1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002	Andrew Morton
9 *		Initial version
10 * 11Sep2002	janetinc@us.ibm.com
11 * 		added readv/writev support.
12 * 29Oct2002	Andrew Morton
13 *		rewrote bio_add_page() support.
14 * 30Oct2002	pbadari@us.ibm.com
15 *		added support for non-aligned IO.
16 * 06Nov2002	pbadari@us.ibm.com
17 *		added asynchronous IO support.
18 * 21Jul2003	nathans@sgi.com
19 *		added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
30#include <linux/task_io_accounting_ops.h>
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
38#include <asm/atomic.h>
39
40/*
41 * How many user pages to map in one call to get_user_pages().  This determines
42 * the size of a structure on the stack.
43 */
44#define DIO_PAGES	64
45
46/*
47 * This code generally works in units of "dio_blocks".  A dio_block is
48 * somewhere between the hard sector size and the filesystem block size.  it
49 * is determined on a per-invocation basis.   When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 */
57
58struct dio {
59	/* BIO submission state */
60	struct bio *bio;		/* bio under assembly */
61	struct inode *inode;
62	int rw;
63	loff_t i_size;			/* i_size when submitted */
64	int flags;			/* doesn't change */
65	unsigned blkbits;		/* doesn't change */
66	unsigned blkfactor;		/* When we're using an alignment which
67					   is finer than the filesystem's soft
68					   blocksize, this specifies how much
69					   finer.  blkfactor=2 means 1/4-block
70					   alignment.  Does not change */
71	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
72					   been performed at the start of a
73					   write */
74	int pages_in_io;		/* approximate total IO pages */
75	size_t	size;			/* total request size (doesn't change)*/
76	sector_t block_in_file;		/* Current offset into the underlying
77					   file in dio_block units. */
78	unsigned blocks_available;	/* At block_in_file.  changes */
79	sector_t final_block_in_request;/* doesn't change */
80	unsigned first_block_in_page;	/* doesn't change, Used only once */
81	int boundary;			/* prev block is at a boundary */
82	int reap_counter;		/* rate limit reaping */
83	get_block_t *get_block;		/* block mapping function */
84	dio_iodone_t *end_io;		/* IO completion function */
85	dio_submit_t *submit_io;	/* IO submition function */
86	loff_t logical_offset_in_bio;	/* current first logical block in bio */
87	sector_t final_block_in_bio;	/* current final block in bio + 1 */
88	sector_t next_block_for_io;	/* next block to be put under IO,
89					   in dio_blocks units */
90	struct buffer_head map_bh;	/* last get_block() result */
91
92	/*
93	 * Deferred addition of a page to the dio.  These variables are
94	 * private to dio_send_cur_page(), submit_page_section() and
95	 * dio_bio_add_page().
96	 */
97	struct page *cur_page;		/* The page */
98	unsigned cur_page_offset;	/* Offset into it, in bytes */
99	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
100	sector_t cur_page_block;	/* Where it starts */
101	loff_t cur_page_fs_offset;	/* Offset in file */
102
103	/* BIO completion state */
104	spinlock_t bio_lock;		/* protects BIO fields below */
105	unsigned long refcount;		/* direct_io_worker() and bios */
106	struct bio *bio_list;		/* singly linked via bi_private */
107	struct task_struct *waiter;	/* waiting task (NULL if none) */
108
109	/* AIO related stuff */
110	struct kiocb *iocb;		/* kiocb */
111	int is_async;			/* is IO async ? */
112	int io_error;			/* IO error in completion path */
113	ssize_t result;                 /* IO result */
114
115	/*
116	 * Page fetching state. These variables belong to dio_refill_pages().
117	 */
118	int curr_page;			/* changes */
119	int total_pages;		/* doesn't change */
120	unsigned long curr_user_address;/* changes */
121
122	/*
123	 * Page queue.  These variables belong to dio_refill_pages() and
124	 * dio_get_page().
125	 */
126	unsigned head;			/* next page to process */
127	unsigned tail;			/* last valid page + 1 */
128	int page_errors;		/* errno from get_user_pages() */
129
130	/*
131	 * pages[] (and any fields placed after it) are not zeroed out at
132	 * allocation time.  Don't add new fields after pages[] unless you
133	 * wish that they not be zeroed.
134	 */
135	struct page *pages[DIO_PAGES];	/* page buffer */
136};
137
138/*
139 * How many pages are in the queue?
140 */
141static inline unsigned dio_pages_present(struct dio *dio)
142{
143	return dio->tail - dio->head;
144}
145
146/*
147 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
148 */
149static int dio_refill_pages(struct dio *dio)
150{
151	int ret;
152	int nr_pages;
153
154	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
155	ret = get_user_pages_fast(
156		dio->curr_user_address,		/* Where from? */
157		nr_pages,			/* How many pages? */
158		dio->rw == READ,		/* Write to memory? */
159		&dio->pages[0]);		/* Put results here */
160
161	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
162		struct page *page = ZERO_PAGE(0);
163		/*
164		 * A memory fault, but the filesystem has some outstanding
165		 * mapped blocks.  We need to use those blocks up to avoid
166		 * leaking stale data in the file.
