• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/fs/xfs/linux-2.6/
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_bit.h"
21#include "xfs_log.h"
22#include "xfs_inum.h"
23#include "xfs_sb.h"
24#include "xfs_ag.h"
25#include "xfs_trans.h"
26#include "xfs_mount.h"
27#include "xfs_bmap_btree.h"
28#include "xfs_alloc.h"
29#include "xfs_dinode.h"
30#include "xfs_inode.h"
31#include "xfs_inode_item.h"
32#include "xfs_bmap.h"
33#include "xfs_error.h"
34#include "xfs_vnodeops.h"
35#include "xfs_da_btree.h"
36#include "xfs_ioctl.h"
37#include "xfs_trace.h"
38
39#include <linux/dcache.h>
40
41static const struct vm_operations_struct xfs_file_vm_ops;
42
43/*
44 *	xfs_iozero
45 *
46 *	xfs_iozero clears the specified range of buffer supplied,
47 *	and marks all the affected blocks as valid and modified.  If
48 *	an affected block is not allocated, it will be allocated.  If
49 *	an affected block is not completely overwritten, and is not
50 *	valid before the operation, it will be read from disk before
51 *	being partially zeroed.
52 */
53STATIC int
54xfs_iozero(
55	struct xfs_inode	*ip,	/* inode			*/
56	loff_t			pos,	/* offset in file		*/
57	size_t			count)	/* size of data to zero		*/
58{
59	struct page		*page;
60	struct address_space	*mapping;
61	int			status;
62
63	mapping = VFS_I(ip)->i_mapping;
64	do {
65		unsigned offset, bytes;
66		void *fsdata;
67
68		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
69		bytes = PAGE_CACHE_SIZE - offset;
70		if (bytes > count)
71			bytes = count;
72
73		status = pagecache_write_begin(NULL, mapping, pos, bytes,
74					AOP_FLAG_UNINTERRUPTIBLE,
75					&page, &fsdata);
76		if (status)
77			break;
78
79		zero_user(page, offset, bytes);
80
81		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
82					page, fsdata);
83		WARN_ON(status <= 0); /* can't return less than zero! */
84		pos += bytes;
85		count -= bytes;
86		status = 0;
87	} while (count);
88
89	return (-status);
90}
91
92STATIC int
93xfs_file_fsync(
94	struct file		*file,
95	int			datasync)
96{
97	struct inode		*inode = file->f_mapping->host;
98	struct xfs_inode	*ip = XFS_I(inode);
99	struct xfs_trans	*tp;
100	int			error = 0;
101	int			log_flushed = 0;
102
103	trace_xfs_file_fsync(ip);
104
105	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
106		return -XFS_ERROR(EIO);
107
108	xfs_iflags_clear(ip, XFS_ITRUNCATED);
109
110	xfs_ioend_wait(ip);
111
112	/*
113	 * We always need to make sure that the required inode state is safe on
114	 * disk.  The inode might be clean but we still might need to force the
115	 * log because of committed transactions that haven't hit the disk yet.
116	 * Likewise, there could be unflushed non-transactional changes to the
117	 * inode core that have to go to disk and this requires us to issue
118	 * a synchronous transaction to capture these changes correctly.
119	 *
120	 * This code relies on the assumption that if the i_update_core field
121	 * of the inode is clear and the inode is unpinned then it is clean
122	 * and no action is required.
123	 */
124	xfs_ilock(ip, XFS_ILOCK_SHARED);
125
126	/*
127	 * First check if the VFS inode is marked dirty.  All the dirtying
128	 * of non-transactional updates no goes through mark_inode_dirty*,
129	 * which allows us to distinguish beteeen pure timestamp updates
130	 * and i_size updates which need to be caught for fdatasync.
131	 * After that also theck for the dirty state in the XFS inode, which
132	 * might gets cleared when the inode gets written out via the AIL
133	 * or xfs_iflush_cluster.
134	 */
135	if (((inode->i_state & I_DIRTY_DATASYNC) ||
136	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
137	    ip->i_update_core) {
138		/*
139		 * Kick off a transaction to log the inode core to get the
140		 * updates.  The sync transaction will also force the log.
