• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/include/linux/
1#ifndef _LINUX_MMU_NOTIFIER_H
2#define _LINUX_MMU_NOTIFIER_H
3
4#include <linux/list.h>
5#include <linux/spinlock.h>
6#include <linux/mm_types.h>
7
8struct mmu_notifier;
9struct mmu_notifier_ops;
10
11#ifdef CONFIG_MMU_NOTIFIER
12
13/*
14 * The mmu notifier_mm structure is allocated and installed in
15 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
16 * critical section and it's released only when mm_count reaches zero
17 * in mmdrop().
18 */
19struct mmu_notifier_mm {
20	/* all mmu notifiers registerd in this mm are queued in this list */
21	struct hlist_head list;
22	/* to serialize the list modifications and hlist_unhashed */
23	spinlock_t lock;
24};
25
26struct mmu_notifier_ops {
27	/*
28	 * Called either by mmu_notifier_unregister or when the mm is
29	 * being destroyed by exit_mmap, always before all pages are
30	 * freed. This can run concurrently with other mmu notifier
31	 * methods (the ones invoked outside the mm context) and it
32	 * should tear down all secondary mmu mappings and freeze the
33	 * secondary mmu. If this method isn't implemented you've to
34	 * be sure that nothing could possibly write to the pages
35	 * through the secondary mmu by the time the last thread with
36	 * tsk->mm == mm exits.
37	 *
38	 * As side note: the pages freed after ->release returns could
39	 * be immediately reallocated by the gart at an alias physical
40	 * address with a different cache model, so if ->release isn't
41	 * implemented because all _software_ driven memory accesses
42	 * through the secondary mmu are terminated by the time the
43	 * last thread of this mm quits, you've also to be sure that
44	 * speculative _hardware_ operations can't allocate dirty
45	 * cachelines in the cpu that could not be snooped and made
46	 * coherent with the other read and write operations happening
47	 * through the gart alias address, so leading to memory
48	 * corruption.
49	 */
50	void (*release)(struct mmu_notifier *mn,
51			struct mm_struct *mm);
52
53	/*
54	 * clear_flush_young is called after the VM is
55	 * test-and-clearing the young/accessed bitflag in the
56	 * pte. This way the VM will provide proper aging to the
57	 * accesses to the page through the secondary MMUs and not
58	 * only to the ones through the Linux pte.
59	 */
60	int (*clear_flush_young)(struct mmu_notifier *mn,
61				 struct mm_struct *mm,
62				 unsigned long address);
63
64	/*
65	 * change_pte is called in cases that pte mapping to page is changed:
66	 * for example, when ksm remaps pte to point to a new shared page.
67	 */
68	void (*change_pte)(struct mmu_notifier *mn,
69			   struct mm_struct *mm,
70			   unsigned long address,
71			   pte_t pte);
72
73	/*
74	 * Before this is invoked any secondary MMU is still ok to
75	 * read/write to the page previously pointed to by the Linux
76	 * pte because the page hasn't been freed yet and it won't be
77	 * freed until this returns. If required set_page_dirty has to
78	 * be called internally to this method.
79	 */
80	void (*invalidate_page)(struct mmu_notifier *mn,
81				struct mm_struct *mm,
82				unsigned long address);
83
84	/*
85	 * invalidate_range_start() and invalidate_range_end() must be
86	 * paired and are called only when the mmap_sem and/or the
87	 * locks protecting the reverse maps are held. The subsystem
88	 * must guarantee that no additional references are taken to
89	 * the pages in the range established between the call to
90	 * invalidate_range_start() and the matching call to
91	 * invalidate_range_end().
92	 *
93	 * Invalidation of multiple concurrent ranges may be
94	 * optionally permitted by the driver. Either way the
95	 * establishment of sptes is forbidden in the range passed to
96	 * invalidate_range_begin/end for the whole duration of the
97	 * invalidate_range_begin/end critical section.
98	 *
99	 * invalidate_range_start() is called when all pages in the
100	 * range are still mapped and have at least a refcount of one.
101	 *
102	 * invalidate_range_end() is called when all pages in the
103	 * range have been unmapped and the pages have been freed by
104	 * the VM.
105	 *
106	 * The VM will remove the page table entries and potentially
107	 * the page between invalidate_range_start() and
108	 * invalidate_range_end(). If the page must not be freed
109	 * because of pending I/O or other circumstances then the
110	 * invalidate_range_start() callback (or the initial mapping
111	 * by the driver) must make sure that the refcount is kept
112	 * elevated.
113	 *
114	 * If the driver increases the refcount when the pages are
115	 * initially mapped into an address space then either
116	 * invalidate_range_start() or invalidate_range_end() may
117	 * decrease the refcount. If the refcount is decreased on
118	 * invalidate_range_start() then the VM can free pages as page
119	 * table entries are removed.  If the refcount is only
120	 * droppped on invalidate_range_end() then the driver itself
121	 * will drop the last refcount but it must take care to flush
122	 * any secondary tlb before doing the final free on the
123	 * page. Pages will no longer be referenced by the linux
124	 * address space but may still be referenced by sptes until
125	 * the last refcount is dropped.