167		 */
168		if (dio->page_errors == 0)
169			dio->page_errors = ret;
170		page_cache_get(page);
171		dio->pages[0] = page;
172		dio->head = 0;
173		dio->tail = 1;
174		ret = 0;
175		goto out;
176	}
177
178	if (ret >= 0) {
179		dio->curr_user_address += ret * PAGE_SIZE;
180		dio->curr_page += ret;
181		dio->head = 0;
182		dio->tail = ret;
183		ret = 0;
184	}
185out:
186	return ret;
187}
188
189/*
190 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
191 * buffered inside the dio so that we can call get_user_pages() against a
192 * decent number of pages, less frequently.  To provide nicer use of the
193 * L1 cache.
194 */
195static struct page *dio_get_page(struct dio *dio)
196{
197	if (dio_pages_present(dio) == 0) {
198		int ret;
199
200		ret = dio_refill_pages(dio);
201		if (ret)
202			return ERR_PTR(ret);
203		BUG_ON(dio_pages_present(dio) == 0);
204	}
205	return dio->pages[dio->head++];
206}
207
208/**
209 * dio_complete() - called when all DIO BIO I/O has been completed
210 * @offset: the byte offset in the file of the completed operation
211 *
212 * This releases locks as dictated by the locking type, lets interested parties
213 * know that a DIO operation has completed, and calculates the resulting return
214 * code for the operation.
215 *
216 * It lets the filesystem know if it registered an interest earlier via
217 * get_block.  Pass the private field of the map buffer_head so that
218 * filesystems can use it to hold additional state between get_block calls and
219 * dio_complete.
220 */
221static int dio_complete(struct dio *dio, loff_t offset, int ret, bool is_async)
222{
223	ssize_t transferred = 0;
224
225	/*
226	 * AIO submission can race with bio completion to get here while
227	 * expecting to have the last io completed by bio completion.
228	 * In that case -EIOCBQUEUED is in fact not an error we want
229	 * to preserve through this call.
230	 */
231	if (ret == -EIOCBQUEUED)
232		ret = 0;
233
234	if (dio->result) {
235		transferred = dio->result;
236
237		/* Check for short read case */
238		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
239			transferred = dio->i_size - offset;
240	}
241
242	if (ret == 0)
243		ret = dio->page_errors;
244	if (ret == 0)
245		ret = dio->io_error;
246	if (ret == 0)
247		ret = transferred;
248
249	if (dio->end_io && dio->result) {
250		dio->end_io(dio->iocb, offset, transferred,
251			    dio->map_bh.b_private, ret, is_async);
252	} else if (is_async) {
253		aio_complete(dio->iocb, ret, 0);
254	}
255
256	if (dio->flags & DIO_LOCKING)
257		/* lockdep: non-owner release */
258		up_read_non_owner(&dio->inode->i_alloc_sem);
259
260	return ret;
261}
262
263static int dio_bio_complete(struct dio *dio, struct bio *bio);
264/*
265 * Asynchronous IO callback.
266 */
267static void dio_bio_end_aio(struct bio *bio, int error)
268{
269	struct dio *dio = bio->bi_private;
270	unsigned long remaining;
271	unsigned long flags;
272
273	/* cleanup the bio */
274	dio_bio_complete(dio, bio);
275
276	spin_lock_irqsave(&dio->bio_lock, flags);
277	remaining = --dio->refcount;
278	if (remaining == 1 && dio->waiter)
279		wake_up_process(dio->waiter);
280	spin_unlock_irqrestore(&dio->bio_lock, flags);
281
282	if (remaining == 0) {
283		dio_complete(dio, dio->iocb->ki_pos, 0, true);
284		kfree(dio);
285	}
286}
287
288/*
289 * The BIO completion handler simply queues the BIO up for the process-context
290 * handler.
291 *
292 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
293 * implement a singly-linked list of completed BIOs, at dio->bio_list.
294 */
295static void dio_bio_end_io(struct bio *bio, int error)
296{
297	struct dio *dio = bio->bi_private;
298	unsigned long flags;
299
300	spin_lock_irqsave(&dio->bio_lock, flags);
301	bio->bi_private = dio->bio_list;
302	dio->bio_list = bio;
303	if (--dio->refcount == 1 && dio->waiter)
304		wake_up_process(dio->waiter);
305	spin_unlock_irqrestore(&dio->bio_lock, flags);
306}
307
308/**
309 * dio_end_io - handle the end io action for the given bio
310 * @bio: The direct io bio thats being completed
311 * @error: Error if there was one
312 *
313 * This is meant to be called by any filesystem that uses their own dio_submit_t
314 * so that the DIO specific endio actions are dealt with after the filesystem
315 * has done it's completion work.
316 */
317void dio_end_io(struct bio *bio, int error)
318{
319	struct dio *dio = bio->bi_private;
320
321	if (dio->is_async)
322		dio_bio_end_aio(bio, error);
323	else
324		dio_bio_end_io(bio, error);
325}
326EXPORT_SYMBOL_GPL(dio_end_io);
327
328static void
329dio_bio_alloc(struct dio *dio, struct block_device *bdev,
330		sector_t first_sector, int nr_vecs)
331{
332	struct bio *bio;
333
334	/*
335	 * bio_alloc() is guaranteed to return a bio when called with
336	 * __GFP_WAIT and we request a valid number of vectors.
