• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/include/linux/
1/* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2#ifndef _LINUX_JIFFIES_H
3#define _LINUX_JIFFIES_H
4
5#include <linux/math64.h>
6#include <linux/kernel.h>
7#include <linux/types.h>
8#include <linux/time.h>
9#include <linux/timex.h>
10#include <asm/param.h>			/* for HZ */
11
12/*
13 * The following defines establish the engineering parameters of the PLL
14 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
15 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
16 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
17 * nearest power of two in order to avoid hardware multiply operations.
18 */
19#if HZ < 3
20# define SHIFT_HZ	1
21#elif HZ >= 3 && HZ < 6
22# define SHIFT_HZ	2
23#elif HZ >= 6 && HZ < 12
24# define SHIFT_HZ	3
25#elif HZ >= 12 && HZ < 24
26# define SHIFT_HZ	4
27#elif HZ >= 24 && HZ < 48
28# define SHIFT_HZ	5
29#elif HZ >= 48 && HZ < 96
30# define SHIFT_HZ	6
31#elif HZ >= 96 && HZ < 192
32# define SHIFT_HZ	7
33#elif HZ >= 192 && HZ < 384
34# define SHIFT_HZ	8
35#elif HZ >= 384 && HZ < 768
36# define SHIFT_HZ	9
37#elif HZ >= 768 && HZ < 1536
38# define SHIFT_HZ	10
39#elif HZ >= 1536 && HZ < 3072
40# define SHIFT_HZ	11
41#elif HZ >= 3072 && HZ < 6144
42# define SHIFT_HZ	12
43#elif HZ >= 6144 && HZ < 12288
44# define SHIFT_HZ	13
45#else
46# error Invalid value of HZ.
47#endif
48
49/* LATCH is used in the interval timer and ftape setup. */
50#define LATCH  ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */
51
52/* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, then we can
53 * improve accuracy by shifting LSH bits, hence calculating:
54 *     (NOM << LSH) / DEN
55 * This however means trouble for large NOM, because (NOM << LSH) may no
56 * longer fit in 32 bits. The following way of calculating this gives us
57 * some slack, under the following conditions:
58 *   - (NOM / DEN) fits in (32 - LSH) bits.
59 *   - (NOM % DEN) fits in (32 - LSH) bits.
60 */
61#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
62                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
63
64/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
65#define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
66
67/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
68#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
69
70/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
71#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
72
73/* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and	*/
74/* a value TUSEC for TICK_USEC (can be set bij adjtimex)		*/
75#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
76
77/* some arch's have a small-data section that can be accessed register-relative
78 * but that can only take up to, say, 4-byte variables. jiffies being part of
79 * an 8-byte variable may not be correctly accessed unless we force the issue
80 */
81#define __jiffy_data  __attribute__((section(".data")))
82
83/*
84 * The 64-bit value is not atomic - you MUST NOT read it
85 * without sampling the sequence number in xtime_lock.
86 * get_jiffies_64() will do this for you as appropriate.
87 */
88extern u64 __jiffy_data jiffies_64;
89extern unsigned long volatile __jiffy_data jiffies;
90
91#if (BITS_PER_LONG < 64)
92u64 get_jiffies_64(void);
93#else
94static inline u64 get_jiffies_64(void)
95{
96	return (u64)jiffies;
97}
98#endif
99
100/*
101 *	These inlines deal with timer wrapping correctly. You are
102 *	strongly encouraged to use them
103 *	1. Because people otherwise forget
104 *	2. Because if the timer wrap changes in future you won't have to
105 *	   alter your driver code.
106 *
107 * time_after(a,b) returns true if the time a is after time b.
108 *
109 * Do this with "<0" and ">=0" to only test the sign of the result. A
110 * good compiler would generate better code (and a really good compiler
111 * wouldn't care). Gcc is currently neither.
112 */
113#define time_after(a,b)		\
114	(typecheck(unsigned long, a) && \
115	 typecheck(unsigned long, b) && \
116	 ((long)(b) - (long)(a) < 0))
117#define time_before(a,b)	time_after(b,a)
118
119#define time_after_eq(a,b)	\
120	(typecheck(unsigned long, a) && \
121	 typecheck(unsigned long, b) && \
122	 ((long)(a) - (long)(b) >= 0))
123#define time_before_eq(a,b)	time_after_eq(b,a)
124
125/*
126 * Calculate whether a is in the range of [b, c].
127 */
128#define time_in_range(a,b,c) \
129	(time_after_eq(a,b) && \
130	 time_before_eq(a,c))
131
132/*
133 * Calculate whether a is in the range of [b, c).
134 */
135#define time_in_range_open(a,b,c) \
136	(time_after_eq(a,b) && \
137	 time_before(a,c))
138
139/* Same as above, but does so with platform independent 64bit types.
140 * These must be used when utilizing jiffies_64 (i.e. return value of
141 * get_jiffies_64() */
142#define time_after64(a,b)	\
143	(typecheck(__u64, a) &&	\
144	 typecheck(__u64, b) && \
145	 ((__s64)(b) - (__s64)(a) < 0))
146#define time_before64(a,b)	time_after64(b,a)
147
148#define time_after_eq64(a,b)	\
149	(typecheck(__u64, a) && \
150	 typecheck(__u64, b) && \
151	 ((__s64)(a) - (__s64)(b) >= 0))
152#define time_before_eq64(a,b)	time_after_eq64(b,a)
153
154/*
155 * These four macros compare jiffies and 'a' for convenience.
