• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/fs/nilfs2/
1/*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22/*
23 *  linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 *  from
31 *
32 *  linux/fs/minix/inode.c
33 *
34 *  Copyright (C) 1991, 1992  Linus Torvalds
35 *
36 *  Big-endian to little-endian byte-swapping/bitmaps by
37 *        David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40#include <linux/module.h>
41#include <linux/string.h>
42#include <linux/slab.h>
43#include <linux/init.h>
44#include <linux/blkdev.h>
45#include <linux/parser.h>
46#include <linux/random.h>
47#include <linux/crc32.h>
48#include <linux/smp_lock.h>
49#include <linux/vfs.h>
50#include <linux/writeback.h>
51#include <linux/kobject.h>
52#include <linux/exportfs.h>
53#include <linux/seq_file.h>
54#include <linux/mount.h>
55#include "nilfs.h"
56#include "mdt.h"
57#include "alloc.h"
58#include "btree.h"
59#include "btnode.h"
60#include "page.h"
61#include "cpfile.h"
62#include "ifile.h"
63#include "dat.h"
64#include "segment.h"
65#include "segbuf.h"
66
67MODULE_AUTHOR("NTT Corp.");
68MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
69		   "(NILFS)");
70MODULE_LICENSE("GPL");
71
72struct kmem_cache *nilfs_inode_cachep;
73struct kmem_cache *nilfs_transaction_cachep;
74struct kmem_cache *nilfs_segbuf_cachep;
75struct kmem_cache *nilfs_btree_path_cache;
76
77static int nilfs_remount(struct super_block *sb, int *flags, char *data);
78
79static void nilfs_set_error(struct nilfs_sb_info *sbi)
80{
81	struct the_nilfs *nilfs = sbi->s_nilfs;
82	struct nilfs_super_block **sbp;
83
84	down_write(&nilfs->ns_sem);
85	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
86		nilfs->ns_mount_state |= NILFS_ERROR_FS;
87		sbp = nilfs_prepare_super(sbi, 0);
88		if (likely(sbp)) {
89			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
90			if (sbp[1])
91				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92			nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
93		}
94	}
95	up_write(&nilfs->ns_sem);
96}
97
98/**
99 * nilfs_error() - report failure condition on a filesystem
100 *
101 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
102 * reporting an error message.  It should be called when NILFS detects
103 * incoherences or defects of meta data on disk.  As for sustainable
104 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
105 * function should be used instead.
106 *
107 * The segment constructor must not call this function because it can
108 * kill itself.
109 */
110void nilfs_error(struct super_block *sb, const char *function,
111		 const char *fmt, ...)
112{
113	struct nilfs_sb_info *sbi = NILFS_SB(sb);
114	va_list args;
115
116	va_start(args, fmt);
117	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
118	vprintk(fmt, args);
119	printk("\n");
120	va_end(args);
121
122	if (!(sb->s_flags & MS_RDONLY)) {
123		nilfs_set_error(sbi);
124
125		if (nilfs_test_opt(sbi, ERRORS_RO)) {
126			printk(KERN_CRIT "Remounting filesystem read-only\n");
127			sb->s_flags |= MS_RDONLY;
128		}
129	}
130
131	if (nilfs_test_opt(sbi, ERRORS_PANIC))
132		panic("NILFS (device %s): panic forced after error\n",
133		      sb->s_id);
134}
135
136void nilfs_warning(struct super_block *sb, const char *function,
137		   const char *fmt, ...)
138{
139	va_list args;
140
141	va_start(args, fmt);
142	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
143	       sb->s_id, function);
144	vprintk(fmt, args);
145	printk("\n");
146	va_end(args);
147}
148
149
150struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
151{
152	struct nilfs_inode_info *ii;
153
154	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
155	if (!ii)
156		return NULL;
157	ii->i_bh = NULL;
158	ii->i_state = 0;
159	ii->vfs_inode.i_version = 1;
160	nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
161	return &ii->vfs_inode;
162}
163
164struct inode *nilfs_alloc_inode(struct super_block *sb)
165{
166	return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
167}
168
169void nilfs_destroy_inode(struct inode *inode)
170{
171	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
172}
173
174static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
175{
176	struct the_nilfs *nilfs = sbi->s_nilfs;
177	int err;
178
179 retry:
180	set_buffer_dirty(nilfs->ns_sbh[0]);
181
182	if (nilfs_test_opt(sbi, BARRIER)) {
183		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
184					  WRITE_SYNC | WRITE_BARRIER);
185		if (err == -EOPNOTSUPP) {
186			nilfs_warning(sbi->s_super, __func__,
187				      "barrier-based sync failed. "
188				      "disabling barriers\n");
189			nilfs_clear_opt(sbi, BARRIER);
190			goto retry;
191		}
192	} else {
193		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
194	}
195
196	if (unlikely(err)) {
197		printk(KERN_ERR
198		       "NILFS: unable to write superblock (err=%d)\n", err);
199		if (err == -EIO && nilfs->ns_sbh[1]) {
200			/*
201			 * sbp[0] points to newer log than sbp[1],
202			 * so copy sbp[0] to sbp[1] to take over sbp[0].