141		 */
142		xfs_iunlock(ip, XFS_ILOCK_SHARED);
143		tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
144		error = xfs_trans_reserve(tp, 0,
145				XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
146		if (error) {
147			xfs_trans_cancel(tp, 0);
148			return -error;
149		}
150		xfs_ilock(ip, XFS_ILOCK_EXCL);
151
152		/*
153		 * Note - it's possible that we might have pushed ourselves out
154		 * of the way during trans_reserve which would flush the inode.
155		 * But there's no guarantee that the inode buffer has actually
156		 * gone out yet (it's delwri).	Plus the buffer could be pinned
157		 * anyway if it's part of an inode in another recent
158		 * transaction.	 So we play it safe and fire off the
159		 * transaction anyway.
160		 */
161		xfs_trans_ijoin(tp, ip);
162		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
163		xfs_trans_set_sync(tp);
164		error = _xfs_trans_commit(tp, 0, &log_flushed);
165
166		xfs_iunlock(ip, XFS_ILOCK_EXCL);
167	} else {
168		/*
169		 * Timestamps/size haven't changed since last inode flush or
170		 * inode transaction commit.  That means either nothing got
171		 * written or a transaction committed which caught the updates.
172		 * If the latter happened and the transaction hasn't hit the
173		 * disk yet, the inode will be still be pinned.  If it is,
174		 * force the log.
175		 */
176		if (xfs_ipincount(ip)) {
177			error = _xfs_log_force_lsn(ip->i_mount,
178					ip->i_itemp->ili_last_lsn,
179					XFS_LOG_SYNC, &log_flushed);
180		}
181		xfs_iunlock(ip, XFS_ILOCK_SHARED);
182	}
183
184	if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) {
185		/*
186		 * If the log write didn't issue an ordered tag we need
187		 * to flush the disk cache for the data device now.
188		 */
189		if (!log_flushed)
190			xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp);
191
192		/*
193		 * If this inode is on the RT dev we need to flush that
194		 * cache as well.
195		 */
196		if (XFS_IS_REALTIME_INODE(ip))
197			xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp);
198	}
199
200	return -error;
201}
202
203STATIC ssize_t
204xfs_file_aio_read(
205	struct kiocb		*iocb,
206	const struct iovec	*iovp,
207	unsigned long		nr_segs,
208	loff_t			pos)
209{
210	struct file		*file = iocb->ki_filp;
211	struct inode		*inode = file->f_mapping->host;
212	struct xfs_inode	*ip = XFS_I(inode);
213	struct xfs_mount	*mp = ip->i_mount;
214	size_t			size = 0;
215	ssize_t			ret = 0;
216	int			ioflags = 0;
217	xfs_fsize_t		n;
218	unsigned long		seg;
219
220	XFS_STATS_INC(xs_read_calls);
221
222	BUG_ON(iocb->ki_pos != pos);
223
224	if (unlikely(file->f_flags & O_DIRECT))
225		ioflags |= IO_ISDIRECT;
226	if (file->f_mode & FMODE_NOCMTIME)
227		ioflags |= IO_INVIS;
228
229	/* START copy & waste from filemap.c */
230	for (seg = 0; seg < nr_segs; seg++) {
231		const struct iovec *iv = &iovp[seg];
232
233		/*
234		 * If any segment has a negative length, or the cumulative
235		 * length ever wraps negative then return -EINVAL.
236		 */
237		size += iv->iov_len;
238		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
239			return XFS_ERROR(-EINVAL);
