• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/usb/storage/
1/* Driver for USB Mass Storage compliant devices
2 *
3 * Current development and maintenance by:
4 *   (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
5 *
6 * Developed with the assistance of:
7 *   (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
8 *   (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
9 *   (c) 2002 Alan Stern <stern@rowland.org>
10 *
11 * Initial work by:
12 *   (c) 1999 Michael Gee (michael@linuxspecific.com)
13 *
14 * This driver is based on the 'USB Mass Storage Class' document. This
15 * describes in detail the protocol used to communicate with such
16 * devices.  Clearly, the designers had SCSI and ATAPI commands in
17 * mind when they created this document.  The commands are all very
18 * similar to commands in the SCSI-II and ATAPI specifications.
19 *
20 * It is important to note that in a number of cases this class
21 * exhibits class-specific exemptions from the USB specification.
22 * Notably the usage of NAK, STALL and ACK differs from the norm, in
23 * that they are used to communicate wait, failed and OK on commands.
24 *
25 * Also, for certain devices, the interrupt endpoint is used to convey
26 * status of a command.
27 *
28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
29 * information about this driver.
30 *
31 * This program is free software; you can redistribute it and/or modify it
32 * under the terms of the GNU General Public License as published by the
33 * Free Software Foundation; either version 2, or (at your option) any
34 * later version.
35 *
36 * This program is distributed in the hope that it will be useful, but
37 * WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
39 * General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, write to the Free Software Foundation, Inc.,
43 * 675 Mass Ave, Cambridge, MA 02139, USA.
44 */
45
46#include <linux/sched.h>
47#include <linux/gfp.h>
48#include <linux/errno.h>
49
50#include <linux/usb/quirks.h>
51
52#include <scsi/scsi.h>
53#include <scsi/scsi_eh.h>
54#include <scsi/scsi_device.h>
55
56#include "usb.h"
57#include "transport.h"
58#include "protocol.h"
59#include "scsiglue.h"
60#include "debug.h"
61
62#include <linux/blkdev.h>
63#include "../../scsi/sd.h"
64
65
66/***********************************************************************
67 * Data transfer routines
68 ***********************************************************************/
69
70/*
71 * This is subtle, so pay attention:
72 * ---------------------------------
73 * We're very concerned about races with a command abort.  Hanging this code
74 * is a sure fire way to hang the kernel.  (Note that this discussion applies
75 * only to transactions resulting from a scsi queued-command, since only
76 * these transactions are subject to a scsi abort.  Other transactions, such
77 * as those occurring during device-specific initialization, must be handled
78 * by a separate code path.)
79 *
80 * The abort function (usb_storage_command_abort() in scsiglue.c) first
81 * sets the machine state and the ABORTING bit in us->dflags to prevent
82 * new URBs from being submitted.  It then calls usb_stor_stop_transport()
83 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
84 * to see if the current_urb needs to be stopped.  Likewise, the SG_ACTIVE
85 * bit is tested to see if the current_sg scatter-gather request needs to be
86 * stopped.  The timeout callback routine does much the same thing.
87 *
88 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
89 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
90 * called to stop any ongoing requests.
91 *
92 * The submit function first verifies that the submitting is allowed
93 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
94 * completes without errors, and only then sets the URB_ACTIVE bit.  This
95 * prevents the stop_transport() function from trying to cancel the URB
96 * while the submit call is underway.  Next, the submit function must test
97 * the flags to see if an abort or disconnect occurred during the submission
98 * or before the URB_ACTIVE bit was set.  If so, it's essential to cancel
99 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
100 * is still set).  Either way, the function must then wait for the URB to
101 * finish.  Note that the URB can still be in progress even after a call to
102 * usb_unlink_urb() returns.
103 *
104 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
105 * either the stop_transport() function or the submitting function
106 * is guaranteed to call usb_unlink_urb() for an active URB,
107 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
108 * called more than once or from being called during usb_submit_urb().
109 */
110
111/* This is the completion handler which will wake us up when an URB
112 * completes.
113 */
114static void usb_stor_blocking_completion(struct urb *urb)
115{
116	struct completion *urb_done_ptr = urb->context;
117
118	complete(urb_done_ptr);
119}
120
121/* This is the common part of the URB message submission code
122 *
123 * All URBs from the usb-storage driver involved in handling a queued scsi
124 * command _must_ pass through this function (or something like it) for the
125 * abort mechanisms to work properly.