203			 */
204			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
205			       nilfs->ns_sbsize);
206			nilfs_fall_back_super_block(nilfs);
207			goto retry;
208		}
209	} else {
210		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
211
212		nilfs->ns_sbwcount++;
213
214		/*
215		 * The latest segment becomes trailable from the position
216		 * written in superblock.
217		 */
218		clear_nilfs_discontinued(nilfs);
219
220		/* update GC protection for recent segments */
221		if (nilfs->ns_sbh[1]) {
222			if (flag == NILFS_SB_COMMIT_ALL) {
223				set_buffer_dirty(nilfs->ns_sbh[1]);
224				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
225					goto out;
226			}
227			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
228			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
229				sbp = nilfs->ns_sbp[1];
230		}
231
232		spin_lock(&nilfs->ns_last_segment_lock);
233		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
234		spin_unlock(&nilfs->ns_last_segment_lock);
235	}
236 out:
237	return err;
238}
239
240void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
241			  struct the_nilfs *nilfs)
242{
243	sector_t nfreeblocks;
244
245	/* nilfs->ns_sem must be locked by the caller. */
246	nilfs_count_free_blocks(nilfs, &nfreeblocks);
247	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
248
249	spin_lock(&nilfs->ns_last_segment_lock);
250	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
251	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
252	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
253	spin_unlock(&nilfs->ns_last_segment_lock);
254}
255
256struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
257					       int flip)
258{
259	struct the_nilfs *nilfs = sbi->s_nilfs;
260	struct nilfs_super_block **sbp = nilfs->ns_sbp;
261
262	/* nilfs->ns_sem must be locked by the caller. */
263	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264		if (sbp[1] &&
265		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
266			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
267		} else {
268			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
269			       sbi->s_super->s_id);
270			return NULL;
271		}
272	} else if (sbp[1] &&
273		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
274			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
275	}
276
277	if (flip && sbp[1])
278		nilfs_swap_super_block(nilfs);
279
280	return sbp;
281}
282
283int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
284{
285	struct the_nilfs *nilfs = sbi->s_nilfs;
286	struct nilfs_super_block **sbp = nilfs->ns_sbp;
287	time_t t;
288
289	/* nilfs->ns_sem must be locked by the caller. */
290	t = get_seconds();
291	nilfs->ns_sbwtime = t;
292	sbp[0]->s_wtime = cpu_to_le64(t);
293	sbp[0]->s_sum = 0;
294	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
295					     (unsigned char *)sbp[0],
296					     nilfs->ns_sbsize));
297	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
298		sbp[1]->s_wtime = sbp[0]->s_wtime;
299		sbp[1]->s_sum = 0;
300		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
301					    (unsigned char *)sbp[1],
302					    nilfs->ns_sbsize));
303	}
304	clear_nilfs_sb_dirty(nilfs);
305	return nilfs_sync_super(sbi, flag);
306}
307
308/**
309 * nilfs_cleanup_super() - write filesystem state for cleanup
310 * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
311 *
312 * This function restores state flags in the on-disk super block.
313 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
314 * filesystem was not clean previously.
315 */
316int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
317{
318	struct nilfs_super_block **sbp;
319	int flag = NILFS_SB_COMMIT;
320	int ret = -EIO;
321
322	sbp = nilfs_prepare_super(sbi, 0);
323	if (sbp) {
324		sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
325		nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
326		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
327			/*
328			 * make the "clean" flag also to the opposite
329			 * super block if both super blocks point to
330			 * the same checkpoint.
