1/*
2 *  linux/fs/super.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *
6 *  super.c contains code to handle: - mount structures
7 *                                   - super-block tables
8 *                                   - filesystem drivers list
9 *                                   - mount system call
10 *                                   - umount system call
11 *                                   - ustat system call
12 *
13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14 *
15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 *  Added options to /proc/mounts:
18 *    Torbj��rn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/acct.h>
26#include <linux/blkdev.h>
27#include <linux/mount.h>
28#include <linux/security.h>
29#include <linux/writeback.h>		/* for the emergency remount stuff */
30#include <linux/idr.h>
31#include <linux/mutex.h>
32#include <linux/backing-dev.h>
33#include "internal.h"
34
35
36LIST_HEAD(super_blocks);
37DEFINE_SPINLOCK(sb_lock);
38
39/**
40 *	alloc_super	-	create new superblock
41 *	@type:	filesystem type superblock should belong to
42 *
43 *	Allocates and initializes a new &struct super_block.  alloc_super()
44 *	returns a pointer new superblock or %NULL if allocation had failed.
45 */
46static struct super_block *alloc_super(struct file_system_type *type)
47{
48	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
49	static const struct super_operations default_op;
50
51	if (s) {
52		if (security_sb_alloc(s)) {
53			kfree(s);
54			s = NULL;
55			goto out;
56		}
57#ifdef CONFIG_SMP
58		s->s_files = alloc_percpu(struct list_head);
59		if (!s->s_files) {
60			security_sb_free(s);
61			kfree(s);
62			s = NULL;
63			goto out;
64		} else {
65			int i;
66
67			for_each_possible_cpu(i)
68				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
69		}
70#else
71		INIT_LIST_HEAD(&s->s_files);
72#endif
73		INIT_LIST_HEAD(&s->s_instances);
74		INIT_HLIST_HEAD(&s->s_anon);
75		INIT_LIST_HEAD(&s->s_inodes);
76		INIT_LIST_HEAD(&s->s_dentry_lru);
77		init_rwsem(&s->s_umount);
78		mutex_init(&s->s_lock);
79		lockdep_set_class(&s->s_umount, &type->s_umount_key);
80		/*
81		 * The locking rules for s_lock are up to the
82		 * filesystem. For example ext3fs has different
83		 * lock ordering than usbfs:
84		 */
85		lockdep_set_class(&s->s_lock, &type->s_lock_key);
86		/*
87		 * sget() can have s_umount recursion.
88		 *
89		 * When it cannot find a suitable sb, it allocates a new
90		 * one (this one), and tries again to find a suitable old
91		 * one.
92		 *
93		 * In case that succeeds, it will acquire the s_umount
94		 * lock of the old one. Since these are clearly distrinct
95		 * locks, and this object isn't exposed yet, there's no
96		 * risk of deadlocks.
97		 *
98		 * Annotate this by putting this lock in a different
99		 * subclass.
100		 */
101		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
102		s->s_count = 1;
103		atomic_set(&s->s_active, 1);
104		mutex_init(&s->s_vfs_rename_mutex);
105		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
106		mutex_init(&s->s_dquot.dqio_mutex);
107		mutex_init(&s->s_dquot.dqonoff_mutex);
108		init_rwsem(&s->s_dquot.dqptr_sem);
109		init_waitqueue_head(&s->s_wait_unfrozen);
110		s->s_maxbytes = MAX_NON_LFS;
111		s->s_op = &default_op;
112		s->s_time_gran = 1000000000;
113	}
114out:
115	return s;
116}
117
118/**
119 *	destroy_super	-	frees a superblock
120 *	@s: superblock to free
121 *
122 *	Frees a superblock.
123 */
124static inline void destroy_super(struct super_block *s)
125{
126#ifdef CONFIG_SMP
127	free_percpu(s->s_files);
128#endif
129	security_sb_free(s);
130	kfree(s->s_subtype);
131	kfree(s->s_options);
132	kfree(s);
133}
134
135/* Superblock refcounting  */
136
137/*
138 * Drop a superblock's refcount.  The caller must hold sb_lock.