126 */
127static int usb_stor_msg_common(struct us_data *us, int timeout)
128{
129	struct completion urb_done;
130	long timeleft;
131	int status;
132
133	/* don't submit URBs during abort processing */
134	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
135		return -EIO;
136
137	/* set up data structures for the wakeup system */
138	init_completion(&urb_done);
139
140	/* fill the common fields in the URB */
141	us->current_urb->context = &urb_done;
142	us->current_urb->transfer_flags = 0;
143
144	/* we assume that if transfer_buffer isn't us->iobuf then it
145	 * hasn't been mapped for DMA.  Yes, this is clunky, but it's
146	 * easier than always having the caller tell us whether the
147	 * transfer buffer has already been mapped. */
148	if (us->current_urb->transfer_buffer == us->iobuf)
149		us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
150	us->current_urb->transfer_dma = us->iobuf_dma;
151
152	/* submit the URB */
153	status = usb_submit_urb(us->current_urb, GFP_NOIO);
154	if (status) {
155		/* something went wrong */
156		return status;
157	}
158
159	/* since the URB has been submitted successfully, it's now okay
160	 * to cancel it */
161	set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
162
163	/* did an abort occur during the submission? */
164	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
165
166		/* cancel the URB, if it hasn't been cancelled already */
167		if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
168			US_DEBUGP("-- cancelling URB\n");
169			usb_unlink_urb(us->current_urb);
170		}
171	}
172
173	/* wait for the completion of the URB */
174	timeleft = wait_for_completion_interruptible_timeout(
175			&urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
176
177	clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
178
179	if (timeleft <= 0) {
180		US_DEBUGP("%s -- cancelling URB\n",
181			  timeleft == 0 ? "Timeout" : "Signal");
182		usb_kill_urb(us->current_urb);
183	}
184
185	/* return the URB status */
186	return us->current_urb->status;
187}
188
189/*
190 * Transfer one control message, with timeouts, and allowing early
191 * termination.  Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
192 */
193int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
194		 u8 request, u8 requesttype, u16 value, u16 index,
195		 void *data, u16 size, int timeout)
196{
197	int status;
198
199	US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
200			__func__, request, requesttype,
201			value, index, size);
202
203	/* fill in the devrequest structure */
204	us->cr->bRequestType = requesttype;
205	us->cr->bRequest = request;
206	us->cr->wValue = cpu_to_le16(value);
207	us->cr->wIndex = cpu_to_le16(index);
208	us->cr->wLength = cpu_to_le16(size);
209
210	/* fill and submit the URB */
211	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
212			 (unsigned char*) us->cr, data, size,
213			 usb_stor_blocking_completion, NULL);
214	status = usb_stor_msg_common(us, timeout);
215
216	/* return the actual length of the data transferred if no error */
217	if (status == 0)
218		status = us->current_urb->actual_length;
219	return status;
220}
221EXPORT_SYMBOL_GPL(usb_stor_control_msg);
222
223/* This is a version of usb_clear_halt() that allows early termination and
224 * doesn't read the status from the device -- this is because some devices
225 * crash their internal firmware when the status is requested after a halt.
226 *
227 * A definitive list of these 'bad' devices is too difficult to maintain or
228 * make complete enough to be useful.  This problem was first observed on the
229 * Hagiwara FlashGate DUAL unit.  However, bus traces reveal that neither
230 * MacOS nor Windows checks the status after clearing a halt.
231 *
232 * Since many vendors in this space limit their testing to interoperability
233 * with these two OSes, specification violations like this one are common.
234 */
235int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
236{
237	int result;
238	int endp = usb_pipeendpoint(pipe);
239
240	if (usb_pipein (pipe))
241		endp |= USB_DIR_IN;
242
243	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
244		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
245		USB_ENDPOINT_HALT, endp,
246		NULL, 0, 3*HZ);
247
248	if (result >= 0)
249		usb_reset_endpoint(us->pusb_dev, endp);
250
251	US_DEBUGP("%s: result = %d\n", __func__, result);
252	return result;
253}
254EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
255
256
257/*
258 * Interpret the results of a URB transfer
259 *
260 * This function prints appropriate debugging messages, clears halts on
261 * non-control endpoints, and translates the status to the corresponding
262 * USB_STOR_XFER_xxx return code.
263 */
264static int interpret_urb_result(struct us_data *us, unsigned int pipe,
265		unsigned int length, int result, unsigned int partial)
266{
267	US_DEBUGP("Status code %d; transferred %u/%u\n",
268			result, partial, length);
269	switch (result) {
270
271	/* no error code; did we send all the data? */
272	case 0:
273		if (partial != length) {
274			US_DEBUGP("-- short transfer\n");
275			return USB_STOR_XFER_SHORT;
276		}
277
278		US_DEBUGP("-- transfer complete\n");
279		return USB_STOR_XFER_GOOD;
280
281	/* stalled */
282	case -EPIPE:
283		/* for control endpoints, (used by CB[I]) a stall indicates
284		 * a failed command */
285		if (usb_pipecontrol(pipe)) {
286			US_DEBUGP("-- stall on control pipe\n");
287			return USB_STOR_XFER_STALLED;
288		}
289
290		/* for other sorts of endpoint, clear the stall */
291		US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe);
292		if (usb_stor_clear_halt(us, pipe) < 0)
293			return USB_STOR_XFER_ERROR;
294		return USB_STOR_XFER_STALLED;
295
296	/* babble - the device tried to send more than we wanted to read */
297	case -EOVERFLOW:
298		US_DEBUGP("-- babble\n");
299		return USB_STOR_XFER_LONG;
300
301	/* the transfer was cancelled by abort, disconnect, or timeout */
302	case -ECONNRESET:
303		US_DEBUGP("-- transfer cancelled\n");
304		return USB_STOR_XFER_ERROR;
305
306	/* short scatter-gather read transfer */
307	case -EREMOTEIO:
308		US_DEBUGP("-- short read transfer\n");
309		return USB_STOR_XFER_SHORT;
310
311	/* abort or disconnect in progress */
312	case -EIO:
313		US_DEBUGP("-- abort or disconnect in progress\n");
314		return USB_STOR_XFER_ERROR;
315
316	/* the catch-all error case */
317	default:
318		US_DEBUGP("-- unknown error\n");
319		return USB_STOR_XFER_ERROR;
320	}
321}
322
323/*
324 * Transfer one control message, without timeouts, but allowing early
325 * termination.  Return codes are USB_STOR_XFER_xxx.