331			 */
332			sbp[1]->s_state = sbp[0]->s_state;
333			flag = NILFS_SB_COMMIT_ALL;
334		}
335		ret = nilfs_commit_super(sbi, flag);
336	}
337	return ret;
338}
339
340static void nilfs_put_super(struct super_block *sb)
341{
342	struct nilfs_sb_info *sbi = NILFS_SB(sb);
343	struct the_nilfs *nilfs = sbi->s_nilfs;
344
345	lock_kernel();
346
347	nilfs_detach_segment_constructor(sbi);
348
349	if (!(sb->s_flags & MS_RDONLY)) {
350		down_write(&nilfs->ns_sem);
351		nilfs_cleanup_super(sbi);
352		up_write(&nilfs->ns_sem);
353	}
354	down_write(&nilfs->ns_super_sem);
355	if (nilfs->ns_current == sbi)
356		nilfs->ns_current = NULL;
357	up_write(&nilfs->ns_super_sem);
358
359	nilfs_detach_checkpoint(sbi);
360	put_nilfs(sbi->s_nilfs);
361	sbi->s_super = NULL;
362	sb->s_fs_info = NULL;
363	nilfs_put_sbinfo(sbi);
364
365	unlock_kernel();
366}
367
368static int nilfs_sync_fs(struct super_block *sb, int wait)
369{
370	struct nilfs_sb_info *sbi = NILFS_SB(sb);
371	struct the_nilfs *nilfs = sbi->s_nilfs;
372	struct nilfs_super_block **sbp;
373	int err = 0;
374
375	/* This function is called when super block should be written back */
376	if (wait)
377		err = nilfs_construct_segment(sb);
378
379	down_write(&nilfs->ns_sem);
380	if (nilfs_sb_dirty(nilfs)) {
381		sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
382		if (likely(sbp)) {
383			nilfs_set_log_cursor(sbp[0], nilfs);
384			nilfs_commit_super(sbi, NILFS_SB_COMMIT);
385		}
386	}
387	up_write(&nilfs->ns_sem);
388
389	return err;
390}
391
392int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
393{
394	struct the_nilfs *nilfs = sbi->s_nilfs;
395	struct nilfs_checkpoint *raw_cp;
396	struct buffer_head *bh_cp;
397	int err;
398
399	down_write(&nilfs->ns_super_sem);
400	list_add(&sbi->s_list, &nilfs->ns_supers);
401	up_write(&nilfs->ns_super_sem);
402
403	err = -ENOMEM;
404	sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
405	if (!sbi->s_ifile)
406		goto delist;
407
408	down_read(&nilfs->ns_segctor_sem);
409	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
410					  &bh_cp);
411	up_read(&nilfs->ns_segctor_sem);
412	if (unlikely(err)) {
413		if (err == -ENOENT || err == -EINVAL) {
414			printk(KERN_ERR
415			       "NILFS: Invalid checkpoint "
416			       "(checkpoint number=%llu)\n",
417			       (unsigned long long)cno);
418			err = -EINVAL;
419		}
420		goto failed;
421	}
422	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
423	if (unlikely(err))
424		goto failed_bh;
425	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
426	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
427
428	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
429	return 0;
430
431 failed_bh:
432	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
433 failed:
434	nilfs_mdt_destroy(sbi->s_ifile);
435	sbi->s_ifile = NULL;
436
437 delist:
438	down_write(&nilfs->ns_super_sem);
439	list_del_init(&sbi->s_list);
440	up_write(&nilfs->ns_super_sem);
441
442	return err;
443}
444
445void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
446{
447	struct the_nilfs *nilfs = sbi->s_nilfs;
448
449	nilfs_mdt_destroy(sbi->s_ifile);
450	sbi->s_ifile = NULL;
451	down_write(&nilfs->ns_super_sem);
452	list_del_init(&sbi->s_list);
453	up_write(&nilfs->ns_super_sem);
454}
455
456static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
457{
458	struct super_block *sb = dentry->d_sb;
459	struct nilfs_sb_info *sbi = NILFS_SB(sb);
460	struct the_nilfs *nilfs = sbi->s_nilfs;
461	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
462	unsigned long long blocks;
463	unsigned long overhead;
464	unsigned long nrsvblocks;
465	sector_t nfreeblocks;
466	int err;
467
468	/*
469	 * Compute all of the segment blocks
470	 *
471	 * The blocks before first segment and after last segment
472	 * are excluded.
473	 */
474	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
475		- nilfs->ns_first_data_block;
476	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
477
478	/*
479	 * Compute the overhead
480	 *
481	 * When distributing meta data blocks outside segment structure,
482	 * We must count them as the overhead.
483	 */
484	overhead = 0;
485
486	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
487	if (unlikely(err))
488		return err;
489
490	buf->f_type = NILFS_SUPER_MAGIC;
491	buf->f_bsize = sb->s_blocksize;
492	buf->f_blocks = blocks - overhead;
493	buf->f_bfree = nfreeblocks;
494	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
495		(buf->f_bfree - nrsvblocks) : 0;
496	buf->f_files = atomic_read(&sbi->s_inodes_count);
497	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
498	buf->f_namelen = NILFS_NAME_LEN;
499	buf->f_fsid.val[0] = (u32)id;
500	buf->f_fsid.val[1] = (u32)(id >> 32);
501
502	return 0;
503}
504
505static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
506{
507	struct super_block *sb = vfs->mnt_sb;