139 */
140void __put_super(struct super_block *sb)
141{
142	if (!--sb->s_count) {
143		list_del_init(&sb->s_list);
144		destroy_super(sb);
145	}
146}
147
148/**
149 *	put_super	-	drop a temporary reference to superblock
150 *	@sb: superblock in question
151 *
152 *	Drops a temporary reference, frees superblock if there's no
153 *	references left.
154 */
155void put_super(struct super_block *sb)
156{
157	spin_lock(&sb_lock);
158	__put_super(sb);
159	spin_unlock(&sb_lock);
160}
161
162
163/**
164 *	deactivate_locked_super	-	drop an active reference to superblock
165 *	@s: superblock to deactivate
166 *
167 *	Drops an active reference to superblock, converting it into a temprory
168 *	one if there is no other active references left.  In that case we
169 *	tell fs driver to shut it down and drop the temporary reference we
170 *	had just acquired.
171 *
172 *	Caller holds exclusive lock on superblock; that lock is released.
173 */
174void deactivate_locked_super(struct super_block *s)
175{
176	struct file_system_type *fs = s->s_type;
177	if (atomic_dec_and_test(&s->s_active)) {
178		fs->kill_sb(s);
179		put_filesystem(fs);
180		put_super(s);
181	} else {
182		up_write(&s->s_umount);
183	}
184}
185
186EXPORT_SYMBOL(deactivate_locked_super);
187
188/**
189 *	deactivate_super	-	drop an active reference to superblock
190 *	@s: superblock to deactivate
191 *
192 *	Variant of deactivate_locked_super(), except that superblock is *not*
193 *	locked by caller.  If we are going to drop the final active reference,
194 *	lock will be acquired prior to that.
195 */
196void deactivate_super(struct super_block *s)
197{
198        if (!atomic_add_unless(&s->s_active, -1, 1)) {
199		down_write(&s->s_umount);
200		deactivate_locked_super(s);
201	}
202}
203
204EXPORT_SYMBOL(deactivate_super);
205
206/**
207 *	grab_super - acquire an active reference
208 *	@s: reference we are trying to make active
209 *
210 *	Tries to acquire an active reference.  grab_super() is used when we
211 * 	had just found a superblock in super_blocks or fs_type->fs_supers
212 *	and want to turn it into a full-blown active reference.  grab_super()
213 *	is called with sb_lock held and drops it.  Returns 1 in case of
214 *	success, 0 if we had failed (superblock contents was already dead or
215 *	dying when grab_super() had been called).
216 */
217static int grab_super(struct super_block *s) __releases(sb_lock)
218{
219	if (atomic_inc_not_zero(&s->s_active)) {
220		spin_unlock(&sb_lock);
221		return 1;
222	}
223	/* it's going away */
224	s->s_count++;
225	spin_unlock(&sb_lock);
226	/* wait for it to die */
227	down_write(&s->s_umount);
228	up_write(&s->s_umount);
229	put_super(s);
230	return 0;
231}
232
233/*
234 * Superblock locking.  We really ought to get rid of these two.
235 */
236void lock_super(struct super_block * sb)
237{
238	get_fs_excl();
239	mutex_lock(&sb->s_lock);
240}
241
242void unlock_super(struct super_block * sb)
243{
244	put_fs_excl();
245	mutex_unlock(&sb->s_lock);
246}
247
248EXPORT_SYMBOL(lock_super);
249EXPORT_SYMBOL(unlock_super);
250
251/**
252 *	generic_shutdown_super	-	common helper for ->kill_sb()
253 *	@sb: superblock to kill
254 *
255 *	generic_shutdown_super() does all fs-independent work on superblock
256 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
257 *	that need destruction out of superblock, call generic_shutdown_super()
258 *	and release aforementioned objects.  Note: dentries and inodes _are_
259 *	taken care of and do not need specific handling.
260 *
261 *	Upon calling this function, the filesystem may no longer alter or
262 *	rearrange the set of dentries belonging to this super_block, nor may it
263 *	change the attachments of dentries to inodes.