326 */
327int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
328		u8 request, u8 requesttype, u16 value, u16 index,
329		void *data, u16 size)
330{
331	int result;
332
333	US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
334			__func__, request, requesttype,
335			value, index, size);
336
337	/* fill in the devrequest structure */
338	us->cr->bRequestType = requesttype;
339	us->cr->bRequest = request;
340	us->cr->wValue = cpu_to_le16(value);
341	us->cr->wIndex = cpu_to_le16(index);
342	us->cr->wLength = cpu_to_le16(size);
343
344	/* fill and submit the URB */
345	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
346			 (unsigned char*) us->cr, data, size,
347			 usb_stor_blocking_completion, NULL);
348	result = usb_stor_msg_common(us, 0);
349
350	return interpret_urb_result(us, pipe, size, result,
351			us->current_urb->actual_length);
352}
353EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
354
355/*
356 * Receive one interrupt buffer, without timeouts, but allowing early
357 * termination.  Return codes are USB_STOR_XFER_xxx.
358 *
359 * This routine always uses us->recv_intr_pipe as the pipe and
360 * us->ep_bInterval as the interrupt interval.
361 */
362static int usb_stor_intr_transfer(struct us_data *us, void *buf,
363				  unsigned int length)
364{
365	int result;
366	unsigned int pipe = us->recv_intr_pipe;
367	unsigned int maxp;
368
369	US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
370
371	/* calculate the max packet size */
372	maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
373	if (maxp > length)
374		maxp = length;
375
376	/* fill and submit the URB */
377	usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
378			maxp, usb_stor_blocking_completion, NULL,
379			us->ep_bInterval);
380	result = usb_stor_msg_common(us, 0);
381
382	return interpret_urb_result(us, pipe, length, result,
383			us->current_urb->actual_length);
384}
385
386/*
387 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
388 * termination.  Return codes are USB_STOR_XFER_xxx.  If the bulk pipe
389 * stalls during the transfer, the halt is automatically cleared.
390 */
391int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
392	void *buf, unsigned int length, unsigned int *act_len)
393{
394	int result;
395
396	US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
397
398	/* fill and submit the URB */
399	usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
400		      usb_stor_blocking_completion, NULL);
401	result = usb_stor_msg_common(us, 0);
402
403	/* store the actual length of the data transferred */
404	if (act_len)
405		*act_len = us->current_urb->actual_length;
406	return interpret_urb_result(us, pipe, length, result,
407			us->current_urb->actual_length);
408}
409EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
410
411/*
412 * Transfer a scatter-gather list via bulk transfer
413 *
414 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
415 * above, but it uses the usbcore scatter-gather library.
416 */
417static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
418		struct scatterlist *sg, int num_sg, unsigned int length,
419		unsigned int *act_len)
420{
421	int result;
422
423	/* don't submit s-g requests during abort processing */
424	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
425		return USB_STOR_XFER_ERROR;
426
427	/* initialize the scatter-gather request block */
428	US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__,
429			length, num_sg);
430	result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
431			sg, num_sg, length, GFP_NOIO);
432	if (result) {
433		US_DEBUGP("usb_sg_init returned %d\n", result);
434		return USB_STOR_XFER_ERROR;
435	}
436
437	/* since the block has been initialized successfully, it's now
438	 * okay to cancel it */
439	set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
440
441	/* did an abort occur during the submission? */
442	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
443
444		/* cancel the request, if it hasn't been cancelled already */
445		if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
446			US_DEBUGP("-- cancelling sg request\n");
447			usb_sg_cancel(&us->current_sg);
448		}
449	}
450
451	/* wait for the completion of the transfer */
452	usb_sg_wait(&us->current_sg);
453	clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
454
455	result = us->current_sg.status;
456	if (act_len)
457		*act_len = us->current_sg.bytes;
458	return interpret_urb_result(us, pipe, length, result,
459			us->current_sg.bytes);
460}
461
462/*
463 * Common used function. Transfer a complete command
464 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
465 */
466int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
467		      struct scsi_cmnd* srb)
468{
469	unsigned int partial;
470	int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
471				      scsi_sg_count(srb), scsi_bufflen(srb),
472				      &partial);
473
474	scsi_set_resid(srb, scsi_bufflen(srb) - partial);
475	return result;
476}
477EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
478
479/*
480 * Transfer an entire SCSI command's worth of data payload over the bulk
481 * pipe.