337	 */
338	bio = bio_alloc(GFP_KERNEL, nr_vecs);
339
340	bio->bi_bdev = bdev;
341	bio->bi_sector = first_sector;
342	if (dio->is_async)
343		bio->bi_end_io = dio_bio_end_aio;
344	else
345		bio->bi_end_io = dio_bio_end_io;
346
347	dio->bio = bio;
348	dio->logical_offset_in_bio = dio->cur_page_fs_offset;
349}
350
351/*
352 * In the AIO read case we speculatively dirty the pages before starting IO.
353 * During IO completion, any of these pages which happen to have been written
354 * back will be redirtied by bio_check_pages_dirty().
355 *
356 * bios hold a dio reference between submit_bio and ->end_io.
357 */
358static void dio_bio_submit(struct dio *dio)
359{
360	struct bio *bio = dio->bio;
361	unsigned long flags;
362
363	bio->bi_private = dio;
364
365	spin_lock_irqsave(&dio->bio_lock, flags);
366	dio->refcount++;
367	spin_unlock_irqrestore(&dio->bio_lock, flags);
368
369	if (dio->is_async && dio->rw == READ)
370		bio_set_pages_dirty(bio);
371
372	if (dio->submit_io)
373		dio->submit_io(dio->rw, bio, dio->inode,
374			       dio->logical_offset_in_bio);
375	else
376		submit_bio(dio->rw, bio);
377
378	dio->bio = NULL;
379	dio->boundary = 0;
380	dio->logical_offset_in_bio = 0;
381}
382
383/*
384 * Release any resources in case of a failure
385 */
386static void dio_cleanup(struct dio *dio)
387{
388	while (dio_pages_present(dio))
389		page_cache_release(dio_get_page(dio));
390}
391
392/*
393 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
394 * returned once all BIOs have been completed.  This must only be called once
395 * all bios have been issued so that dio->refcount can only decrease.  This
396 * requires that that the caller hold a reference on the dio.
397 */
398static struct bio *dio_await_one(struct dio *dio)
399{
400	unsigned long flags;
401	struct bio *bio = NULL;
402
403	spin_lock_irqsave(&dio->bio_lock, flags);
404
405	/*
406	 * Wait as long as the list is empty and there are bios in flight.  bio
407	 * completion drops the count, maybe adds to the list, and wakes while
408	 * holding the bio_lock so we don't need set_current_state()'s barrier
409	 * and can call it after testing our condition.
410	 */
411	while (dio->refcount > 1 && dio->bio_list == NULL) {
412		__set_current_state(TASK_UNINTERRUPTIBLE);
413		dio->waiter = current;
414		spin_unlock_irqrestore(&dio->bio_lock, flags);
415		io_schedule();
416		/* wake up sets us TASK_RUNNING */
417		spin_lock_irqsave(&dio->bio_lock, flags);
418		dio->waiter = NULL;
419	}
420	if (dio->bio_list) {
421		bio = dio->bio_list;
422		dio->bio_list = bio->bi_private;
423	}
424	spin_unlock_irqrestore(&dio->bio_lock, flags);
425	return bio;
426}
427
428/*
429 * Process one completed BIO.  No locks are held.
430 */
431static int dio_bio_complete(struct dio *dio, struct bio *bio)
432{
433	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
434	struct bio_vec *bvec = bio->bi_io_vec;
435	int page_no;
436
437	if (!uptodate)
438		dio->io_error = -EIO;
439
440	if (dio->is_async && dio->rw == READ) {
441		bio_check_pages_dirty(bio);	/* transfers ownership */
442	} else {
443		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
444			struct page *page = bvec[page_no].bv_page;
445
446			if (dio->rw == READ && !PageCompound(page))
447				set_page_dirty_lock(page);
448			page_cache_release(page);
449		}
450		bio_put(bio);
451	}
452	return uptodate ? 0 : -EIO;
453}
454
455/*
456 * Wait on and process all in-flight BIOs.  This must only be called once
457 * all bios have been issued so that the refcount can only decrease.
458 * This just waits for all bios to make it through dio_bio_complete.  IO
459 * errors are propagated through dio->io_error and should be propagated via
460 * dio_complete().
461 */
462static void dio_await_completion(struct dio *dio)
463{
464	struct bio *bio;
465	do {
466		bio = dio_await_one(dio);
467		if (bio)
468			dio_bio_complete(dio, bio);
469	} while (bio);
470}
471
472/*
473 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
474 * to keep the memory consumption sane we periodically reap any completed BIOs
475 * during the BIO generation phase.
476 *
477 * This also helps to limit the peak amount of pinned userspace memory.