126	 */
127	void (*invalidate_range_start)(struct mmu_notifier *mn,
128				       struct mm_struct *mm,
129				       unsigned long start, unsigned long end);
130	void (*invalidate_range_end)(struct mmu_notifier *mn,
131				     struct mm_struct *mm,
132				     unsigned long start, unsigned long end);
133};
134
135/*
136 * The notifier chains are protected by mmap_sem and/or the reverse map
137 * semaphores. Notifier chains are only changed when all reverse maps and
138 * the mmap_sem locks are taken.
139 *
140 * Therefore notifier chains can only be traversed when either
141 *
142 * 1. mmap_sem is held.
143 * 2. One of the reverse map locks is held (i_mmap_lock or anon_vma->lock).
144 * 3. No other concurrent thread can access the list (release)
145 */
146struct mmu_notifier {
147	struct hlist_node hlist;
148	const struct mmu_notifier_ops *ops;
149};
150
151static inline int mm_has_notifiers(struct mm_struct *mm)
152{
153	return unlikely(mm->mmu_notifier_mm);
154}
155
156extern int mmu_notifier_register(struct mmu_notifier *mn,
157				 struct mm_struct *mm);
158extern int __mmu_notifier_register(struct mmu_notifier *mn,
159				   struct mm_struct *mm);
160extern void mmu_notifier_unregister(struct mmu_notifier *mn,
161				    struct mm_struct *mm);
162extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
163extern void __mmu_notifier_release(struct mm_struct *mm);
164extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
165					  unsigned long address);
166extern void __mmu_notifier_change_pte(struct mm_struct *mm,
167				      unsigned long address, pte_t pte);
168extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
169					  unsigned long address);
170extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
171				  unsigned long start, unsigned long end);
172extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
173				  unsigned long start, unsigned long end);
174
175static inline void mmu_notifier_release(struct mm_struct *mm)
176{
177	if (mm_has_notifiers(mm))
178		__mmu_notifier_release(mm);
179}
180
181static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
182					  unsigned long address)
183{
184	if (mm_has_notifiers(mm))
185		return __mmu_notifier_clear_flush_young(mm, address);
186	return 0;
187}
188
189static inline void mmu_notifier_change_pte(struct mm_struct *mm,
190					   unsigned long address, pte_t pte)
191{
192	if (mm_has_notifiers(mm))
193		__mmu_notifier_change_pte(mm, address, pte);
194}
195
196static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
197					  unsigned long address)
198{
199	if (mm_has_notifiers(mm))
200		__mmu_notifier_invalidate_page(mm, address);
201}
202
203static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
204				  unsigned long start, unsigned long end)
205{
206	if (mm_has_notifiers(mm))
207		__mmu_notifier_invalidate_range_start(mm, start, end);
208}
209
210static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
211				  unsigned long start, unsigned long end)
212{
213	if (mm_has_notifiers(mm))
214		__mmu_notifier_invalidate_range_end(mm, start, end);
215}
216
217static inline void mmu_notifier_mm_init(struct mm_struct *mm)
218{
219	mm->mmu_notifier_mm = NULL;
220}
221
222static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
223{
224	if (mm_has_notifiers(mm))
225		__mmu_notifier_mm_destroy(mm);
226}
227
228/*
229 * These two macros will sometime replace ptep_clear_flush.
230 * ptep_clear_flush is impleemnted as macro itself, so this also is
231 * implemented as a macro until ptep_clear_flush will converted to an
232 * inline function, to diminish the risk of compilation failure. The
233 * invalidate_page method over time can be moved outside the PT lock
234 * and these two macros can be later removed.
235 */
236#define ptep_clear_flush_notify(__vma, __address, __ptep)		\
237({									\
238	pte_t __pte;							\
239	struct vm_area_struct *___vma = __vma;				\
240	unsigned long ___address = __address;				\
241	__pte = ptep_clear_flush(___vma, ___address, __ptep);		\
242	mmu_notifier_invalidate_page(___vma->vm_mm, ___address);	\
243	__pte;								\
244})
245
246#define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
247({									\
248	int __young;							\
249	struct vm_area_struct *___vma = __vma;				\
250	unsigned long ___address = __address;				\
251	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
252	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
253						  ___address);		\
254	__young;							\
255})
256
257#define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
258({									\
259	struct mm_struct *___mm = __mm;					\
260	unsigned long ___address = __address;				\
261	pte_t ___pte = __pte;						\
262									\
263	set_pte_at(___mm, ___address, __ptep, ___pte);			\
264	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
265})
266
267#else /* CONFIG_MMU_NOTIFIER */
268
269static inline void mmu_notifier_release(struct mm_struct *mm)
270{
271}
272
273static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
274					  unsigned long address)
275{
276	return 0;
277}
278
279static inline void mmu_notifier_change_pte(struct mm_struct *mm,
280					   unsigned long address, pte_t pte)
281{
282}
283
284static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
285					  unsigned long address)
286{
287}
288
289static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
290				  unsigned long start, unsigned long end)
291{
292}
293
294static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
295				  unsigned long start, unsigned long end)
296{
297}
298
299static inline void mmu_notifier_mm_init(struct mm_struct *mm)
300{
301}
302
303static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
304{
305}
306
307#define ptep_clear_flush_young_notify ptep_clear_flush_young
308#define ptep_clear_flush_notify ptep_clear_flush
309#define set_pte_at_notify set_pte_at
310
311#endif /* CONFIG_MMU_NOTIFIER */
312
313#endif /* _LINUX_MMU_NOTIFIER_H */
314