264 */
265void generic_shutdown_super(struct super_block *sb)
266{
267	const struct super_operations *sop = sb->s_op;
268
269
270	if (sb->s_root) {
271		shrink_dcache_for_umount(sb);
272		sync_filesystem(sb);
273		get_fs_excl();
274		sb->s_flags &= ~MS_ACTIVE;
275
276		/* bad name - it should be evict_inodes() */
277		invalidate_inodes(sb);
278
279		if (sop->put_super)
280			sop->put_super(sb);
281
282		/* Forget any remaining inodes */
283		if (invalidate_inodes(sb)) {
284			printk("VFS: Busy inodes after unmount of %s. "
285			   "Self-destruct in 5 seconds.  Have a nice day...\n",
286			   sb->s_id);
287		}
288		put_fs_excl();
289	}
290	spin_lock(&sb_lock);
291	/* should be initialized for __put_super_and_need_restart() */
292	list_del_init(&sb->s_instances);
293	spin_unlock(&sb_lock);
294	up_write(&sb->s_umount);
295}
296
297EXPORT_SYMBOL(generic_shutdown_super);
298
299/**
300 *	sget	-	find or create a superblock
301 *	@type:	filesystem type superblock should belong to
302 *	@test:	comparison callback
303 *	@set:	setup callback
304 *	@data:	argument to each of them
305 */
306struct super_block *sget(struct file_system_type *type,
307			int (*test)(struct super_block *,void *),
308			int (*set)(struct super_block *,void *),
309			void *data)
310{
311	struct super_block *s = NULL;
312	struct super_block *old;
313	int err;
314
315retry:
316	spin_lock(&sb_lock);
317	if (test) {
318		list_for_each_entry(old, &type->fs_supers, s_instances) {
319			if (!test(old, data))
320				continue;
321			if (!grab_super(old))
322				goto retry;
323			if (s) {
324				up_write(&s->s_umount);
325				destroy_super(s);
326				s = NULL;
327			}
328			down_write(&old->s_umount);
329			if (unlikely(!(old->s_flags & MS_BORN))) {
330				deactivate_locked_super(old);
331				goto retry;
332			}
333			return old;
334		}
335	}
336	if (!s) {
337		spin_unlock(&sb_lock);
338		s = alloc_super(type);
339		if (!s)
340			return ERR_PTR(-ENOMEM);
341		goto retry;
342	}
343
344	err = set(s, data);
345	if (err) {
346		spin_unlock(&sb_lock);
347		up_write(&s->s_umount);
348		destroy_super(s);
349		return ERR_PTR(err);
350	}
351	s->s_type = type;
352	strlcpy(s->s_id, type->name, sizeof(s->s_id));
353	list_add_tail(&s->s_list, &super_blocks);
354	list_add(&s->s_instances, &type->fs_supers);
355	spin_unlock(&sb_lock);
356	get_filesystem(type);
357	return s;
358}
359
360EXPORT_SYMBOL(sget);
361
362void drop_super(struct super_block *sb)
363{
364	up_read(&sb->s_umount);
365	put_super(sb);
366}
367
368EXPORT_SYMBOL(drop_super);
369
370/**
371 * sync_supers - helper for periodic superblock writeback
372 *
373 * Call the write_super method if present on all dirty superblocks in
374 * the system.  This is for the periodic writeback used by most older
375 * filesystems.  For data integrity superblock writeback use
376 * sync_filesystems() instead.
377 *
378 * Note: check the dirty flag before waiting, so we don't
379 * hold up the sync while mounting a device. (The newly
380 * mounted device won't need syncing.)
381 */
382void sync_supers(void)
383{
384	struct super_block *sb, *p = NULL;
385
386	spin_lock(&sb_lock);
387	list_for_each_entry(sb, &super_blocks, s_list) {
388		if (list_empty(&sb->s_instances))
389			continue;
390		if (sb->s_op->write_super && sb->s_dirt) {
391			sb->s_count++;
392			spin_unlock(&sb_lock);
393
394			down_read(&sb->s_umount);
395			if (sb->s_root && sb->s_dirt)
396				sb->s_op->write_super(sb);
397			up_read(&sb->s_umount);
398
399			spin_lock(&sb_lock);
400			if (p)
401				__put_super(p);
402			p = sb;
403		}
404	}
405	if (p)
406		__put_super(p);
407	spin_unlock(&sb_lock);
408}
409
410/**
411 *	iterate_supers - call function for all active superblocks
412 *	@f: function to call
413 *	@arg: argument to pass to it
414 *
415 *	Scans the superblock list and calls given function, passing it
416 *	locked superblock and given argument.