240	}
241	/* END copy & waste from filemap.c */
242
243	if (unlikely(ioflags & IO_ISDIRECT)) {
244		xfs_buftarg_t	*target =
245			XFS_IS_REALTIME_INODE(ip) ?
246				mp->m_rtdev_targp : mp->m_ddev_targp;
247		if ((iocb->ki_pos & target->bt_smask) ||
248		    (size & target->bt_smask)) {
249			if (iocb->ki_pos == ip->i_size)
250				return 0;
251			return -XFS_ERROR(EINVAL);
252		}
253	}
254
255	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
256	if (n <= 0 || size == 0)
257		return 0;
258
259	if (n < size)
260		size = n;
261
262	if (XFS_FORCED_SHUTDOWN(mp))
263		return -EIO;
264
265	if (unlikely(ioflags & IO_ISDIRECT))
266		mutex_lock(&inode->i_mutex);
267	xfs_ilock(ip, XFS_IOLOCK_SHARED);
268
269	if (unlikely(ioflags & IO_ISDIRECT)) {
270		if (inode->i_mapping->nrpages) {
271			ret = -xfs_flushinval_pages(ip,
272					(iocb->ki_pos & PAGE_CACHE_MASK),
273					-1, FI_REMAPF_LOCKED);
274		}
275		mutex_unlock(&inode->i_mutex);
276		if (ret) {
277			xfs_iunlock(ip, XFS_IOLOCK_SHARED);
278			return ret;
279		}
280	}
281
282	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
283
284	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
285	if (ret > 0)
286		XFS_STATS_ADD(xs_read_bytes, ret);
287
288	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
289	return ret;
290}
291
292STATIC ssize_t
293xfs_file_splice_read(
294	struct file		*infilp,
295	loff_t			*ppos,
296	struct pipe_inode_info	*pipe,
297	size_t			count,
298	unsigned int		flags)
299{
300	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
301	int			ioflags = 0;
302	ssize_t			ret;
303
304	XFS_STATS_INC(xs_read_calls);
305
306	if (infilp->f_mode & FMODE_NOCMTIME)
307		ioflags |= IO_INVIS;
308
309	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
310		return -EIO;
311
312	xfs_ilock(ip, XFS_IOLOCK_SHARED);
313
314	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
315
316	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
317	if (ret > 0)
318		XFS_STATS_ADD(xs_read_bytes, ret);
319
320	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
321	return ret;
322}
323
324STATIC ssize_t
325xfs_file_splice_write(
326	struct pipe_inode_info	*pipe,
327	struct file		*outfilp,
328	loff_t			*ppos,
329	size_t			count,
330	unsigned int		flags)
331{
332	struct inode		*inode = outfilp->f_mapping->host;
333	struct xfs_inode	*ip = XFS_I(inode);
334	xfs_fsize_t		isize, new_size;
335	int			ioflags = 0;
336	ssize_t			ret;
337
338	XFS_STATS_INC(xs_write_calls);
339
340	if (outfilp->f_mode & FMODE_NOCMTIME)
341		ioflags |= IO_INVIS;
342
343	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
344		return -EIO;
345
346	xfs_ilock(ip, XFS_IOLOCK_EXCL);
347
348	new_size = *ppos + count;
349
350	xfs_ilock(ip, XFS_ILOCK_EXCL);
351	if (new_size > ip->i_size)
352		ip->i_new_size = new_size;
353	xfs_iunlock(ip, XFS_ILOCK_EXCL);
354
355	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
356
357	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
358	if (ret > 0)
359		XFS_STATS_ADD(xs_write_bytes, ret);
360
361	isize = i_size_read(inode);
362	if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize))
363		*ppos = isize;
364
365	if (*ppos > ip->i_size) {
366		xfs_ilock(ip, XFS_ILOCK_EXCL);
367		if (*ppos > ip->i_size)
368			ip->i_size = *ppos;
369		xfs_iunlock(ip, XFS_ILOCK_EXCL);
370	}
371
372	if (ip->i_new_size) {
373		xfs_ilock(ip, XFS_ILOCK_EXCL);
374		ip->i_new_size = 0;
375		if (ip->i_d.di_size > ip->i_size)
376			ip->i_d.di_size = ip->i_size;
377		xfs_iunlock(ip, XFS_ILOCK_EXCL);
378	}
379	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
380	return ret;
381}
382
383/*
384 * This routine is called to handle zeroing any space in the last
385 * block of the file that is beyond the EOF.  We do this since the
386 * size is being increased without writing anything to that block
387 * and we don't want anyone to read the garbage on the disk.
388 */
389STATIC int				/* error (positive) */
390xfs_zero_last_block(
391	xfs_inode_t	*ip,
392	xfs_fsize_t	offset,
393	xfs_fsize_t	isize)
394{
395	xfs_fileoff_t	last_fsb;
396	xfs_mount_t	*mp = ip->i_mount;
397	int		nimaps;
398	int		zero_offset;
399	int		zero_len;
400	int		error = 0;
401	xfs_bmbt_irec_t	imap;
402
403	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
404
405	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
406	if (zero_offset == 0) {
407		/*
408		 * There are no extra bytes in the last block on disk to
409		 * zero, so return.