482 *
483 * Note that this uses usb_stor_bulk_transfer_buf() and
484 * usb_stor_bulk_transfer_sglist() to achieve its goals --
485 * this function simply determines whether we're going to use
486 * scatter-gather or not, and acts appropriately.
487 */
488int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
489		void *buf, unsigned int length_left, int use_sg, int *residual)
490{
491	int result;
492	unsigned int partial;
493
494	/* are we scatter-gathering? */
495	if (use_sg) {
496		/* use the usb core scatter-gather primitives */
497		result = usb_stor_bulk_transfer_sglist(us, pipe,
498				(struct scatterlist *) buf, use_sg,
499				length_left, &partial);
500		length_left -= partial;
501	} else {
502		/* no scatter-gather, just make the request */
503		result = usb_stor_bulk_transfer_buf(us, pipe, buf,
504				length_left, &partial);
505		length_left -= partial;
506	}
507
508	/* store the residual and return the error code */
509	if (residual)
510		*residual = length_left;
511	return result;
512}
513EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
514
515/***********************************************************************
516 * Transport routines
517 ***********************************************************************/
518
519/* There are so many devices that report the capacity incorrectly,
520 * this routine was written to counteract some of the resulting
521 * problems.
522 */
523static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
524{
525	struct gendisk *disk;
526	struct scsi_disk *sdkp;
527	u32 sector;
528
529	/* To Report "Medium Error: Record Not Found */
530	static unsigned char record_not_found[18] = {
531		[0]	= 0x70,			/* current error */
532		[2]	= MEDIUM_ERROR,		/* = 0x03 */
533		[7]	= 0x0a,			/* additional length */
534		[12]	= 0x14			/* Record Not Found */
535	};
536
537	/* If last-sector problems can't occur, whether because the
538	 * capacity was already decremented or because the device is
539	 * known to report the correct capacity, then we don't need
540	 * to do anything.
541	 */
542	if (!us->use_last_sector_hacks)
543		return;
544
545	/* Was this command a READ(10) or a WRITE(10)? */
546	if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
547		goto done;
548
549	/* Did this command access the last sector? */
550	sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
551			(srb->cmnd[4] << 8) | (srb->cmnd[5]);
552	disk = srb->request->rq_disk;
553	if (!disk)
554		goto done;
555	sdkp = scsi_disk(disk);
556	if (!sdkp)
557		goto done;
558	if (sector + 1 != sdkp->capacity)
559		goto done;
560
561	if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
562
563		/* The command succeeded.  We know this device doesn't
564		 * have the last-sector bug, so stop checking it.
565		 */
566		us->use_last_sector_hacks = 0;
567
568	} else {
569		/* The command failed.  Allow up to 3 retries in case this
570		 * is some normal sort of failure.  After that, assume the
571		 * capacity is wrong and we're trying to access the sector
572		 * beyond the end.  Replace the result code and sense data
573		 * with values that will cause the SCSI core to fail the
574		 * command immediately, instead of going into an infinite
575		 * (or even just a very long) retry loop.
576		 */
577		if (++us->last_sector_retries < 3)
578			return;
579		srb->result = SAM_STAT_CHECK_CONDITION;
580		memcpy(srb->sense_buffer, record_not_found,
581				sizeof(record_not_found));
582	}
583
584 done:
585	/* Don't reset the retry counter for TEST UNIT READY commands,
586	 * because they get issued after device resets which might be
587	 * caused by a failed last-sector access.
588	 */
589	if (srb->cmnd[0] != TEST_UNIT_READY)
590		us->last_sector_retries = 0;
591}
592
593/* Invoke the transport and basic error-handling/recovery methods
594 *
595 * This is used by the protocol layers to actually send the message to
596 * the device and receive the response.
597 */
598void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
599{
600	int need_auto_sense;
601	int result;
602
603	/* send the command to the transport layer */
604	scsi_set_resid(srb, 0);
605	result = us->transport(srb, us);
606
607	/* if the command gets aborted by the higher layers, we need to
608	 * short-circuit all other processing
609	 */
610	if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
611		US_DEBUGP("-- command was aborted\n");
612		srb->result = DID_ABORT << 16;
613		goto Handle_Errors;
614	}
615
616	/* if there is a transport error, reset and don't auto-sense */
617	if (result == USB_STOR_TRANSPORT_ERROR) {
618		US_DEBUGP("-- transport indicates error, resetting\n");
619		srb->result = DID_ERROR << 16;
620		goto Handle_Errors;
621	}
622
623	/* if the transport provided its own sense data, don't auto-sense */
624	if (result == USB_STOR_TRANSPORT_NO_SENSE) {
625		srb->result = SAM_STAT_CHECK_CONDITION;
626		last_sector_hacks(us, srb);
627		return;
628	}
629
630	srb->result = SAM_STAT_GOOD;
631
632	/* Determine if we need to auto-sense
633	 *
634	 * I normally don't use a flag like this, but it's almost impossible
635	 * to understand what's going on here if I don't.