417 */
418void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
419{
420	struct super_block *sb, *p = NULL;
421
422	spin_lock(&sb_lock);
423	list_for_each_entry(sb, &super_blocks, s_list) {
424		if (list_empty(&sb->s_instances))
425			continue;
426		sb->s_count++;
427		spin_unlock(&sb_lock);
428
429		down_read(&sb->s_umount);
430		if (sb->s_root)
431			f(sb, arg);
432		up_read(&sb->s_umount);
433
434		spin_lock(&sb_lock);
435		if (p)
436			__put_super(p);
437		p = sb;
438	}
439	if (p)
440		__put_super(p);
441	spin_unlock(&sb_lock);
442}
443
444/**
445 *	get_super - get the superblock of a device
446 *	@bdev: device to get the superblock for
447 *
448 *	Scans the superblock list and finds the superblock of the file system
449 *	mounted on the device given. %NULL is returned if no match is found.
450 */
451
452struct super_block *get_super(struct block_device *bdev)
453{
454	struct super_block *sb;
455
456	if (!bdev)
457		return NULL;
458
459	spin_lock(&sb_lock);
460rescan:
461	list_for_each_entry(sb, &super_blocks, s_list) {
462		if (list_empty(&sb->s_instances))
463			continue;
464		if (sb->s_bdev == bdev) {
465			sb->s_count++;
466			spin_unlock(&sb_lock);
467			down_read(&sb->s_umount);
468			/* still alive? */
469			if (sb->s_root)
470				return sb;
471			up_read(&sb->s_umount);
472			/* nope, got unmounted */
473			spin_lock(&sb_lock);
474			__put_super(sb);
475			goto rescan;
476		}
477	}
478	spin_unlock(&sb_lock);
479	return NULL;
480}
481
482EXPORT_SYMBOL(get_super);
483
484/**
485 * get_active_super - get an active reference to the superblock of a device
486 * @bdev: device to get the superblock for
487 *
488 * Scans the superblock list and finds the superblock of the file system
489 * mounted on the device given.  Returns the superblock with an active
490 * reference or %NULL if none was found.
491 */
492struct super_block *get_active_super(struct block_device *bdev)
493{
494	struct super_block *sb;
495
496	if (!bdev)
497		return NULL;
498
499restart:
500	spin_lock(&sb_lock);
501	list_for_each_entry(sb, &super_blocks, s_list) {
502		if (list_empty(&sb->s_instances))
503			continue;
504		if (sb->s_bdev == bdev) {
505			if (grab_super(sb)) /* drops sb_lock */
506				return sb;
507			else
508				goto restart;
509		}
510	}
511	spin_unlock(&sb_lock);
512	return NULL;
513}
514
515struct super_block *user_get_super(dev_t dev)
516{
517	struct super_block *sb;
518
519	spin_lock(&sb_lock);
520rescan:
521	list_for_each_entry(sb, &super_blocks, s_list) {
522		if (list_empty(&sb->s_instances))
523			continue;
524		if (sb->s_dev ==  dev) {
525			sb->s_count++;
526			spin_unlock(&sb_lock);
527			down_read(&sb->s_umount);
528			/* still alive? */
529			if (sb->s_root)
530				return sb;
531			up_read(&sb->s_umount);
532			/* nope, got unmounted */
533			spin_lock(&sb_lock);
534			__put_super(sb);
535			goto rescan;
536		}
537	}
538	spin_unlock(&sb_lock);
539	return NULL;
540}
541
542/**
543 *	do_remount_sb - asks filesystem to change mount options.
544 *	@sb:	superblock in question
545 *	@flags:	numeric part of options
546 *	@data:	the rest of options
547 *      @force: whether or not to force the change
548 *
549 *	Alters the mount options of a mounted file system.