410		 */
411		return 0;
412	}
413
414	last_fsb = XFS_B_TO_FSBT(mp, isize);
415	nimaps = 1;
416	error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
417			  &nimaps, NULL);
418	if (error) {
419		return error;
420	}
421	ASSERT(nimaps > 0);
422	/*
423	 * If the block underlying isize is just a hole, then there
424	 * is nothing to zero.
425	 */
426	if (imap.br_startblock == HOLESTARTBLOCK) {
427		return 0;
428	}
429	/*
430	 * Zero the part of the last block beyond the EOF, and write it
431	 * out sync.  We need to drop the ilock while we do this so we
432	 * don't deadlock when the buffer cache calls back to us.
433	 */
434	xfs_iunlock(ip, XFS_ILOCK_EXCL);
435
436	zero_len = mp->m_sb.sb_blocksize - zero_offset;
437	if (isize + zero_len > offset)
438		zero_len = offset - isize;
439	error = xfs_iozero(ip, isize, zero_len);
440
441	xfs_ilock(ip, XFS_ILOCK_EXCL);
442	ASSERT(error >= 0);
443	return error;
444}
445
446/*
447 * Zero any on disk space between the current EOF and the new,
448 * larger EOF.  This handles the normal case of zeroing the remainder
449 * of the last block in the file and the unusual case of zeroing blocks
450 * out beyond the size of the file.  This second case only happens
451 * with fixed size extents and when the system crashes before the inode
452 * size was updated but after blocks were allocated.  If fill is set,
453 * then any holes in the range are filled and zeroed.  If not, the holes
454 * are left alone as holes.
455 */
456
457int					/* error (positive) */
458xfs_zero_eof(
459	xfs_inode_t	*ip,
460	xfs_off_t	offset,		/* starting I/O offset */
461	xfs_fsize_t	isize)		/* current inode size */
462{
463	xfs_mount_t	*mp = ip->i_mount;
464	xfs_fileoff_t	start_zero_fsb;
465	xfs_fileoff_t	end_zero_fsb;
466	xfs_fileoff_t	zero_count_fsb;
467	xfs_fileoff_t	last_fsb;
468	xfs_fileoff_t	zero_off;
469	xfs_fsize_t	zero_len;
470	int		nimaps;
471	int		error = 0;
472	xfs_bmbt_irec_t	imap;
473
474	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
475	ASSERT(offset > isize);
476
477	/*
478	 * First handle zeroing the block on which isize resides.
479	 * We only zero a part of that block so it is handled specially.
480	 */
481	error = xfs_zero_last_block(ip, offset, isize);
482	if (error) {
483		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
484		return error;
485	}
486
487	/*
488	 * Calculate the range between the new size and the old
489	 * where blocks needing to be zeroed may exist.  To get the
490	 * block where the last byte in the file currently resides,
491	 * we need to subtract one from the size and truncate back
492	 * to a block boundary.  We subtract 1 in case the size is
493	 * exactly on a block boundary.
494	 */
495	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
496	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
497	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
498	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
499	if (last_fsb == end_zero_fsb) {
500		/*
501		 * The size was only incremented on its last block.
502		 * We took care of that above, so just return.
503		 */
504		return 0;
505	}
506
507	ASSERT(start_zero_fsb <= end_zero_fsb);
508	while (start_zero_fsb <= end_zero_fsb) {
509		nimaps = 1;
510		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
511		error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
512				  0, NULL, 0, &imap, &nimaps, NULL);
513		if (error) {
514			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
515			return error;
516		}
517		ASSERT(nimaps > 0);
518
519		if (imap.br_state == XFS_EXT_UNWRITTEN ||
520		    imap.br_startblock == HOLESTARTBLOCK) {
521			/*
522			 * This loop handles initializing pages that were
523			 * partially initialized by the code below this
524			 * loop. It basically zeroes the part of the page
525			 * that sits on a hole and sets the page as P_HOLE
526			 * and calls remapf if it is a mapped file.
527			 */
528			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
529			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
530			continue;
531		}
532
533		/*
534		 * There are blocks we need to zero.
535		 * Drop the inode lock while we're doing the I/O.
536		 * We'll still have the iolock to protect us.