508	struct nilfs_sb_info *sbi = NILFS_SB(sb);
509
510	if (!nilfs_test_opt(sbi, BARRIER))
511		seq_puts(seq, ",nobarrier");
512	if (nilfs_test_opt(sbi, SNAPSHOT))
513		seq_printf(seq, ",cp=%llu",
514			   (unsigned long long int)sbi->s_snapshot_cno);
515	if (nilfs_test_opt(sbi, ERRORS_PANIC))
516		seq_puts(seq, ",errors=panic");
517	if (nilfs_test_opt(sbi, ERRORS_CONT))
518		seq_puts(seq, ",errors=continue");
519	if (nilfs_test_opt(sbi, STRICT_ORDER))
520		seq_puts(seq, ",order=strict");
521	if (nilfs_test_opt(sbi, NORECOVERY))
522		seq_puts(seq, ",norecovery");
523	if (nilfs_test_opt(sbi, DISCARD))
524		seq_puts(seq, ",discard");
525
526	return 0;
527}
528
529static const struct super_operations nilfs_sops = {
530	.alloc_inode    = nilfs_alloc_inode,
531	.destroy_inode  = nilfs_destroy_inode,
532	.dirty_inode    = nilfs_dirty_inode,
533	/* .write_inode    = nilfs_write_inode, */
534	/* .put_inode      = nilfs_put_inode, */
535	/* .drop_inode	  = nilfs_drop_inode, */
536	.evict_inode    = nilfs_evict_inode,
537	.put_super      = nilfs_put_super,
538	/* .write_super    = nilfs_write_super, */
539	.sync_fs        = nilfs_sync_fs,
540	/* .write_super_lockfs */
541	/* .unlockfs */
542	.statfs         = nilfs_statfs,
543	.remount_fs     = nilfs_remount,
544	/* .umount_begin */
545	.show_options = nilfs_show_options
546};
547
548static struct inode *
549nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
550{
551	struct inode *inode;
552
553	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
554	    ino != NILFS_SKETCH_INO)
555		return ERR_PTR(-ESTALE);
556
557	inode = nilfs_iget(sb, ino);
558	if (IS_ERR(inode))
559		return ERR_CAST(inode);
560	if (generation && inode->i_generation != generation) {
561		iput(inode);
562		return ERR_PTR(-ESTALE);
563	}
564
565	return inode;
566}
567
568static struct dentry *
569nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
570		   int fh_type)
571{
572	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
573				    nilfs_nfs_get_inode);
574}
575
576static struct dentry *
577nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
578		   int fh_type)
579{
580	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
581				    nilfs_nfs_get_inode);
582}
583
584static const struct export_operations nilfs_export_ops = {
585	.fh_to_dentry = nilfs_fh_to_dentry,
586	.fh_to_parent = nilfs_fh_to_parent,
587	.get_parent = nilfs_get_parent,
588};
589
590enum {
591	Opt_err_cont, Opt_err_panic, Opt_err_ro,
592	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
593	Opt_discard, Opt_nodiscard, Opt_err,
594};
595
596static match_table_t tokens = {
597	{Opt_err_cont, "errors=continue"},
598	{Opt_err_panic, "errors=panic"},
599	{Opt_err_ro, "errors=remount-ro"},
600	{Opt_barrier, "barrier"},
601	{Opt_nobarrier, "nobarrier"},
602	{Opt_snapshot, "cp=%u"},
603	{Opt_order, "order=%s"},
604	{Opt_norecovery, "norecovery"},
605	{Opt_discard, "discard"},
606	{Opt_nodiscard, "nodiscard"},
607	{Opt_err, NULL}
608};
609
610static int parse_options(char *options, struct super_block *sb, int is_remount)
611{
612	struct nilfs_sb_info *sbi = NILFS_SB(sb);
613	char *p;
614	substring_t args[MAX_OPT_ARGS];
615	int option;
616
617	if (!options)
618		return 1;
619
620	while ((p = strsep(&options, ",")) != NULL) {
621		int token;
622		if (!*p)
623			continue;
624
625		token = match_token(p, tokens, args);
626		switch (token) {
627		case Opt_barrier:
628			nilfs_set_opt(sbi, BARRIER);
629			break;
630		case Opt_nobarrier:
631			nilfs_clear_opt(sbi, BARRIER);
632			break;
633		case Opt_order:
634			if (strcmp(args[0].from, "relaxed") == 0)
635				/* Ordered data semantics */
636				nilfs_clear_opt(sbi, STRICT_ORDER);
637			else if (strcmp(args[0].from, "strict") == 0)
638				/* Strict in-order semantics */
639				nilfs_set_opt(sbi, STRICT_ORDER);
640			else
641				return 0;
642			break;
643		case Opt_err_panic:
644			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
645			break;
646		case Opt_err_ro:
647			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
648			break;
649		case Opt_err_cont:
650			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
651			break;
652		case Opt_snapshot:
653			if (match_int(&args[0], &option) || option <= 0)
654				return 0;
655			if (is_remount) {
656				if (!nilfs_test_opt(sbi, SNAPSHOT)) {
657					printk(KERN_ERR
658					       "NILFS: cannot change regular "
659					       "mount to snapshot.\n");
660					return 0;
661				} else if (option != sbi->s_snapshot_cno) {
662					printk(KERN_ERR
663					       "NILFS: cannot remount to a "
664					       "different snapshot.\n");
665					return 0;
666				}
667				break;
668			}
669			if (!(sb->s_flags & MS_RDONLY)) {
670				printk(KERN_ERR "NILFS: cannot mount snapshot "
671				       "read/write.  A read-only option is "