550 */
551int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
552{
553	int retval;
554	int remount_ro;
555
556	if (sb->s_frozen != SB_UNFROZEN)
557		return -EBUSY;
558
559#ifdef CONFIG_BLOCK
560	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
561		return -EACCES;
562#endif
563
564	if (flags & MS_RDONLY)
565		acct_auto_close(sb);
566	shrink_dcache_sb(sb);
567	sync_filesystem(sb);
568
569	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
570
571	/* If we are remounting RDONLY and current sb is read/write,
572	   make sure there are no rw files opened */
573	if (remount_ro) {
574		if (force)
575			mark_files_ro(sb);
576		else if (!fs_may_remount_ro(sb))
577			return -EBUSY;
578	}
579
580	if (sb->s_op->remount_fs) {
581		retval = sb->s_op->remount_fs(sb, &flags, data);
582		if (retval)
583			return retval;
584	}
585	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
586
587	/*
588	 * Some filesystems modify their metadata via some other path than the
589	 * bdev buffer cache (eg. use a private mapping, or directories in
590	 * pagecache, etc). Also file data modifications go via their own
591	 * mappings. So If we try to mount readonly then copy the filesystem
592	 * from bdev, we could get stale data, so invalidate it to give a best
593	 * effort at coherency.
594	 */
595	if (remount_ro && sb->s_bdev)
596		invalidate_bdev(sb->s_bdev);
597	return 0;
598}
599
600static void do_emergency_remount(struct work_struct *work)
601{
602	struct super_block *sb, *p = NULL;
603
604	spin_lock(&sb_lock);
605	list_for_each_entry(sb, &super_blocks, s_list) {
606		if (list_empty(&sb->s_instances))
607			continue;
608		sb->s_count++;
609		spin_unlock(&sb_lock);
610		down_write(&sb->s_umount);
611		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
612			/*
613			 * What lock protects sb->s_flags??
614			 */
615			do_remount_sb(sb, MS_RDONLY, NULL, 1);
616		}
617		up_write(&sb->s_umount);
618		spin_lock(&sb_lock);
619		if (p)
620			__put_super(p);
621		p = sb;
622	}
623	if (p)
624		__put_super(p);
625	spin_unlock(&sb_lock);
626	kfree(work);
627	printk("Emergency Remount complete\n");
628}
629
630void emergency_remount(void)
631{
632	struct work_struct *work;
633
634	work = kmalloc(sizeof(*work), GFP_ATOMIC);
635	if (work) {
636		INIT_WORK(work, do_emergency_remount);
637		schedule_work(work);
638	}
639}
640
641/*
642 * Unnamed block devices are dummy devices used by virtual
643 * filesystems which don't use real block-devices.  -- jrs
644 */
645
646static DEFINE_IDA(unnamed_dev_ida);
647static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
648static int unnamed_dev_start = 0; /* don't bother trying below it */
649
650int set_anon_super(struct super_block *s, void *data)
651{
652	int dev;
653	int error;
654
655 retry:
656	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
657		return -ENOMEM;
658	spin_lock(&unnamed_dev_lock);
659	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
660	if (!error)
661		unnamed_dev_start = dev + 1;
662	spin_unlock(&unnamed_dev_lock);
663	if (error == -EAGAIN)
664		/* We raced and lost with another CPU. */
665		goto retry;
666	else if (error)
667		return -EAGAIN;
668
669	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
670		spin_lock(&unnamed_dev_lock);
671		ida_remove(&unnamed_dev_ida, dev);
672		if (unnamed_dev_start > dev)
673			unnamed_dev_start = dev;
674		spin_unlock(&unnamed_dev_lock);
675		return -EMFILE;
