_single_step() should evaluate to nonzero iff the machine
236 * supports instruction single-step for user mode.
237 * It can be a constant or it can test a CPU feature bit.
238 */
239#define arch_has_single_step()		(0)
240
241/**
242 * user_enable_single_step - single-step in user-mode task
243 * @task: either current or a task stopped in %TASK_TRACED
244 *
245 * This can only be called when arch_has_single_step() has returned nonzero.
246 * Set @task so that when it returns to user mode, it will trap after the
247 * next single instruction executes.  If arch_has_block_step() is defined,
248 * this must clear the effects of user_enable_block_step() too.
249 */
250static inline void user_enable_single_step(struct task_struct *task)
251{
252	BUG();			/* This can never be called.  */
253}
254
255/**
256 * user_disable_single_step - cancel user-mode single-step
257 * @task: either current or a task stopped in %TASK_TRACED
258 *
259 * Clear @task of the effects of user_enable_single_step() and
260 * user_enable_block_step().  This can be called whether or not either
261 * of those was ever called on @task, and even if arch_has_single_step()
262 * returned zero.
263 */
264static inline void user_disable_single_step(struct task_struct *task)
265{
266}
267#else
268extern void user_enable_single_step(struct task_struct *);
269extern void user_disable_single_step(struct task_struct *);
270#endif	/* arch_has_single_step */
271
272#ifndef arch_has_block_step
273/**
274 * arch_has_block_step - does this CPU support user-mode block-step?
275 *
276 * If this is defined, then there must be a function declaration or inline
277 * for user_enable_block_step(), and arch_has_single_step() must be defined
278 * too.  arch_has_block_step() should evaluate to nonzero iff the machine
279 * supports step-until-branch for user mode.  It can be a constant or it
280 * can test a CPU feature bit.
281 */
282#define arch_has_block_step()		(0)
283
284/**
285 * user_enable_block_step - step until branch in user-mode task
286 * @task: either current or a task stopped in %TASK_TRACED
287 *
288 * This can only be called when arch_has_block_step() has returned nonzero,
289 * and will never be called when single-instruction stepping is being used.
290 * Set @task so that when it returns to user mode, it will trap after the
291 * next branch or trap taken.
292 */
293static inline void user_enable_block_step(struct task_struct *task)
294{
295	BUG();			/* This can never be called.  */
296}
297#else
298extern void user_enable_block_step(struct task_struct *);
299#endif	/* arch_has_block_step */
300
301#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
302extern void user_single_step_siginfo(struct task_struct *tsk,
303				struct pt_regs *regs, siginfo_t *info);
304#else
305static inline void user_single_step_siginfo(struct task_struct *tsk,
306				struct pt_regs *regs, siginfo_t *info)
307{
308	memset(info, 0, sizeof(*info));
309	info->si_signo = SIGTRAP;
310}
311#endif
312
313#ifndef arch_ptrace_stop_needed
314/**
315 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
316 * @code:	current->exit_code value ptrace will stop with
317 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
318 *
319 * This is called with the siglock held, to decide whether or not it's
320 * necessary to release the siglock and call arch_ptrace_stop() with the
321 * same @code and @info arguments.  It can be defined to a constant if
322 * arch_ptrace_stop() is never required, or always is.  On machines where
323 * this makes sense, it should be defined to a quick test to optimize out
324 * calling arch_ptrace_stop() when it would be superfluous.  For example,
325 * if the thread has not been back to user mode since the last stop, the
326 * thread state might indicate that nothing needs to be done.
327 */
328#define arch_ptrace_stop_needed(code, info)	(0)
329#endif
330
331#ifndef arch_ptrace_stop
332/**
333 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
334 * @code:	current->exit_code value ptrace will stop with
335 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
336 *
337 * This is called with no locks held when arch_ptrace_stop_needed() has
338 * just returned nonzero.  It is allowed to block, e.g. for user memory
339 * access.  The arch can have machine-specific work to be done before
340 * ptrace stops.  On ia64, register backing store gets written back to user
341 * memory here.  Since this can be costly (requires dropping the siglock),
342 * we only do it when the arch requires it for this particular stop, as
343 * indicated by arch_ptrace_stop_needed().
344 */
345#define arch_ptrace_stop(code, info)		do { } while (0)
346#endif
347
348extern int task_current_syscall(struct task_struct *target, long *callno,
349				unsigned long args[6], unsigned int maxargs,
350				unsigned long *sp, unsigned long *pc);
351
352#endif
353
354#endif
355