672				       "required.\n");
673				return 0;
674			}
675			sbi->s_snapshot_cno = option;
676			nilfs_set_opt(sbi, SNAPSHOT);
677			break;
678		case Opt_norecovery:
679			nilfs_set_opt(sbi, NORECOVERY);
680			break;
681		case Opt_discard:
682			nilfs_set_opt(sbi, DISCARD);
683			break;
684		case Opt_nodiscard:
685			nilfs_clear_opt(sbi, DISCARD);
686			break;
687		default:
688			printk(KERN_ERR
689			       "NILFS: Unrecognized mount option \"%s\"\n", p);
690			return 0;
691		}
692	}
693	return 1;
694}
695
696static inline void
697nilfs_set_default_options(struct nilfs_sb_info *sbi,
698			  struct nilfs_super_block *sbp)
699{
700	sbi->s_mount_opt =
701		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
702}
703
704static int nilfs_setup_super(struct nilfs_sb_info *sbi)
705{
706	struct the_nilfs *nilfs = sbi->s_nilfs;
707	struct nilfs_super_block **sbp;
708	int max_mnt_count;
709	int mnt_count;
710
711	/* nilfs->ns_sem must be locked by the caller. */
712	sbp = nilfs_prepare_super(sbi, 0);
713	if (!sbp)
714		return -EIO;
715
716	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
717	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
718
719	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
720		printk(KERN_WARNING
721		       "NILFS warning: mounting fs with errors\n");
722	}
723	if (!max_mnt_count)
724		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
725
726	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
727	sbp[0]->s_state =
728		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
729	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
730	/* synchronize sbp[1] with sbp[0] */
731	if (sbp[1])
732		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
733	return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
734}
735
736struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
737						 u64 pos, int blocksize,
738						 struct buffer_head **pbh)
739{
740	unsigned long long sb_index = pos;
741	unsigned long offset;
742
743	offset = do_div(sb_index, blocksize);
744	*pbh = sb_bread(sb, sb_index);
745	if (!*pbh)
746		return NULL;
747	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
748}
749
750int nilfs_store_magic_and_option(struct super_block *sb,
751				 struct nilfs_super_block *sbp,
752				 char *data)
753{
754	struct nilfs_sb_info *sbi = NILFS_SB(sb);
755
756	sb->s_magic = le16_to_cpu(sbp->s_magic);
757
758	/* FS independent flags */
759#ifdef NILFS_ATIME_DISABLE
760	sb->s_flags |= MS_NOATIME;
761#endif
762
763	nilfs_set_default_options(sbi, sbp);
764
765	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
766	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
767	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
768	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
769
770	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
771}
772
773int nilfs_check_feature_compatibility(struct super_block *sb,
774				      struct nilfs_super_block *sbp)
775{
776	__u64 features;
777
778	features = le64_to_cpu(sbp->s_feature_incompat) &
779		~NILFS_FEATURE_INCOMPAT_SUPP;
780	if (features) {
781		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
782		       "optional features (%llx)\n",
783		       (unsigned long long)features);
784		return -EINVAL;
785	}
786	features = le64_to_cpu(sbp->s_feature_compat_ro) &
787		~NILFS_FEATURE_COMPAT_RO_SUPP;
788	if (!(sb->s_flags & MS_RDONLY) && features) {
789		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
790		       "unsupported optional features (%llx)\n",
791		       (unsigned long long)features);
792		return -EINVAL;
793	}
794	return 0;
795}
796
797/**
798 * nilfs_fill_super() - initialize a super block instance
799 * @sb: super_block
800 * @data: mount options
801 * @silent: silent mode flag
802 * @nilfs: the_nilfs struct
803 *
804 * This function is called exclusively by nilfs->ns_mount_mutex.
805 * So, the recovery process is protected from other simultaneous mounts.
806 */
807static int
808nilfs_fill_super(struct super_block *sb, void *data, int silent,
809		 struct the_nilfs *nilfs)
810{
811	struct nilfs_sb_info *sbi;
812	struct inode *root;
813	__u64 cno;
814	int err;
815
816	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
817	if (!sbi)
818		return -ENOMEM;
819
820	sb->s_fs_info = sbi;
821
822	get_nilfs(nilfs);
823	sbi->s_nilfs = nilfs;
824	sbi->s_super = sb;
825	atomic_set(&sbi->s_count, 1);
826
827	err = init_nilfs(nilfs, sbi, (char *)data);
828	if (err)
829		goto failed_sbi;
830
831	spin_lock_init(&sbi->s_inode_lock);
832	INIT_LIST_HEAD(&sbi->s_dirty_files);
833	INIT_LIST_HEAD(&sbi->s_list);
834
835	/*
836	 * Following initialization is overlapped because
837	 * nilfs_sb_info structure has been cleared at the beginning.
838	 * But we reserve them to keep our interest and make ready
839	 * for the future change.