478 */
479static int dio_bio_reap(struct dio *dio)
480{
481	int ret = 0;
482
483	if (dio->reap_counter++ >= 64) {
484		while (dio->bio_list) {
485			unsigned long flags;
486			struct bio *bio;
487			int ret2;
488
489			spin_lock_irqsave(&dio->bio_lock, flags);
490			bio = dio->bio_list;
491			dio->bio_list = bio->bi_private;
492			spin_unlock_irqrestore(&dio->bio_lock, flags);
493			ret2 = dio_bio_complete(dio, bio);
494			if (ret == 0)
495				ret = ret2;
496		}
497		dio->reap_counter = 0;
498	}
499	return ret;
500}
501
502/*
503 * Call into the fs to map some more disk blocks.  We record the current number
504 * of available blocks at dio->blocks_available.  These are in units of the
505 * fs blocksize, (1 << inode->i_blkbits).
506 *
507 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
508 * it uses the passed inode-relative block number as the file offset, as usual.
509 *
510 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
511 * has remaining to do.  The fs should not map more than this number of blocks.
512 *
513 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
514 * indicate how much contiguous disk space has been made available at
515 * bh->b_blocknr.
516 *
517 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
518 * This isn't very efficient...
519 *
520 * In the case of filesystem holes: the fs may return an arbitrarily-large
521 * hole by returning an appropriate value in b_size and by clearing
522 * buffer_mapped().  However the direct-io code will only process holes one
523 * block at a time - it will repeatedly call get_block() as it walks the hole.
524 */
525static int get_more_blocks(struct dio *dio)
526{
527	int ret;
528	struct buffer_head *map_bh = &dio->map_bh;
529	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
530	unsigned long fs_count;	/* Number of filesystem-sized blocks */
531	unsigned long dio_count;/* Number of dio_block-sized blocks */
532	unsigned long blkmask;
533	int create;
534
535	/*
536	 * If there was a memory error and we've overwritten all the
537	 * mapped blocks then we can now return that memory error
538	 */
539	ret = dio->page_errors;
540	if (ret == 0) {
541		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
542		fs_startblk = dio->block_in_file >> dio->blkfactor;
543		dio_count = dio->final_block_in_request - dio->block_in_file;
544		fs_count = dio_count >> dio->blkfactor;
545		blkmask = (1 << dio->blkfactor) - 1;
546		if (dio_count & blkmask)
547			fs_count++;
548
549		map_bh->b_state = 0;
550		map_bh->b_size = fs_count << dio->inode->i_blkbits;
551
552		/*
553		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
554		 * forbid block creations: only overwrites are permitted.
555		 * We will return early to the caller once we see an
556		 * unmapped buffer head returned, and the caller will fall
557		 * back to buffered I/O.
558		 *
559		 * Otherwise the decision is left to the get_blocks method,
560		 * which may decide to handle it or also return an unmapped
561		 * buffer head.
562		 */
563		create = dio->rw & WRITE;
564		if (dio->flags & DIO_SKIP_HOLES) {
565			if (dio->block_in_file < (i_size_read(dio->inode) >>
566							dio->blkbits))
567				create = 0;
568		}
569
570		ret = (*dio->get_block)(dio->inode, fs_startblk,
571						map_bh, create);
572	}
573	return ret;
574}
575
576/*
577 * There is no bio.  Make one now.
578 */
579static int dio_new_bio(struct dio *dio, sector_t start_sector)
580{
581	sector_t sector;
582	int ret, nr_pages;
583
584	ret = dio_bio_reap(dio);
585	if (ret)
586		goto out;
587	sector = start_sector << (dio->blkbits - 9);
588	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
589	nr_pages = min(nr_pages, BIO_MAX_PAGES);
590	BUG_ON(nr_pages <= 0);
591	dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
592	dio->boundary = 0;
593out:
594	return ret;
595}
596
597/*
598 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
599 * that was successful then update final_block_in_bio and take a ref against
600 * the just-added page.
601 *
602 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
603 */
604static int dio_bio_add_page(struct dio *dio)
605{
606	int ret;
607
608	ret = bio_add_page(dio->bio, dio->cur_page,
609			dio->cur_page_len, dio->cur_page_offset);
610	if (ret == dio->cur_page_len) {
611		/*
612		 * Decrement count only, if we are done with this page
613		 */
614		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
615			dio->pages_in_io--;
616		page_cache_get(dio->cur_page);
617		dio->final_block_in_bio = dio->cur_page_block +
618			(dio->cur_page_len >> dio->blkbits);
619		ret = 0;
620	} else {
621		ret = 1;
622	}
623	return ret;
624}
625
626/*
627 * Put cur_page under IO.  The section of cur_page which is described by
628 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
629 * starts on-disk at cur_page_block.
630 *
631 * We take a ref against the page here (on behalf of its presence in the bio).
632 *
633 * The caller of this function is responsible for removing cur_page from the
634 * dio, and for dropping the refcount which came from that presence.
635 */
636static int dio_send_cur_page(struct dio *dio)
637{
638	int ret = 0;
639
640	if (dio->bio) {
641		loff_t cur_offset = dio->cur_page_fs_offset;
642		loff_t bio_next_offset = dio->logical_offset_in_bio +
643			dio->bio->bi_size;
644
645		/*
646		 * See whether this new request is contiguous with the old.