537		 */
538		xfs_iunlock(ip, XFS_ILOCK_EXCL);
539
540		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
541		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
542
543		if ((zero_off + zero_len) > offset)
544			zero_len = offset - zero_off;
545
546		error = xfs_iozero(ip, zero_off, zero_len);
547		if (error) {
548			goto out_lock;
549		}
550
551		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
552		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
553
554		xfs_ilock(ip, XFS_ILOCK_EXCL);
555	}
556
557	return 0;
558
559out_lock:
560	xfs_ilock(ip, XFS_ILOCK_EXCL);
561	ASSERT(error >= 0);
562	return error;
563}
564
565STATIC ssize_t
566xfs_file_aio_write(
567	struct kiocb		*iocb,
568	const struct iovec	*iovp,
569	unsigned long		nr_segs,
570	loff_t			pos)
571{
572	struct file		*file = iocb->ki_filp;
573	struct address_space	*mapping = file->f_mapping;
574	struct inode		*inode = mapping->host;
575	struct xfs_inode	*ip = XFS_I(inode);
576	struct xfs_mount	*mp = ip->i_mount;
577	ssize_t			ret = 0, error = 0;
578	int			ioflags = 0;
579	xfs_fsize_t		isize, new_size;
580	int			iolock;
581	size_t			ocount = 0, count;
582	int			need_i_mutex;
583
584	XFS_STATS_INC(xs_write_calls);
585
586	BUG_ON(iocb->ki_pos != pos);
587
588	if (unlikely(file->f_flags & O_DIRECT))
589		ioflags |= IO_ISDIRECT;
590	if (file->f_mode & FMODE_NOCMTIME)
591		ioflags |= IO_INVIS;
592
593	error = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
594	if (error)
595		return error;
596
597	count = ocount;
598	if (count == 0)
599		return 0;
600
601	xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
602
603	if (XFS_FORCED_SHUTDOWN(mp))
604		return -EIO;
605
606relock:
607	if (ioflags & IO_ISDIRECT) {
608		iolock = XFS_IOLOCK_SHARED;
609		need_i_mutex = 0;
610	} else {
611		iolock = XFS_IOLOCK_EXCL;
612		need_i_mutex = 1;
613		mutex_lock(&inode->i_mutex);
614	}
615
616	xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);
617
618start:
619	error = -generic_write_checks(file, &pos, &count,
620					S_ISBLK(inode->i_mode));
621	if (error) {
622		xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
623		goto out_unlock_mutex;
624	}
625
626	if (ioflags & IO_ISDIRECT) {
627		xfs_buftarg_t	*target =
628			XFS_IS_REALTIME_INODE(ip) ?
629				mp->m_rtdev_targp : mp->m_ddev_targp;
630
631		if ((pos & target->bt_smask) || (count & target->bt_smask)) {
632			xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
633			return XFS_ERROR(-EINVAL);
634		}
635
636		if (!need_i_mutex && (mapping->nrpages || pos > ip->i_size)) {
637			xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
638			iolock = XFS_IOLOCK_EXCL;
639			need_i_mutex = 1;
640			mutex_lock(&inode->i_mutex);
641			xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);
642			goto start;
643		}
644	}
645
646	new_size = pos + count;
647	if (new_size > ip->i_size)
648		ip->i_new_size = new_size;
649
650	if (likely(!(ioflags & IO_INVIS)))
651		file_update_time(file);
652
653	/*
654	 * If the offset is beyond the size of the file, we have a couple
655	 * of things to do. First, if there is already space allocated
656	 * we need to either create holes or zero the disk or ...
657	 *
658	 * If there is a page where the previous size lands, we need
659	 * to zero it out up to the new size.
660	 */
661
662	if (pos > ip->i_size) {
663		error = xfs_zero_eof(ip, pos, ip->i_size);
664		if (error) {
665			xfs_iunlock(ip, XFS_ILOCK_EXCL);
666			goto out_unlock_internal;
667		}
668	}
669	xfs_iunlock(ip, XFS_ILOCK_EXCL);
670
671	/*
672	 * If we're writing the file then make sure to clear the
673	 * setuid and setgid bits if the process is not being run
674	 * by root.  This keeps people from modifying setuid and
675	 * setgid binaries.