840	 */
841	get_random_bytes(&sbi->s_next_generation,
842			 sizeof(sbi->s_next_generation));
843	spin_lock_init(&sbi->s_next_gen_lock);
844
845	sb->s_op = &nilfs_sops;
846	sb->s_export_op = &nilfs_export_ops;
847	sb->s_root = NULL;
848	sb->s_time_gran = 1;
849	sb->s_bdi = nilfs->ns_bdi;
850
851	err = load_nilfs(nilfs, sbi);
852	if (err)
853		goto failed_sbi;
854
855	cno = nilfs_last_cno(nilfs);
856
857	if (sb->s_flags & MS_RDONLY) {
858		if (nilfs_test_opt(sbi, SNAPSHOT)) {
859			down_read(&nilfs->ns_segctor_sem);
860			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
861						       sbi->s_snapshot_cno);
862			up_read(&nilfs->ns_segctor_sem);
863			if (err < 0) {
864				if (err == -ENOENT)
865					err = -EINVAL;
866				goto failed_sbi;
867			}
868			if (!err) {
869				printk(KERN_ERR
870				       "NILFS: The specified checkpoint is "
871				       "not a snapshot "
872				       "(checkpoint number=%llu).\n",
873				       (unsigned long long)sbi->s_snapshot_cno);
874				err = -EINVAL;
875				goto failed_sbi;
876			}
877			cno = sbi->s_snapshot_cno;
878		}
879	}
880
881	err = nilfs_attach_checkpoint(sbi, cno);
882	if (err) {
883		printk(KERN_ERR "NILFS: error loading a checkpoint"
884		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
885		goto failed_sbi;
886	}
887
888	if (!(sb->s_flags & MS_RDONLY)) {
889		err = nilfs_attach_segment_constructor(sbi);
890		if (err)
891			goto failed_checkpoint;
892	}
893
894	root = nilfs_iget(sb, NILFS_ROOT_INO);
895	if (IS_ERR(root)) {
896		printk(KERN_ERR "NILFS: get root inode failed\n");
897		err = PTR_ERR(root);
898		goto failed_segctor;
899	}
900	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
901		iput(root);
902		printk(KERN_ERR "NILFS: corrupt root inode.\n");
903		err = -EINVAL;
904		goto failed_segctor;
905	}
906	sb->s_root = d_alloc_root(root);
907	if (!sb->s_root) {
908		iput(root);
909		printk(KERN_ERR "NILFS: get root dentry failed\n");
910		err = -ENOMEM;
911		goto failed_segctor;
912	}
913
914	if (!(sb->s_flags & MS_RDONLY)) {
915		down_write(&nilfs->ns_sem);
916		nilfs_setup_super(sbi);
917		up_write(&nilfs->ns_sem);
918	}
919
920	down_write(&nilfs->ns_super_sem);
921	if (!nilfs_test_opt(sbi, SNAPSHOT))
922		nilfs->ns_current = sbi;
923	up_write(&nilfs->ns_super_sem);
924
925	return 0;
926
927 failed_segctor:
928	nilfs_detach_segment_constructor(sbi);
929
930 failed_checkpoint:
931	nilfs_detach_checkpoint(sbi);
932
933 failed_sbi:
934	put_nilfs(nilfs);
935	sb->s_fs_info = NULL;
936	nilfs_put_sbinfo(sbi);
937	return err;
938}
939
940static int nilfs_remount(struct super_block *sb, int *flags, char *data)
941{
942	struct nilfs_sb_info *sbi = NILFS_SB(sb);
943	struct the_nilfs *nilfs = sbi->s_nilfs;
944	unsigned long old_sb_flags;
945	struct nilfs_mount_options old_opts;
946	int was_snapshot, err;
947
948	lock_kernel();
949
950	down_write(&nilfs->ns_super_sem);
951	old_sb_flags = sb->s_flags;
952	old_opts.mount_opt = sbi->s_mount_opt;
953	old_opts.snapshot_cno = sbi->s_snapshot_cno;
954	was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
955
956	if (!parse_options(data, sb, 1)) {
957		err = -EINVAL;
958		goto restore_opts;
959	}
960	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
961
962	err = -EINVAL;
963	if (was_snapshot && !(*flags & MS_RDONLY)) {
964		printk(KERN_ERR "NILFS (device %s): cannot remount snapshot "
965		       "read/write.\n", sb->s_id);
966		goto restore_opts;
967	}
968
969	if (!nilfs_valid_fs(nilfs)) {
970		printk(KERN_WARNING "NILFS (device %s): couldn't "
971		       "remount because the filesystem is in an "
972		       "incomplete recovery state.\n", sb->s_id);
973		goto restore_opts;
974	}
975
976	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
977		goto out;
978	if (*flags & MS_RDONLY) {
979		/* Shutting down the segment constructor */
980		nilfs_detach_segment_constructor(sbi);
981		sb->s_flags |= MS_RDONLY;
982
983		/*
984		 * Remounting a valid RW partition RDONLY, so set
985		 * the RDONLY flag and then mark the partition as valid again.
986		 */
987		down_write(&nilfs->ns_sem);
988		nilfs_cleanup_super(sbi);
989		up_write(&nilfs->ns_sem);
990	} else {
991		__u64 features;
992
993		/*
994		 * Mounting a RDONLY partition read-write, so reread and
995		 * store the current valid flag.  (It may have been changed
996		 * by fsck since we originally mounted the partition.)