676	}
677	s->s_dev = MKDEV(0, dev & MINORMASK);
678	s->s_bdi = &noop_backing_dev_info;
679	return 0;
680}
681
682EXPORT_SYMBOL(set_anon_super);
683
684void kill_anon_super(struct super_block *sb)
685{
686	int slot = MINOR(sb->s_dev);
687
688	generic_shutdown_super(sb);
689	spin_lock(&unnamed_dev_lock);
690	ida_remove(&unnamed_dev_ida, slot);
691	if (slot < unnamed_dev_start)
692		unnamed_dev_start = slot;
693	spin_unlock(&unnamed_dev_lock);
694}
695
696EXPORT_SYMBOL(kill_anon_super);
697
698void kill_litter_super(struct super_block *sb)
699{
700	if (sb->s_root)
701		d_genocide(sb->s_root);
702	kill_anon_super(sb);
703}
704
705EXPORT_SYMBOL(kill_litter_super);
706
707static int ns_test_super(struct super_block *sb, void *data)
708{
709	return sb->s_fs_info == data;
710}
711
712static int ns_set_super(struct super_block *sb, void *data)
713{
714	sb->s_fs_info = data;
715	return set_anon_super(sb, NULL);
716}
717
718int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
719	int (*fill_super)(struct super_block *, void *, int),
720	struct vfsmount *mnt)
721{
722	struct super_block *sb;
723
724	sb = sget(fs_type, ns_test_super, ns_set_super, data);
725	if (IS_ERR(sb))
726		return PTR_ERR(sb);
727
728	if (!sb->s_root) {
729		int err;
730		sb->s_flags = flags;
731		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
732		if (err) {
733			deactivate_locked_super(sb);
734			return err;
735		}
736
737		sb->s_flags |= MS_ACTIVE;
738	}
739
740	simple_set_mnt(mnt, sb);
741	return 0;
742}
743
744EXPORT_SYMBOL(get_sb_ns);
745
746#ifdef CONFIG_BLOCK
747static int set_bdev_super(struct super_block *s, void *data)
748{
749	s->s_bdev = data;
750	s->s_dev = s->s_bdev->bd_dev;
751
752	/*
753	 * We set the bdi here to the queue backing, file systems can
754	 * overwrite this in ->fill_super()
755	 */
756	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
757	return 0;
758}
759
760static int test_bdev_super(struct super_block *s, void *data)
761{
762	return (void *)s->s_bdev == data;
763}
764
765int get_sb_bdev(struct file_system_type *fs_type,
766	int flags, const char *dev_name, void *data,
767	int (*fill_super)(struct super_block *, void *, int),
768	struct vfsmount *mnt)
769{
770	struct block_device *bdev;
771	struct super_block *s;
772	fmode_t mode = FMODE_READ;
773	int error = 0;
774
775	if (!(flags & MS_RDONLY))
776		mode |= FMODE_WRITE;
777
778	bdev = open_bdev_exclusive(dev_name, mode, fs_type);
779	if (IS_ERR(bdev))
780		return PTR_ERR(bdev);
781
782	/*
783	 * once the super is inserted into the list by sget, s_umount
784	 * will protect the lockfs code from trying to start a snapshot
785	 * while we are mounting
786	 */
787	mutex_lock(&bdev->bd_fsfreeze_mutex);
788	if (bdev->bd_fsfreeze_count > 0) {
789		mutex_unlock(&bdev->bd_fsfreeze_mutex);
790		error = -EBUSY;
791		goto error_bdev;
792	}
793	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
794	mutex_unlock(&bdev->bd_fsfreeze_mutex);
795	if (IS_ERR(s))
796		goto error_s;
797
798	if (s->s_root) {
799		if ((flags ^ s->s_flags) & MS_RDONLY) {
800			deactivate_locked_super(s);
801			error = -EBUSY;
802			goto error_bdev;
803		}
804
805		/*
806		 * s_umount nests inside bd_mutex during
807		 * __invalidate_device().  close_bdev_exclusive()
808		 * acquires bd_mutex and can't be called under
809		 * s_umount.  Drop s_umount temporarily.  This is safe
810		 * as we're holding an active reference.