636	 */
637	need_auto_sense = 0;
638
639	/*
640	 * If we're running the CB transport, which is incapable
641	 * of determining status on its own, we will auto-sense
642	 * unless the operation involved a data-in transfer.  Devices
643	 * can signal most data-in errors by stalling the bulk-in pipe.
644	 */
645	if ((us->protocol == US_PR_CB || us->protocol == US_PR_DPCM_USB) &&
646			srb->sc_data_direction != DMA_FROM_DEVICE) {
647		US_DEBUGP("-- CB transport device requiring auto-sense\n");
648		need_auto_sense = 1;
649	}
650
651	/*
652	 * If we have a failure, we're going to do a REQUEST_SENSE
653	 * automatically.  Note that we differentiate between a command
654	 * "failure" and an "error" in the transport mechanism.
655	 */
656	if (result == USB_STOR_TRANSPORT_FAILED) {
657		US_DEBUGP("-- transport indicates command failure\n");
658		need_auto_sense = 1;
659	}
660
661	/*
662	 * Determine if this device is SAT by seeing if the
663	 * command executed successfully.  Otherwise we'll have
664	 * to wait for at least one CHECK_CONDITION to determine
665	 * SANE_SENSE support
666	 */
667	if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
668	    result == USB_STOR_TRANSPORT_GOOD &&
669	    !(us->fflags & US_FL_SANE_SENSE) &&
670	    !(us->fflags & US_FL_BAD_SENSE) &&
671	    !(srb->cmnd[2] & 0x20))) {
672		US_DEBUGP("-- SAT supported, increasing auto-sense\n");
673		us->fflags |= US_FL_SANE_SENSE;
674	}
675
676	/*
677	 * A short transfer on a command where we don't expect it
678	 * is unusual, but it doesn't mean we need to auto-sense.
679	 */
680	if ((scsi_get_resid(srb) > 0) &&
681	    !((srb->cmnd[0] == REQUEST_SENSE) ||
682	      (srb->cmnd[0] == INQUIRY) ||
683	      (srb->cmnd[0] == MODE_SENSE) ||
684	      (srb->cmnd[0] == LOG_SENSE) ||
685	      (srb->cmnd[0] == MODE_SENSE_10))) {
686		US_DEBUGP("-- unexpectedly short transfer\n");
687	}
688
689	/* Now, if we need to do the auto-sense, let's do it */
690	if (need_auto_sense) {
691		int temp_result;
692		struct scsi_eh_save ses;
693		int sense_size = US_SENSE_SIZE;
694
695		/* device supports and needs bigger sense buffer */
696		if (us->fflags & US_FL_SANE_SENSE)
697			sense_size = ~0;
698Retry_Sense:
699		US_DEBUGP("Issuing auto-REQUEST_SENSE\n");
700
701		scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
702
703		if (us->subclass == US_SC_RBC || us->subclass == US_SC_SCSI ||
704				us->subclass == US_SC_CYP_ATACB)
705			srb->cmd_len = 6;
706		else
707			srb->cmd_len = 12;
708
709		/* issue the auto-sense command */
710		scsi_set_resid(srb, 0);
711		temp_result = us->transport(us->srb, us);
712
713		/* let's clean up right away */
714		scsi_eh_restore_cmnd(srb, &ses);
715
716		if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
717			US_DEBUGP("-- auto-sense aborted\n");
718			srb->result = DID_ABORT << 16;
719
720			/* If SANE_SENSE caused this problem, disable it */
721			if (sense_size != US_SENSE_SIZE) {
722				us->fflags &= ~US_FL_SANE_SENSE;
723				us->fflags |= US_FL_BAD_SENSE;
724			}
725			goto Handle_Errors;
726		}
727
728		/* Some devices claim to support larger sense but fail when
729		 * trying to request it. When a transport failure happens
730		 * using US_FS_SANE_SENSE, we always retry with a standard
731		 * (small) sense request. This fixes some USB GSM modems
732		 */
733		if (temp_result == USB_STOR_TRANSPORT_FAILED &&
734				sense_size != US_SENSE_SIZE) {
735			US_DEBUGP("-- auto-sense failure, retry small sense\n");
736			sense_size = US_SENSE_SIZE;
737			us->fflags &= ~US_FL_SANE_SENSE;
738			us->fflags |= US_FL_BAD_SENSE;
739			goto Retry_Sense;
740		}
741
742		/* Other failures */
743		if (temp_result != USB_STOR_TRANSPORT_GOOD) {
744			US_DEBUGP("-- auto-sense failure\n");
745
746			/* we skip the reset if this happens to be a
747			 * multi-target device, since failure of an
748			 * auto-sense is perfectly valid
749			 */
750			srb->result = DID_ERROR << 16;
751			if (!(us->fflags & US_FL_SCM_MULT_TARG))
752				goto Handle_Errors;
753			return;
754		}
755
756		/* If the sense data returned is larger than 18-bytes then we
757		 * assume this device supports requesting more in the future.