997		 */
998		down_read(&nilfs->ns_sem);
999		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1000			~NILFS_FEATURE_COMPAT_RO_SUPP;
1001		up_read(&nilfs->ns_sem);
1002		if (features) {
1003			printk(KERN_WARNING "NILFS (device %s): couldn't "
1004			       "remount RDWR because of unsupported optional "
1005			       "features (%llx)\n",
1006			       sb->s_id, (unsigned long long)features);
1007			err = -EROFS;
1008			goto restore_opts;
1009		}
1010
1011		sb->s_flags &= ~MS_RDONLY;
1012
1013		err = nilfs_attach_segment_constructor(sbi);
1014		if (err)
1015			goto restore_opts;
1016
1017		down_write(&nilfs->ns_sem);
1018		nilfs_setup_super(sbi);
1019		up_write(&nilfs->ns_sem);
1020	}
1021 out:
1022	up_write(&nilfs->ns_super_sem);
1023	unlock_kernel();
1024	return 0;
1025
1026 restore_opts:
1027	sb->s_flags = old_sb_flags;
1028	sbi->s_mount_opt = old_opts.mount_opt;
1029	sbi->s_snapshot_cno = old_opts.snapshot_cno;
1030	up_write(&nilfs->ns_super_sem);
1031	unlock_kernel();
1032	return err;
1033}
1034
1035struct nilfs_super_data {
1036	struct block_device *bdev;
1037	struct nilfs_sb_info *sbi;
1038	__u64 cno;
1039	int flags;
1040};
1041
1042/**
1043 * nilfs_identify - pre-read mount options needed to identify mount instance
1044 * @data: mount options
1045 * @sd: nilfs_super_data
1046 */
1047static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1048{
1049	char *p, *options = data;
1050	substring_t args[MAX_OPT_ARGS];
1051	int option, token;
1052	int ret = 0;
1053
1054	do {
1055		p = strsep(&options, ",");
1056		if (p != NULL && *p) {
1057			token = match_token(p, tokens, args);
1058			if (token == Opt_snapshot) {
1059				if (!(sd->flags & MS_RDONLY))
1060					ret++;
1061				else {
1062					ret = match_int(&args[0], &option);
1063					if (!ret) {
1064						if (option > 0)
1065							sd->cno = option;
1066						else
1067							ret++;
1068					}
1069				}
1070			}
1071			if (ret)
1072				printk(KERN_ERR
1073				       "NILFS: invalid mount option: %s\n", p);
1074		}
1075		if (!options)
1076			break;
1077		BUG_ON(options == data);
1078		*(options - 1) = ',';
1079	} while (!ret);
1080	return ret;
1081}
1082
1083static int nilfs_set_bdev_super(struct super_block *s, void *data)
1084{
1085	struct nilfs_super_data *sd = data;
1086
1087	s->s_bdev = sd->bdev;
1088	s->s_dev = s->s_bdev->bd_dev;
1089	return 0;
1090}
1091
1092static int nilfs_test_bdev_super(struct super_block *s, void *data)
1093{
1094	struct nilfs_super_data *sd = data;
1095
1096	return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1097}
1098
1099static int
1100nilfs_get_sb(struct file_system_type *fs_type, int flags,
1101	     const char *dev_name, void *data, struct vfsmount *mnt)
1102{
1103	struct nilfs_super_data sd;
1104	struct super_block *s;
1105	fmode_t mode = FMODE_READ;
1106	struct the_nilfs *nilfs;
1107	int err, need_to_close = 1;
1108
1109	if (!(flags & MS_RDONLY))
1110		mode |= FMODE_WRITE;
1111
1112	sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1113	if (IS_ERR(sd.bdev))
1114		return PTR_ERR(sd.bdev);
1115
1116	/*
1117	 * To get mount instance using sget() vfs-routine, NILFS needs
1118	 * much more information than normal filesystems to identify mount
1119	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1120	 * or rw-mount) but also a checkpoint number is required.
1121	 */
1122	sd.cno = 0;
1123	sd.flags = flags;
1124	if (nilfs_identify((char *)data, &sd)) {
1125		err = -EINVAL;
1126		goto failed;
1127	}
1128
1129	nilfs = find_or_create_nilfs(sd.bdev);
1130	if (!nilfs) {
1131		err = -ENOMEM;
1132		goto failed;
1133	}
1134
1135	mutex_lock(&nilfs->ns_mount_mutex);
1136
1137	if (!sd.cno) {
1138		/*
1139		 * Check if an exclusive mount exists or not.
1140		 * Snapshot mounts coexist with a current mount
1141		 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1142		 * ro-mount are mutually exclusive.
1143		 */
1144		down_read(&nilfs->ns_super_sem);
1145		if (nilfs->ns_current &&
1146		    ((nilfs->ns_current->s_super->s_flags ^ flags)
1147		     & MS_RDONLY)) {
1148			up_read(&nilfs->ns_super_sem);
1149			err = -EBUSY;
1150			goto failed_unlock;
1151		}
1152		up_read(&nilfs->ns_super_sem);
1153	}
1154
1155	/*
1156	 * Find existing nilfs_sb_info struct
1157	 */
1158	sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1159
1160	/*
1161	 * Get super block instance holding the nilfs_sb_info struct.