811		 */
812		up_write(&s->s_umount);
813		close_bdev_exclusive(bdev, mode);
814		down_write(&s->s_umount);
815	} else {
816		char b[BDEVNAME_SIZE];
817
818		s->s_flags = flags;
819		s->s_mode = mode;
820		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
821		sb_set_blocksize(s, block_size(bdev));
822		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
823		if (error) {
824			deactivate_locked_super(s);
825			goto error;
826		}
827
828		s->s_flags |= MS_ACTIVE;
829		bdev->bd_super = s;
830	}
831
832	simple_set_mnt(mnt, s);
833	return 0;
834
835error_s:
836	error = PTR_ERR(s);
837error_bdev:
838	close_bdev_exclusive(bdev, mode);
839error:
840	return error;
841}
842
843EXPORT_SYMBOL(get_sb_bdev);
844
845void kill_block_super(struct super_block *sb)
846{
847	struct block_device *bdev = sb->s_bdev;
848	fmode_t mode = sb->s_mode;
849
850	bdev->bd_super = NULL;
851	generic_shutdown_super(sb);
852	sync_blockdev(bdev);
853	close_bdev_exclusive(bdev, mode);
854}
855
856EXPORT_SYMBOL(kill_block_super);
857#endif
858
859int get_sb_nodev(struct file_system_type *fs_type,
860	int flags, void *data,
861	int (*fill_super)(struct super_block *, void *, int),
862	struct vfsmount *mnt)
863{
864	int error;
865	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
866
867	if (IS_ERR(s))
868		return PTR_ERR(s);
869
870	s->s_flags = flags;
871
872	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
873	if (error) {
874		deactivate_locked_super(s);
875		return error;
876	}
877	s->s_flags |= MS_ACTIVE;
878	simple_set_mnt(mnt, s);
879	return 0;
880}
881
882EXPORT_SYMBOL(get_sb_nodev);
883
884static int compare_single(struct super_block *s, void *p)
885{
886	return 1;
887}
888
889int get_sb_single(struct file_system_type *fs_type,
890	int flags, void *data,
891	int (*fill_super)(struct super_block *, void *, int),
892	struct vfsmount *mnt)
893{
894	struct super_block *s;
895	int error;
896
897	s = sget(fs_type, compare_single, set_anon_super, NULL);
898	if (IS_ERR(s))
899		return PTR_ERR(s);
900	if (!s->s_root) {
901		s->s_flags = flags;
902		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
903		if (error) {
904			deactivate_locked_super(s);
905			return error;
906		}
907		s->s_flags |= MS_ACTIVE;
908	} else {
909		do_remount_sb(s, flags, data, 0);
910	}
911	simple_set_mnt(mnt, s);
912	return 0;
913}
914
915EXPORT_SYMBOL(get_sb_single);
916
917struct vfsmount *
918vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
919{
920	struct vfsmount *mnt;
921	char *secdata = NULL;
922	int error;
923
924	if (!type)
925		return ERR_PTR(-ENODEV);
926
927	error = -ENOMEM;
928	mnt = alloc_vfsmnt(name);
929	if (!mnt)
930		goto out;
931
932	if (flags & MS_KERNMOUNT)
933		mnt->mnt_flags = MNT_INTERNAL;
934
935	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
936		secdata = alloc_secdata();
937		if (!secdata)
938			goto out_mnt;
939
940		error = security_sb_copy_data(data, secdata);
941		if (error)
942			goto out_free_secdata;
943	}
944
945	error = type->get_sb(type, flags, name, data, mnt);
946	if (error < 0)
947		goto out_free_secdata;
948	BUG_ON(!mnt->mnt_sb);
949	WARN_ON(!mnt->mnt_sb->s_bdi);
950	mnt->mnt_sb->s_flags |= MS_BORN;
951
952	error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
953	if (error)
954		goto out_sb;
955
956	/*
957	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
958	 * but s_maxbytes was an unsigned long long for many releases. Throw
959	 * this warning for a little while to try and catch filesystems that
960	 * violate this rule. This warning should be either removed or
961	 * converted to a BUG() in 2.6.34.
962	 */
963	WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
964		"negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
965
966	mnt->mnt_mountpoint = mnt->mnt_root;
967	mnt->mnt_parent = mnt;
968	up_write(&mnt->mnt_sb->s_umount);
969	free_secdata(secdata);
970	return mnt;
971out_sb:
972	dput(mnt->mnt_root);
973	deactivate_locked_super(mnt->mnt_sb);
974out_free_secdata:
975	free_secdata(secdata);
976out_mnt:
977	free_vfsmnt(mnt);
978out:
979	return ERR_PTR(error);
980}
981
982EXPORT_SYMBOL_GPL(vfs_kern_mount);
983
984/**
985 * freeze_super - lock the filesystem and force it into a consistent state
986 * @sb: the super to lock
987 *
988 * Syncs the super to make sure the filesystem is consistent and calls the fs's
989 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
990 * -EBUSY.