758		 * The response code must be 70h through 73h inclusive.
759		 */
760		if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
761		    !(us->fflags & US_FL_SANE_SENSE) &&
762		    !(us->fflags & US_FL_BAD_SENSE) &&
763		    (srb->sense_buffer[0] & 0x7C) == 0x70) {
764			US_DEBUGP("-- SANE_SENSE support enabled\n");
765			us->fflags |= US_FL_SANE_SENSE;
766
767			/* Indicate to the user that we truncated their sense
768			 * because we didn't know it supported larger sense.
769			 */
770			US_DEBUGP("-- Sense data truncated to %i from %i\n",
771			          US_SENSE_SIZE,
772			          srb->sense_buffer[7] + 8);
773			srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
774		}
775
776		US_DEBUGP("-- Result from auto-sense is %d\n", temp_result);
777		US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
778			  srb->sense_buffer[0],
779			  srb->sense_buffer[2] & 0xf,
780			  srb->sense_buffer[12],
781			  srb->sense_buffer[13]);
782#ifdef CONFIG_USB_STORAGE_DEBUG
783		usb_stor_show_sense(
784			  srb->sense_buffer[2] & 0xf,
785			  srb->sense_buffer[12],
786			  srb->sense_buffer[13]);
787#endif
788
789		/* set the result so the higher layers expect this data */
790		srb->result = SAM_STAT_CHECK_CONDITION;
791
792		/* We often get empty sense data.  This could indicate that
793		 * everything worked or that there was an unspecified
794		 * problem.  We have to decide which.
795		 */
796		if (	/* Filemark 0, ignore EOM, ILI 0, no sense */
797				(srb->sense_buffer[2] & 0xaf) == 0 &&
798			/* No ASC or ASCQ */
799				srb->sense_buffer[12] == 0 &&
800				srb->sense_buffer[13] == 0) {
801
802			/* If things are really okay, then let's show that.
803			 * Zero out the sense buffer so the higher layers
804			 * won't realize we did an unsolicited auto-sense.
805			 */
806			if (result == USB_STOR_TRANSPORT_GOOD) {
807				srb->result = SAM_STAT_GOOD;
808				srb->sense_buffer[0] = 0x0;
809
810			/* If there was a problem, report an unspecified
811			 * hardware error to prevent the higher layers from
812			 * entering an infinite retry loop.
813			 */
814			} else {
815				srb->result = DID_ERROR << 16;
816				srb->sense_buffer[2] = HARDWARE_ERROR;
817			}
818		}
819	}
820
821	/* Did we transfer less than the minimum amount required? */
822	if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
823			scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
824		srb->result = DID_ERROR << 16;
825
826	last_sector_hacks(us, srb);
827	return;
828
829	/* Error and abort processing: try to resynchronize with the device
830	 * by issuing a port reset.  If that fails, try a class-specific
831	 * device reset. */
832  Handle_Errors:
833
834	/* Set the RESETTING bit, and clear the ABORTING bit so that
835	 * the reset may proceed. */
836	scsi_lock(us_to_host(us));
837	set_bit(US_FLIDX_RESETTING, &us->dflags);
838	clear_bit(US_FLIDX_ABORTING, &us->dflags);
839	scsi_unlock(us_to_host(us));
840
841	/* We must release the device lock because the pre_reset routine
842	 * will want to acquire it. */
843	mutex_unlock(&us->dev_mutex);
844	result = usb_stor_port_reset(us);
845	mutex_lock(&us->dev_mutex);
846
847	if (result < 0) {
848		scsi_lock(us_to_host(us));
849		usb_stor_report_device_reset(us);
850		scsi_unlock(us_to_host(us));
851		us->transport_reset(us);
852	}
853	clear_bit(US_FLIDX_RESETTING, &us->dflags);
854	last_sector_hacks(us, srb);
855}
856
857/* Stop the current URB transfer */
858void usb_stor_stop_transport(struct us_data *us)
859{
860	US_DEBUGP("%s called\n", __func__);
861
862	/* If the state machine is blocked waiting for an URB,
863	 * let's wake it up.  The test_and_clear_bit() call
864	 * guarantees that if a URB has just been submitted,
865	 * it won't be cancelled more than once. */
866	if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
867		US_DEBUGP("-- cancelling URB\n");
868		usb_unlink_urb(us->current_urb);
869	}
870
871	/* If we are waiting for a scatter-gather operation, cancel it. */
872	if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
873		US_DEBUGP("-- cancelling sg request\n");
874		usb_sg_cancel(&us->current_sg);
875	}
876}
877
878/*
879 * Control/Bulk and Control/Bulk/Interrupt transport
880 */
881
882int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
883{