676	 */
677	error = -file_remove_suid(file);
678	if (unlikely(error))
679		goto out_unlock_internal;
680
681	/* We can write back this queue in page reclaim */
682	current->backing_dev_info = mapping->backing_dev_info;
683
684	if ((ioflags & IO_ISDIRECT)) {
685		if (mapping->nrpages) {
686			WARN_ON(need_i_mutex == 0);
687			error = xfs_flushinval_pages(ip,
688					(pos & PAGE_CACHE_MASK),
689					-1, FI_REMAPF_LOCKED);
690			if (error)
691				goto out_unlock_internal;
692		}
693
694		if (need_i_mutex) {
695			/* demote the lock now the cached pages are gone */
696			xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
697			mutex_unlock(&inode->i_mutex);
698
699			iolock = XFS_IOLOCK_SHARED;
700			need_i_mutex = 0;
701		}
702
703		trace_xfs_file_direct_write(ip, count, iocb->ki_pos, ioflags);
704		ret = generic_file_direct_write(iocb, iovp,
705				&nr_segs, pos, &iocb->ki_pos, count, ocount);
706
707		/*
708		 * direct-io write to a hole: fall through to buffered I/O
709		 * for completing the rest of the request.
710		 */
711		if (ret >= 0 && ret != count) {
712			XFS_STATS_ADD(xs_write_bytes, ret);
713
714			pos += ret;
715			count -= ret;
716
717			ioflags &= ~IO_ISDIRECT;
718			xfs_iunlock(ip, iolock);
719			goto relock;
720		}
721	} else {
722		int enospc = 0;
723		ssize_t ret2 = 0;
724
725write_retry:
726		trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, ioflags);
727		ret2 = generic_file_buffered_write(iocb, iovp, nr_segs,
728				pos, &iocb->ki_pos, count, ret);
729		/*
730		 * if we just got an ENOSPC, flush the inode now we
731		 * aren't holding any page locks and retry *once*
732		 */
733		if (ret2 == -ENOSPC && !enospc) {
734			error = xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
735			if (error)
736				goto out_unlock_internal;
737			enospc = 1;
738			goto write_retry;
739		}
740		ret = ret2;
741	}
742
743	current->backing_dev_info = NULL;
744
745	isize = i_size_read(inode);
746	if (unlikely(ret < 0 && ret != -EFAULT && iocb->ki_pos > isize))
747		iocb->ki_pos = isize;
748
749	if (iocb->ki_pos > ip->i_size) {
750		xfs_ilock(ip, XFS_ILOCK_EXCL);
751		if (iocb->ki_pos > ip->i_size)
752			ip->i_size = iocb->ki_pos;
753		xfs_iunlock(ip, XFS_ILOCK_EXCL);
754	}
755
756	error = -ret;
757	if (ret <= 0)
758		goto out_unlock_internal;
759
760	XFS_STATS_ADD(xs_write_bytes, ret);
761
762	/* Handle various SYNC-type writes */
763	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
764		loff_t end = pos + ret - 1;
765		int error2;
766
767		xfs_iunlock(ip, iolock);
768		if (need_i_mutex)
769			mutex_unlock(&inode->i_mutex);
770
771		error2 = filemap_write_and_wait_range(mapping, pos, end);
772		if (!error)
773			error = error2;
774		if (need_i_mutex)
775			mutex_lock(&inode->i_mutex);
776		xfs_ilock(ip, iolock);
777
778		error2 = -xfs_file_fsync(file,
779					 (file->f_flags & __O_SYNC) ? 0 : 1);
780		if (!error)
781			error = error2;
782	}
783
784 out_unlock_internal:
785	if (ip->i_new_size) {
786		xfs_ilock(ip, XFS_ILOCK_EXCL);
787		ip->i_new_size = 0;
788		/*
789		 * If this was a direct or synchronous I/O that failed (such
790		 * as ENOSPC) then part of the I/O may have been written to
791		 * disk before the error occured.  In this case the on-disk
792		 * file size may have been adjusted beyond the in-memory file
793		 * size and now needs to be truncated back.