156 */
157
158/* time_is_before_jiffies(a) return true if a is before jiffies */
159#define time_is_before_jiffies(a) time_after(jiffies, a)
160
161/* time_is_after_jiffies(a) return true if a is after jiffies */
162#define time_is_after_jiffies(a) time_before(jiffies, a)
163
164/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
165#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
166
167/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
168#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
169
170/*
171 * Have the 32 bit jiffies value wrap 5 minutes after boot
172 * so jiffies wrap bugs show up earlier.
173 */
174#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
175
176/*
177 * Change timeval to jiffies, trying to avoid the
178 * most obvious overflows..
179 *
180 * And some not so obvious.
181 *
182 * Note that we don't want to return LONG_MAX, because
183 * for various timeout reasons we often end up having
184 * to wait "jiffies+1" in order to guarantee that we wait
185 * at _least_ "jiffies" - so "jiffies+1" had better still
186 * be positive.
187 */
188#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
189
190extern unsigned long preset_lpj;
191
192/*
193 * We want to do realistic conversions of time so we need to use the same
194 * values the update wall clock code uses as the jiffies size.  This value
195 * is: TICK_NSEC (which is defined in timex.h).  This
196 * is a constant and is in nanoseconds.  We will use scaled math
197 * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
198 * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
199 * constants and so are computed at compile time.  SHIFT_HZ (computed in
200 * timex.h) adjusts the scaling for different HZ values.
201
202 * Scaled math???  What is that?
203 *
204 * Scaled math is a way to do integer math on values that would,
205 * otherwise, either overflow, underflow, or cause undesired div
206 * instructions to appear in the execution path.  In short, we "scale"
207 * up the operands so they take more bits (more precision, less
208 * underflow), do the desired operation and then "scale" the result back
209 * by the same amount.  If we do the scaling by shifting we avoid the
210 * costly mpy and the dastardly div instructions.
211
212 * Suppose, for example, we want to convert from seconds to jiffies
213 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
214 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
215 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
216 * might calculate at compile time, however, the result will only have
217 * about 3-4 bits of precision (less for smaller values of HZ).
218 *
219 * So, we scale as follows:
220 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
221 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
222 * Then we make SCALE a power of two so:
223 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
224 * Now we define:
225 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
226 * jiff = (sec * SEC_CONV) >> SCALE;
227 *
228 * Often the math we use will expand beyond 32-bits so we tell C how to
229 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
230 * which should take the result back to 32-bits.  We want this expansion
231 * to capture as much precision as possible.  At the same time we don't
232 * want to overflow so we pick the SCALE to avoid this.  In this file,
233 * that means using a different scale for each range of HZ values (as
234 * defined in timex.h).
235 *
236 * For those who want to know, gcc will give a 64-bit result from a "*"
237 * operator if the result is a long long AND at least one of the
238 * operands is cast to long long (usually just prior to the "*" so as
239 * not to confuse it into thinking it really has a 64-bit operand,
240 * which, buy the way, it can do, but it takes more code and at least 2
241 * mpys).
242
243 * We also need to be aware that one second in nanoseconds is only a
244 * couple of bits away from overflowing a 32-bit word, so we MUST use
245 * 64-bits to get the full range time in nanoseconds.
246
247 */
248
249/*
250 * Here are the scales we will use.  One for seconds, nanoseconds and
251 * microseconds.
252 *
253 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
254 * check if the sign bit is set.  If not, we bump the shift count by 1.
255 * (Gets an extra bit of precision where we can use it.)
256 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
257 * Haven't tested others.
258
259 * Limits of cpp (for #if expressions) only long (no long long), but
260 * then we only need the most signicant bit.
261 */
262
263#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
264#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
265#undef SEC_JIFFIE_SC
266#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
267#endif
268#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
269#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
270#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
271                                TICK_NSEC -1) / (u64)TICK_NSEC))
272
273#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
274                                        TICK_NSEC -1) / (u64)TICK_NSEC))
275#define USEC_CONVERSION  \
276                    ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
277                                        TICK_NSEC -1) / (u64)TICK_NSEC))
278/*
279 * USEC_ROUND is used in the timeval to jiffie conversion.  See there
280 * for more details.  It is the scaled resolution rounding value.  Note
281 * that it is a 64-bit value.  Since, when it is applied, we are already
282 * in jiffies (albit scaled), it is nothing but the bits we will shift
283 * off.
284 */
285#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
286/*
287 * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
288 * into seconds.  The 64-bit case will overflow if we are not careful,
289 * so use the messy SH_DIV macro to do it.  Still all constants.
290 */
291#if BITS_PER_LONG < 64
292# define MAX_SEC_IN_JIFFIES \
293	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
294#else	/* take care of overflow on 64 bits machines */
295# define MAX_SEC_IN_JIFFIES \
296	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
297
298#endif
299
300/*
301 * Convert various time units to each other:
302 */
303extern unsigned int jiffies_to_msecs(const unsigned long j);
304extern unsigned int jiffies_to_usecs(const unsigned long j);
305extern unsigned long msecs_to_jiffies(const unsigned int m);
306extern unsigned long usecs_to_jiffies(const unsigned int u);
307extern unsigned long timespec_to_jiffies(const struct timespec *value);
308extern void jiffies_to_timespec(const unsigned long jiffies,
309				struct timespec *value);
310extern unsigned long timeval_to_jiffies(const struct timeval *value);
311extern void jiffies_to_timeval(const unsigned long jiffies,
312			       struct timeval *value);
313extern clock_t jiffies_to_clock_t(long x);
314extern unsigned long clock_t_to_jiffies(unsigned long x);
315extern u64 jiffies_64_to_clock_t(u64 x);
316extern u64 nsec_to_clock_t(u64 x);
317extern unsigned long nsecs_to_jiffies(u64 n);
318
319#define TIMESTAMP_SIZE	30
320
321#endif
322