647		 *
648		 * Btrfs cannot handl having logically non-contiguous requests
649		 * submitted.  For exmple if you have
650		 *
651		 * Logical:  [0-4095][HOLE][8192-12287]
652		 * Phyiscal: [0-4095]      [4096-8181]
653		 *
654		 * We cannot submit those pages together as one BIO.  So if our
655		 * current logical offset in the file does not equal what would
656		 * be the next logical offset in the bio, submit the bio we
657		 * have.
658		 */
659		if (dio->final_block_in_bio != dio->cur_page_block ||
660		    cur_offset != bio_next_offset)
661			dio_bio_submit(dio);
662		/*
663		 * Submit now if the underlying fs is about to perform a
664		 * metadata read
665		 */
666		else if (dio->boundary)
667			dio_bio_submit(dio);
668	}
669
670	if (dio->bio == NULL) {
671		ret = dio_new_bio(dio, dio->cur_page_block);
672		if (ret)
673			goto out;
674	}
675
676	if (dio_bio_add_page(dio) != 0) {
677		dio_bio_submit(dio);
678		ret = dio_new_bio(dio, dio->cur_page_block);
679		if (ret == 0) {
680			ret = dio_bio_add_page(dio);
681			BUG_ON(ret != 0);
682		}
683	}
684out:
685	return ret;
686}
687
688/*
689 * An autonomous function to put a chunk of a page under deferred IO.
690 *
691 * The caller doesn't actually know (or care) whether this piece of page is in
692 * a BIO, or is under IO or whatever.  We just take care of all possible
693 * situations here.  The separation between the logic of do_direct_IO() and
694 * that of submit_page_section() is important for clarity.  Please don't break.
695 *
696 * The chunk of page starts on-disk at blocknr.
697 *
698 * We perform deferred IO, by recording the last-submitted page inside our
699 * private part of the dio structure.  If possible, we just expand the IO
700 * across that page here.
701 *
702 * If that doesn't work out then we put the old page into the bio and add this
703 * page to the dio instead.
704 */
705static int
706submit_page_section(struct dio *dio, struct page *page,
707		unsigned offset, unsigned len, sector_t blocknr)
708{
709	int ret = 0;
710
711	if (dio->rw & WRITE) {
712		/*
713		 * Read accounting is performed in submit_bio()
714		 */
715		task_io_account_write(len);
716	}
717
718	/*
719	 * Can we just grow the current page's presence in the dio?
720	 */
721	if (	(dio->cur_page == page) &&
722		(dio->cur_page_offset + dio->cur_page_len == offset) &&
723		(dio->cur_page_block +
724			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
725		dio->cur_page_len += len;
726
727		/*
728		 * If dio->boundary then we want to schedule the IO now to
729		 * avoid metadata seeks.
730		 */
731		if (dio->boundary) {
732			ret = dio_send_cur_page(dio);
733			page_cache_release(dio->cur_page);
734			dio->cur_page = NULL;
735		}
736		goto out;
737	}
738
739	/*
740	 * If there's a deferred page already there then send it.
741	 */
742	if (dio->cur_page) {
743		ret = dio_send_cur_page(dio);
744		page_cache_release(dio->cur_page);
745		dio->cur_page = NULL;
746		if (ret)
747			goto out;
748	}
749
750	page_cache_get(page);		/* It is in dio */
751	dio->cur_page = page;
752	dio->cur_page_offset = offset;
753	dio->cur_page_len = len;
754	dio->cur_page_block = blocknr;
755	dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits;
756out:
757	return ret;
758}
759
760/*
761 * Clean any dirty buffers in the blockdev mapping which alias newly-created
762 * file blocks.  Only called for S_ISREG files - blockdevs do not set
763 * buffer_new
764 */
765static void clean_blockdev_aliases(struct dio *dio)
766{
767	unsigned i;
768	unsigned nblocks;
769
770	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
771
772	for (i = 0; i < nblocks; i++) {
773		unmap_underlying_metadata(dio->map_bh.b_bdev,
774					dio->map_bh.b_blocknr + i);
775	}
776}
777
778/*
779 * If we are not writing the entire block and get_block() allocated
780 * the block for us, we need to fill-in the unused portion of the
781 * block with zeros. This happens only if user-buffer, fileoffset or
782 * io length is not filesystem block-size multiple.
783 *
784 * `end' is zero if we're doing the start of the IO, 1 at the end of the
785 * IO.
786 */
787static void dio_zero_block(struct dio *dio, int end)
788{
789	unsigned dio_blocks_per_fs_block;
790	unsigned this_chunk_blocks;	/* In dio_blocks */
791	unsigned this_chunk_bytes;
792	struct page *page;
793
794	dio->start_zero_done = 1;
795	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
796		return;
797
798	dio_blocks_per_fs_block = 1 << dio->blkfactor;
799	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
800
801	if (!this_chunk_blocks)
802		return;
803
804	/*
805	 * We need to zero out part of an fs block.  It is either at the
806	 * beginning or the end of the fs block.