884	unsigned int transfer_length = scsi_bufflen(srb);
885	unsigned int pipe = 0;
886	int result;
887
888	/* COMMAND STAGE */
889	/* let's send the command via the control pipe */
890	result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
891				      US_CBI_ADSC,
892				      USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
893				      us->ifnum, srb->cmnd, srb->cmd_len);
894
895	/* check the return code for the command */
896	US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result);
897
898	/* if we stalled the command, it means command failed */
899	if (result == USB_STOR_XFER_STALLED) {
900		return USB_STOR_TRANSPORT_FAILED;
901	}
902
903	/* Uh oh... serious problem here */
904	if (result != USB_STOR_XFER_GOOD) {
905		return USB_STOR_TRANSPORT_ERROR;
906	}
907
908	/* DATA STAGE */
909	/* transfer the data payload for this command, if one exists*/
910	if (transfer_length) {
911		pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
912				us->recv_bulk_pipe : us->send_bulk_pipe;
913		result = usb_stor_bulk_srb(us, pipe, srb);
914		US_DEBUGP("CBI data stage result is 0x%x\n", result);
915
916		/* if we stalled the data transfer it means command failed */
917		if (result == USB_STOR_XFER_STALLED)
918			return USB_STOR_TRANSPORT_FAILED;
919		if (result > USB_STOR_XFER_STALLED)
920			return USB_STOR_TRANSPORT_ERROR;
921	}
922
923	/* STATUS STAGE */
924
925	/* NOTE: CB does not have a status stage.  Silly, I know.  So
926	 * we have to catch this at a higher level.
927	 */
928	if (us->protocol != US_PR_CBI)
929		return USB_STOR_TRANSPORT_GOOD;
930
931	result = usb_stor_intr_transfer(us, us->iobuf, 2);
932	US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n",
933			us->iobuf[0], us->iobuf[1]);
934	if (result != USB_STOR_XFER_GOOD)
935		return USB_STOR_TRANSPORT_ERROR;
936
937	/* UFI gives us ASC and ASCQ, like a request sense
938	 *
939	 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
940	 * devices, so we ignore the information for those commands.  Note
941	 * that this means we could be ignoring a real error on these
942	 * commands, but that can't be helped.
943	 */
944	if (us->subclass == US_SC_UFI) {
945		if (srb->cmnd[0] == REQUEST_SENSE ||
946		    srb->cmnd[0] == INQUIRY)
947			return USB_STOR_TRANSPORT_GOOD;
948		if (us->iobuf[0])
949			goto Failed;
950		return USB_STOR_TRANSPORT_GOOD;
951	}
952
953	/* If not UFI, we interpret the data as a result code
954	 * The first byte should always be a 0x0.
955	 *
956	 * Some bogus devices don't follow that rule.  They stuff the ASC
957	 * into the first byte -- so if it's non-zero, call it a failure.
958	 */
959	if (us->iobuf[0]) {
960		US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n",
961				us->iobuf[0]);
962		goto Failed;
963
964	}
965
966	/* The second byte & 0x0F should be 0x0 for good, otherwise error */
967	switch (us->iobuf[1] & 0x0F) {
968		case 0x00:
969			return USB_STOR_TRANSPORT_GOOD;
970		case 0x01:
971			goto Failed;
972	}
973	return USB_STOR_TRANSPORT_ERROR;
974
975	/* the CBI spec requires that the bulk pipe must be cleared
976	 * following any data-in/out command failure (section 2.4.3.1.3)
977	 */
978  Failed:
979	if (pipe)
980		usb_stor_clear_halt(us, pipe);
981	return USB_STOR_TRANSPORT_FAILED;
982}
983EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
984
985/*
986 * Bulk only transport
987 */
988
989/* Determine what the maximum LUN supported is */
990int usb_stor_Bulk_max_lun(struct us_data *us)
991{
992	int result;
993
994	/* issue the command */
995	us->iobuf[0] = 0;
996	result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
997				 US_BULK_GET_MAX_LUN,
998				 USB_DIR_IN | USB_TYPE_CLASS |
999				 USB_RECIP_INTERFACE,
1000				 0, us->ifnum, us->iobuf, 1, 10*HZ);
1001
1002	US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
1003		  result, us->iobuf[0]);
1004
1005	/* if we have a successful request, return the result */
1006	if (result > 0)
1007		return us->iobuf[0];
1008
1009	/*
1010	 * Some devices don't like GetMaxLUN.  They may STALL the control
1011	 * pipe, they may return a zero-length result, they may do nothing at
1012	 * all and timeout, or they may fail in even more bizarrely creative
1013	 * ways.  In these cases the best approach is to use the default
1014	 * value: only one LUN.