1162	 * A new instance is allocated if no existing mount is present or
1163	 * existing instance has been unmounted.
1164	 */
1165	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1166	if (sd.sbi)
1167		nilfs_put_sbinfo(sd.sbi);
1168
1169	if (IS_ERR(s)) {
1170		err = PTR_ERR(s);
1171		goto failed_unlock;
1172	}
1173
1174	if (!s->s_root) {
1175		char b[BDEVNAME_SIZE];
1176
1177		/* New superblock instance created */
1178		s->s_flags = flags;
1179		s->s_mode = mode;
1180		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1181		sb_set_blocksize(s, block_size(sd.bdev));
1182
1183		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1184				       nilfs);
1185		if (err)
1186			goto cancel_new;
1187
1188		s->s_flags |= MS_ACTIVE;
1189		need_to_close = 0;
1190	}
1191
1192	mutex_unlock(&nilfs->ns_mount_mutex);
1193	put_nilfs(nilfs);
1194	if (need_to_close)
1195		close_bdev_exclusive(sd.bdev, mode);
1196	simple_set_mnt(mnt, s);
1197	return 0;
1198
1199 failed_unlock:
1200	mutex_unlock(&nilfs->ns_mount_mutex);
1201	put_nilfs(nilfs);
1202 failed:
1203	close_bdev_exclusive(sd.bdev, mode);
1204
1205	return err;
1206
1207 cancel_new:
1208	/* Abandoning the newly allocated superblock */
1209	mutex_unlock(&nilfs->ns_mount_mutex);
1210	put_nilfs(nilfs);
1211	deactivate_locked_super(s);
1212	/*
1213	 * deactivate_locked_super() invokes close_bdev_exclusive().
1214	 * We must finish all post-cleaning before this call;
1215	 * put_nilfs() needs the block device.
1216	 */
1217	return err;
1218}
1219
1220struct file_system_type nilfs_fs_type = {
1221	.owner    = THIS_MODULE,
1222	.name     = "nilfs2",
1223	.get_sb   = nilfs_get_sb,
1224	.kill_sb  = kill_block_super,
1225	.fs_flags = FS_REQUIRES_DEV,
1226};
1227
1228static void nilfs_inode_init_once(void *obj)
1229{
1230	struct nilfs_inode_info *ii = obj;
1231
1232	INIT_LIST_HEAD(&ii->i_dirty);
1233#ifdef CONFIG_NILFS_XATTR
1234	init_rwsem(&ii->xattr_sem);
1235#endif
1236	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1237	ii->i_bmap = &ii->i_bmap_data;
1238	inode_init_once(&ii->vfs_inode);
1239}
1240
1241static void nilfs_segbuf_init_once(void *obj)
1242{
1243	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1244}
1245
1246static void nilfs_destroy_cachep(void)
1247{
1248	if (nilfs_inode_cachep)
1249		kmem_cache_destroy(nilfs_inode_cachep);
1250	if (nilfs_transaction_cachep)
1251		kmem_cache_destroy(nilfs_transaction_cachep);
1252	if (nilfs_segbuf_cachep)
1253		kmem_cache_destroy(nilfs_segbuf_cachep);
1254	if (nilfs_btree_path_cache)
1255		kmem_cache_destroy(nilfs_btree_path_cache);
1256}
1257
1258static int __init nilfs_init_cachep(void)
1259{
1260	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1261			sizeof(struct nilfs_inode_info), 0,
1262			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1263	if (!nilfs_inode_cachep)
1264		goto fail;
1265
1266	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1267			sizeof(struct nilfs_transaction_info), 0,
1268			SLAB_RECLAIM_ACCOUNT, NULL);
1269	if (!nilfs_transaction_cachep)
1270		goto fail;
1271
1272	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1273			sizeof(struct nilfs_segment_buffer), 0,
1274			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1275	if (!nilfs_segbuf_cachep)
1276		goto fail;
1277
1278	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1279			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1280			0, 0, NULL);
1281	if (!nilfs_btree_path_cache)
1282		goto fail;
1283
1284	return 0;
1285
1286fail:
1287	nilfs_destroy_cachep();
1288	return -ENOMEM;
1289}
1290
1291static int __init init_nilfs_fs(void)
1292{
1293	int err;
1294
1295	err = nilfs_init_cachep();
1296	if (err)
1297		goto fail;
1298
1299	err = register_filesystem(&nilfs_fs_type);
1300	if (err)
1301		goto free_cachep;
1302
1303	printk(KERN_INFO "NILFS version 2 loaded\n");
1304	return 0;
1305
1306free_cachep:
1307	nilfs_destroy_cachep();
1308fail:
1309	return err;
1310}
1311
1312static void __exit exit_nilfs_fs(void)
1313{
1314	nilfs_destroy_cachep();
1315	unregister_filesystem(&nilfs_fs_type);
1316}
1317
1318module_init(init_nilfs_fs)
1319module_exit(exit_nilfs_fs)
1320