807	 */
808	if (end)
809		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
810
811	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
812
813	page = ZERO_PAGE(0);
814	if (submit_page_section(dio, page, 0, this_chunk_bytes,
815				dio->next_block_for_io))
816		return;
817
818	dio->next_block_for_io += this_chunk_blocks;
819}
820
821/*
822 * Walk the user pages, and the file, mapping blocks to disk and generating
823 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
824 * into submit_page_section(), which takes care of the next stage of submission
825 *
826 * Direct IO against a blockdev is different from a file.  Because we can
827 * happily perform page-sized but 512-byte aligned IOs.  It is important that
828 * blockdev IO be able to have fine alignment and large sizes.
829 *
830 * So what we do is to permit the ->get_block function to populate bh.b_size
831 * with the size of IO which is permitted at this offset and this i_blkbits.
832 *
833 * For best results, the blockdev should be set up with 512-byte i_blkbits and
834 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
835 * fine alignment but still allows this function to work in PAGE_SIZE units.
836 */
837static int do_direct_IO(struct dio *dio)
838{
839	const unsigned blkbits = dio->blkbits;
840	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
841	struct page *page;
842	unsigned block_in_page;
843	struct buffer_head *map_bh = &dio->map_bh;
844	int ret = 0;
845
846	/* The I/O can start at any block offset within the first page */
847	block_in_page = dio->first_block_in_page;
848
849	while (dio->block_in_file < dio->final_block_in_request) {
850		page = dio_get_page(dio);
851		if (IS_ERR(page)) {
852			ret = PTR_ERR(page);
853			goto out;
854		}
855
856		while (block_in_page < blocks_per_page) {
857			unsigned offset_in_page = block_in_page << blkbits;
858			unsigned this_chunk_bytes;	/* # of bytes mapped */
859			unsigned this_chunk_blocks;	/* # of blocks */
860			unsigned u;
861
862			if (dio->blocks_available == 0) {
863				/*
864				 * Need to go and map some more disk
865				 */
866				unsigned long blkmask;
867				unsigned long dio_remainder;
868
869				ret = get_more_blocks(dio);
870				if (ret) {
871					page_cache_release(page);
872					goto out;
873				}
874				if (!buffer_mapped(map_bh))
875					goto do_holes;
876
877				dio->blocks_available =
878						map_bh->b_size >> dio->blkbits;
879				dio->next_block_for_io =
880					map_bh->b_blocknr << dio->blkfactor;
881				if (buffer_new(map_bh))
882					clean_blockdev_aliases(dio);
883
884				if (!dio->blkfactor)
885					goto do_holes;
886
887				blkmask = (1 << dio->blkfactor) - 1;
888				dio_remainder = (dio->block_in_file & blkmask);
889
890				/*
891				 * If we are at the start of IO and that IO
892				 * starts partway into a fs-block,
893				 * dio_remainder will be non-zero.  If the IO
894				 * is a read then we can simply advance the IO
895				 * cursor to the first block which is to be
896				 * read.  But if the IO is a write and the
897				 * block was newly allocated we cannot do that;
898				 * the start of the fs block must be zeroed out
899				 * on-disk
900				 */
901				if (!buffer_new(map_bh))
902					dio->next_block_for_io += dio_remainder;
903				dio->blocks_available -= dio_remainder;
904			}
905do_holes:
906			/* Handle holes */
907			if (!buffer_mapped(map_bh)) {
908				loff_t i_size_aligned;
909
910				/* AKPM: eargh, -ENOTBLK is a hack */
911				if (dio->rw & WRITE) {
912					page_cache_release(page);
913					return -ENOTBLK;
914				}
915
916				/*
917				 * Be sure to account for a partial block as the
918				 * last block in the file
919				 */
920				i_size_aligned = ALIGN(i_size_read(dio->inode),
921							1 << blkbits);
922				if (dio->block_in_file >=
923						i_size_aligned >> blkbits) {
924					/* We hit eof */
925					page_cache_release(page);
926					goto out;
927				}
928				zero_user(page, block_in_page << blkbits,
929						1 << blkbits);
930				dio->block_in_file++;
931				block_in_page++;
932				goto next_block;
933			}
934
935			/*
936			 * If we're performing IO which has an alignment which
937			 * is finer than the underlying fs, go check to see if
938			 * we must zero out the start of this block.