991 */
992int freeze_super(struct super_block *sb)
993{
994	int ret;
995
996	atomic_inc(&sb->s_active);
997	down_write(&sb->s_umount);
998	if (sb->s_frozen) {
999		deactivate_locked_super(sb);
1000		return -EBUSY;
1001	}
1002
1003	if (sb->s_flags & MS_RDONLY) {
1004		sb->s_frozen = SB_FREEZE_TRANS;
1005		smp_wmb();
1006		up_write(&sb->s_umount);
1007		return 0;
1008	}
1009
1010	sb->s_frozen = SB_FREEZE_WRITE;
1011	smp_wmb();
1012
1013	sync_filesystem(sb);
1014
1015	sb->s_frozen = SB_FREEZE_TRANS;
1016	smp_wmb();
1017
1018	sync_blockdev(sb->s_bdev);
1019	if (sb->s_op->freeze_fs) {
1020		ret = sb->s_op->freeze_fs(sb);
1021		if (ret) {
1022			printk(KERN_ERR
1023				"VFS:Filesystem freeze failed\n");
1024			sb->s_frozen = SB_UNFROZEN;
1025			deactivate_locked_super(sb);
1026			return ret;
1027		}
1028	}
1029	up_write(&sb->s_umount);
1030	return 0;
1031}
1032EXPORT_SYMBOL(freeze_super);
1033
1034/**
1035 * thaw_super -- unlock filesystem
1036 * @sb: the super to thaw
1037 *
1038 * Unlocks the filesystem and marks it writeable again after freeze_super().
1039 */
1040int thaw_super(struct super_block *sb)
1041{
1042	int error;
1043
1044	down_write(&sb->s_umount);
1045	if (sb->s_frozen == SB_UNFROZEN) {
1046		up_write(&sb->s_umount);
1047		return -EINVAL;
1048	}
1049
1050	if (sb->s_flags & MS_RDONLY)
1051		goto out;
1052
1053	if (sb->s_op->unfreeze_fs) {
1054		error = sb->s_op->unfreeze_fs(sb);
1055		if (error) {
1056			printk(KERN_ERR
1057				"VFS:Filesystem thaw failed\n");
1058			sb->s_frozen = SB_FREEZE_TRANS;
1059			up_write(&sb->s_umount);
1060			return error;
1061		}
1062	}
1063
1064out:
1065	sb->s_frozen = SB_UNFROZEN;
1066	smp_wmb();
1067	wake_up(&sb->s_wait_unfrozen);
1068	deactivate_locked_super(sb);
1069
1070	return 0;
1071}
1072EXPORT_SYMBOL(thaw_super);
1073
1074static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1075{
1076	int err;
1077	const char *subtype = strchr(fstype, '.');
1078	if (subtype) {
1079		subtype++;
1080		err = -EINVAL;
1081		if (!subtype[0])
1082			goto err;
1083	} else
1084		subtype = "";
1085
1086	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1087	err = -ENOMEM;
1088	if (!mnt->mnt_sb->s_subtype)
1089		goto err;
1090	return mnt;
1091
1092 err:
1093	mntput(mnt);
1094	return ERR_PTR(err);
1095}
1096
1097struct vfsmount *
1098do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1099{
1100	struct file_system_type *type = get_fs_type(fstype);
1101	struct vfsmount *mnt;
1102	if (!type)
1103		return ERR_PTR(-ENODEV);
1104	mnt = vfs_kern_mount(type, flags, name, data);
1105	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1106	    !mnt->mnt_sb->s_subtype)
1107		mnt = fs_set_subtype(mnt, fstype);
1108	put_filesystem(type);
1109	return mnt;
1110}
1111EXPORT_SYMBOL_GPL(do_kern_mount);
1112
1113struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1114{
1115	return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1116}
1117
1118EXPORT_SYMBOL_GPL(kern_mount_data);
1119