794		 */
795		if (ip->i_d.di_size > ip->i_size)
796			ip->i_d.di_size = ip->i_size;
797		xfs_iunlock(ip, XFS_ILOCK_EXCL);
798	}
799	xfs_iunlock(ip, iolock);
800 out_unlock_mutex:
801	if (need_i_mutex)
802		mutex_unlock(&inode->i_mutex);
803	return -error;
804}
805
806STATIC int
807xfs_file_open(
808	struct inode	*inode,
809	struct file	*file)
810{
811	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
812		return -EFBIG;
813	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
814		return -EIO;
815	return 0;
816}
817
818STATIC int
819xfs_dir_open(
820	struct inode	*inode,
821	struct file	*file)
822{
823	struct xfs_inode *ip = XFS_I(inode);
824	int		mode;
825	int		error;
826
827	error = xfs_file_open(inode, file);
828	if (error)
829		return error;
830
831	/*
832	 * If there are any blocks, read-ahead block 0 as we're almost
833	 * certain to have the next operation be a read there.
834	 */
835	mode = xfs_ilock_map_shared(ip);
836	if (ip->i_d.di_nextents > 0)
837		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
838	xfs_iunlock(ip, mode);
839	return 0;
840}
841
842STATIC int
843xfs_file_release(
844	struct inode	*inode,
845	struct file	*filp)
846{
847	return -xfs_release(XFS_I(inode));
848}
849
850STATIC int
851xfs_file_readdir(
852	struct file	*filp,
853	void		*dirent,
854	filldir_t	filldir)
855{
856	struct inode	*inode = filp->f_path.dentry->d_inode;
857	xfs_inode_t	*ip = XFS_I(inode);
858	int		error;
859	size_t		bufsize;
860
861	/*
862	 * The Linux API doesn't pass down the total size of the buffer
863	 * we read into down to the filesystem.  With the filldir concept
864	 * it's not needed for correct information, but the XFS dir2 leaf
865	 * code wants an estimate of the buffer size to calculate it's
866	 * readahead window and size the buffers used for mapping to
867	 * physical blocks.
868	 *
869	 * Try to give it an estimate that's good enough, maybe at some
870	 * point we can change the ->readdir prototype to include the
871	 * buffer size.  For now we use the current glibc buffer size.
872	 */
873	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
874
875	error = xfs_readdir(ip, dirent, bufsize,
876				(xfs_off_t *)&filp->f_pos, filldir);
877	if (error)
878		return -error;
879	return 0;
880}
881
882STATIC int
883xfs_file_mmap(
884	struct file	*filp,
885	struct vm_area_struct *vma)
886{
887	vma->vm_ops = &xfs_file_vm_ops;
888	vma->vm_flags |= VM_CAN_NONLINEAR;
889
890	file_accessed(filp);
891	return 0;
892}
893
894/*
895 * mmap()d file has taken write protection fault and is being made
896 * writable. We can set the page state up correctly for a writable
897 * page, which means we can do correct delalloc accounting (ENOSPC
898 * checking!) and unwritten extent mapping.
899 */
900STATIC int
901xfs_vm_page_mkwrite(
902	struct vm_area_struct	*vma,
903	struct vm_fault		*vmf)
904{
905	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
906}
907
908const struct file_operations xfs_file_operations = {
909	.llseek		= generic_file_llseek,
910	.read		= do_sync_read,
911	.write		= do_sync_write,
912	.aio_read	= xfs_file_aio_read,
913	.aio_write	= xfs_file_aio_write,
914	.splice_read	= xfs_file_splice_read,
915	.splice_write	= xfs_file_splice_write,
916	.unlocked_ioctl	= xfs_file_ioctl,
917#ifdef CONFIG_COMPAT
918	.compat_ioctl	= xfs_file_compat_ioctl,
919#endif
920	.mmap		= xfs_file_mmap,
921	.open		= xfs_file_open,
922	.release	= xfs_file_release,
923	.fsync		= xfs_file_fsync,
924};
925
926const struct file_operations xfs_dir_file_operations = {
927	.open		= xfs_dir_open,
928	.read		= generic_read_dir,
929	.readdir	= xfs_file_readdir,
930	.llseek		= generic_file_llseek,
931	.unlocked_ioctl	= xfs_file_ioctl,
932#ifdef CONFIG_COMPAT
933	.compat_ioctl	= xfs_file_compat_ioctl,
934#endif
935	.fsync		= xfs_file_fsync,
936};
937
938static const struct vm_operations_struct xfs_file_vm_ops = {
939	.fault		= filemap_fault,
940	.page_mkwrite	= xfs_vm_page_mkwrite,
941};
942