939			 */
940			if (unlikely(dio->blkfactor && !dio->start_zero_done))
941				dio_zero_block(dio, 0);
942
943			/*
944			 * Work out, in this_chunk_blocks, how much disk we
945			 * can add to this page
946			 */
947			this_chunk_blocks = dio->blocks_available;
948			u = (PAGE_SIZE - offset_in_page) >> blkbits;
949			if (this_chunk_blocks > u)
950				this_chunk_blocks = u;
951			u = dio->final_block_in_request - dio->block_in_file;
952			if (this_chunk_blocks > u)
953				this_chunk_blocks = u;
954			this_chunk_bytes = this_chunk_blocks << blkbits;
955			BUG_ON(this_chunk_bytes == 0);
956
957			dio->boundary = buffer_boundary(map_bh);
958			ret = submit_page_section(dio, page, offset_in_page,
959				this_chunk_bytes, dio->next_block_for_io);
960			if (ret) {
961				page_cache_release(page);
962				goto out;
963			}
964			dio->next_block_for_io += this_chunk_blocks;
965
966			dio->block_in_file += this_chunk_blocks;
967			block_in_page += this_chunk_blocks;
968			dio->blocks_available -= this_chunk_blocks;
969next_block:
970			BUG_ON(dio->block_in_file > dio->final_block_in_request);
971			if (dio->block_in_file == dio->final_block_in_request)
972				break;
973		}
974
975		/* Drop the ref which was taken in get_user_pages() */
976		page_cache_release(page);
977		block_in_page = 0;
978	}
979out:
980	return ret;
981}
982
983/*
984 * Releases both i_mutex and i_alloc_sem
985 */
986static ssize_t
987direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
988	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
989	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
990	dio_submit_t submit_io, struct dio *dio)
991{
992	unsigned long user_addr;
993	unsigned long flags;
994	int seg;
995	ssize_t ret = 0;
996	ssize_t ret2;
997	size_t bytes;
998
999	dio->inode = inode;
1000	dio->rw = rw;
1001	dio->blkbits = blkbits;
1002	dio->blkfactor = inode->i_blkbits - blkbits;
1003	dio->block_in_file = offset >> blkbits;
1004
1005	dio->get_block = get_block;
1006	dio->end_io = end_io;
1007	dio->submit_io = submit_io;
1008	dio->final_block_in_bio = -1;
1009	dio->next_block_for_io = -1;
1010
1011	dio->iocb = iocb;
1012	dio->i_size = i_size_read(inode);
1013
1014	spin_lock_init(&dio->bio_lock);
1015	dio->refcount = 1;
1016
1017	/*
1018	 * In case of non-aligned buffers, we may need 2 more
1019	 * pages since we need to zero out first and last block.
1020	 */
1021	if (unlikely(dio->blkfactor))
1022		dio->pages_in_io = 2;
1023
1024	for (seg = 0; seg < nr_segs; seg++) {
1025		user_addr = (unsigned long)iov[seg].iov_base;
1026		dio->pages_in_io +=
1027			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1028				- user_addr/PAGE_SIZE);
1029	}
1030
1031	for (seg = 0; seg < nr_segs; seg++) {
1032		user_addr = (unsigned long)iov[seg].iov_base;
1033		dio->size += bytes = iov[seg].iov_len;
1034
1035		/* Index into the first page of the first block */
1036		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1037		dio->final_block_in_request = dio->block_in_file +
1038						(bytes >> blkbits);
1039		/* Page fetching state */
1040		dio->head = 0;
1041		dio->tail = 0;
1042		dio->curr_page = 0;
1043
1044		dio->total_pages = 0;
1045		if (user_addr & (PAGE_SIZE-1)) {
1046			dio->total_pages++;
1047			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1048		}
1049		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1050		dio->curr_user_address = user_addr;
1051
1052		ret = do_direct_IO(dio);
1053
1054		dio->result += iov[seg].iov_len -
1055			((dio->final_block_in_request - dio->block_in_file) <<
1056					blkbits);
1057
1058		if (ret) {
1059			dio_cleanup(dio);
1060			break;
1061		}
1062	} /* end iovec loop */
1063
1064	if (ret == -ENOTBLK) {
1065		/*
1066		 * The remaining part of the request will be
1067		 * be handled by buffered I/O when we return
1068		 */
1069		ret = 0;
1070	}
1071	/*
1072	 * There may be some unwritten disk at the end of a part-written
1073	 * fs-block-sized block.  Go zero that now.
1074	 */
1075	dio_zero_block(dio, 1);
1076
1077	if (dio->cur_page) {
1078		ret2 = dio_send_cur_page(dio);
1079		if (ret == 0)
1080			ret = ret2;
1081		page_cache_release(dio->cur_page);
1082		dio->cur_page = NULL;
1083	}
1084	if (dio->bio)
1085		dio_bio_submit(dio);
1086
1087	/*
1088	 * It is possible that, we return short IO due to end of file.
1089	 * In that case, we need to release all the pages we got hold on.
1090	 */
1091	dio_cleanup(dio);
1092
1093	/*
1094	 * All block lookups have been performed. For READ requests
1095	 * we can let i_mutex go now that its achieved its purpose
1096	 * of protecting us from looking up uninitialized blocks.
1097	 */
1098	if (rw == READ && (dio->flags & DIO_LOCKING))
1099		mutex_unlock(&dio->inode->i_mutex);
1100
1101	/*
1102	 * The only time we want to leave bios in flight is when a successful
1103	 * partial aio read or full aio write have been setup.  In that case
1104	 * bio completion will call aio_complete.  The only time it's safe to
1105	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1106	 * This had *better* be the only place that raises -EIOCBQUEUED.
1107	 */
1108	BUG_ON(ret == -EIOCBQUEUED);
1109	if (dio->is_async && ret == 0 && dio->result &&
1110	    ((rw & READ) || (dio->result == dio->size)))
1111		ret = -EIOCBQUEUED;
1112
1113	if (ret != -EIOCBQUEUED) {
1114		/* All IO is now issued, send it on its way */
1115		blk_run_address_space(inode->i_mapping);
1116		dio_await_completion(dio);
1117	}
1118
1119	/*
1120	 * Sync will always be dropping the final ref and completing the
1121	 * operation.  AIO can if it was a broken operation described above or
1122	 * in fact if all the bios race to complete before we get here.  In
1123	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1124	 * return code that the caller will hand to aio_complete().
1125	 *
1126	 * This is managed by the bio_lock instead of being an atomic_t so that
1127	 * completion paths can drop their ref and use the remaining count to
1128	 * decide to wake the submission path atomically.
1129	 */
1130	spin_lock_irqsave(&dio->bio_lock, flags);
1131	ret2 = --dio->refcount;
1132	spin_unlock_irqrestore(&dio->bio_lock, flags);
1133
1134	if (ret2 == 0) {
1135		ret = dio_complete(dio, offset, ret, false);
1136		kfree(dio);
1137	} else
1138		BUG_ON(ret != -EIOCBQUEUED);
1139
1140	return ret;
1141}
1142
1143/*
1144 * This is a library function for use by filesystem drivers.
1145 *
1146 * The locking rules are governed by the flags parameter:
1147 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1148 *    scheme for dumb filesystems.
1149 *    For writes this function is called under i_mutex and returns with
1150 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1151 *    taken and dropped again before returning.
1152 *    For reads and writes i_alloc_sem is taken in shared mode and released
1153 *    on I/O completion (which may happen asynchronously after returning to
1154 *    the caller).
1155 *
1156 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1157 *    internal locking but rather rely on the filesystem to synchronize
1158 *    direct I/O reads/writes versus each other and truncate.
1159 *    For reads and writes both i_mutex and i_alloc_sem are not held on
1160 *    entry and are never taken.
1161 */
1162ssize_t
1163__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1164	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1165	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1166	dio_submit_t submit_io,	int flags)
1167{
1168	int seg;
1169	size_t size;
1170	unsigned long addr;
1171	unsigned blkbits = inode->i_blkbits;
1172	unsigned bdev_blkbits = 0;
1173	unsigned blocksize_mask = (1 << blkbits) - 1;
1174	ssize_t retval = -EINVAL;
1175	loff_t end = offset;
1176	struct dio *dio;
1177
1178	if (rw & WRITE)
1179		rw = WRITE_ODIRECT_PLUG;
1180
1181	if (bdev)
1182		bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1183
1184	if (offset & blocksize_mask) {
1185		if (bdev)
1186			 blkbits = bdev_blkbits;
1187		blocksize_mask = (1 << blkbits) - 1;
1188		if (offset & blocksize_mask)
1189			goto out;
1190	}
1191
1192	/* Check the memory alignment.  Blocks cannot straddle pages */
1193	for (seg = 0; seg < nr_segs; seg++) {
1194		addr = (unsigned long)iov[seg].iov_base;
1195		size = iov[seg].iov_len;
1196		end += size;
1197		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1198			if (bdev)
1199				 blkbits = bdev_blkbits;
1200			blocksize_mask = (1 << blkbits) - 1;
1201			if ((addr & blocksize_mask) || (size & blocksize_mask))
1202				goto out;
1203		}
1204	}
1205
1206	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1207	retval = -ENOMEM;
1208	if (!dio)
1209		goto out;
1210	/*
1211	 * Believe it or not, zeroing out the page array caused a .5%
1212	 * performance regression in a database benchmark.  So, we take
1213	 * care to only zero out what's needed.
1214	 */
1215	memset(dio, 0, offsetof(struct dio, pages));
1216
1217	dio->flags = flags;
1218	if (dio->flags & DIO_LOCKING) {
1219		/* watch out for a 0 len io from a tricksy fs */
1220		if (rw == READ && end > offset) {
1221			struct address_space *mapping =
1222					iocb->ki_filp->f_mapping;
1223
1224			/* will be released by direct_io_worker */
1225			mutex_lock(&inode->i_mutex);
1226
1227			retval = filemap_write_and_wait_range(mapping, offset,
1228							      end - 1);
1229			if (retval) {
1230				mutex_unlock(&inode->i_mutex);
1231				kfree(dio);
1232				goto out;
1233			}
1234		}
1235
1236		/*
1237		 * Will be released at I/O completion, possibly in a
1238		 * different thread.
1239		 */
1240		down_read_non_owner(&inode->i_alloc_sem);
1241	}
1242
1243	/*
1244	 * For file extending writes updating i_size before data
1245	 * writeouts complete can expose uninitialized blocks. So
1246	 * even for AIO, we need to wait for i/o to complete before
1247	 * returning in this case.
1248	 */
1249	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1250		(end > i_size_read(inode)));
1251
1252	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1253				nr_segs, blkbits, get_block, end_io,
1254				submit_io, dio);
1255
1256out:
1257	return retval;
1258}
1259EXPORT_SYMBOL(__blockdev_direct_IO);
1260