1015	 */
1016	return 0;
1017}
1018
1019int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
1020{
1021	struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
1022	struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
1023	unsigned int transfer_length = scsi_bufflen(srb);
1024	unsigned int residue;
1025	int result;
1026	int fake_sense = 0;
1027	unsigned int cswlen;
1028	unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
1029
1030	/* Take care of BULK32 devices; set extra byte to 0 */
1031	if (unlikely(us->fflags & US_FL_BULK32)) {
1032		cbwlen = 32;
1033		us->iobuf[31] = 0;
1034	}
1035
1036	/* set up the command wrapper */
1037	bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
1038	bcb->DataTransferLength = cpu_to_le32(transfer_length);
1039	bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1 << 7 : 0;
1040	bcb->Tag = ++us->tag;
1041	bcb->Lun = srb->device->lun;
1042	if (us->fflags & US_FL_SCM_MULT_TARG)
1043		bcb->Lun |= srb->device->id << 4;
1044	bcb->Length = srb->cmd_len;
1045
1046	/* copy the command payload */
1047	memset(bcb->CDB, 0, sizeof(bcb->CDB));
1048	memcpy(bcb->CDB, srb->cmnd, bcb->Length);
1049
1050	/* send it to out endpoint */
1051	US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1052			le32_to_cpu(bcb->Signature), bcb->Tag,
1053			le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
1054			(bcb->Lun >> 4), (bcb->Lun & 0x0F),
1055			bcb->Length);
1056	result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
1057				bcb, cbwlen, NULL);
1058	US_DEBUGP("Bulk command transfer result=%d\n", result);
1059	if (result != USB_STOR_XFER_GOOD)
1060		return USB_STOR_TRANSPORT_ERROR;
1061
1062	/* DATA STAGE */
1063	/* send/receive data payload, if there is any */
1064
1065	/* Some USB-IDE converter chips need a 100us delay between the
1066	 * command phase and the data phase.  Some devices need a little
1067	 * more than that, probably because of clock rate inaccuracies. */
1068	if (unlikely(us->fflags & US_FL_GO_SLOW))
1069		udelay(125);
1070
1071	if (transfer_length) {
1072		unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
1073				us->recv_bulk_pipe : us->send_bulk_pipe;
1074		result = usb_stor_bulk_srb(us, pipe, srb);
1075		US_DEBUGP("Bulk data transfer result 0x%x\n", result);
1076		if (result == USB_STOR_XFER_ERROR)
1077			return USB_STOR_TRANSPORT_ERROR;
1078
1079		/* If the device tried to send back more data than the
1080		 * amount requested, the spec requires us to transfer
1081		 * the CSW anyway.  Since there's no point retrying the
1082		 * the command, we'll return fake sense data indicating
1083		 * Illegal Request, Invalid Field in CDB.
1084		 */
1085		if (result == USB_STOR_XFER_LONG)
1086			fake_sense = 1;
1087	}
1088
1089	/* See flow chart on pg 15 of the Bulk Only Transport spec for
1090	 * an explanation of how this code works.
1091	 */
1092
1093	/* get CSW for device status */
1094	US_DEBUGP("Attempting to get CSW...\n");
1095	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1096				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1097
1098	/* Some broken devices add unnecessary zero-length packets to the
1099	 * end of their data transfers.  Such packets show up as 0-length
1100	 * CSWs.  If we encounter such a thing, try to read the CSW again.
1101	 */
1102	if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
1103		US_DEBUGP("Received 0-length CSW; retrying...\n");
1104		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1105				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1106	}
1107
1108	/* did the attempt to read the CSW fail? */
1109	if (result == USB_STOR_XFER_STALLED) {
1110
1111		/* get the status again */
1112		US_DEBUGP("Attempting to get CSW (2nd try)...\n");
1113		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1114				bcs, US_BULK_CS_WRAP_LEN, NULL);
1115	}
1116
1117	/* if we still have a failure at this point, we're in trouble */
1118	US_DEBUGP("Bulk status result = %d\n", result);
1119	if (result != USB_STOR_XFER_GOOD)
1120		return USB_STOR_TRANSPORT_ERROR;
1121
1122	/* check bulk status */
1123	residue = le32_to_cpu(bcs->Residue);
1124	US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1125			le32_to_cpu(bcs->Signature), bcs->Tag,
1126			residue, bcs->Status);
1127	if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1128		bcs->Status > US_BULK_STAT_PHASE) {
1129		US_DEBUGP("Bulk logical error\n");
1130		return USB_STOR_TRANSPORT_ERROR;
1131	}
1132
1133	/* Some broken devices report odd signatures, so we do not check them
1134	 * for validity against the spec. We store the first one we see,
1135	 * and check subsequent transfers for validity against this signature.
1136	 */
1137	if (!us->bcs_signature) {
1138		us->bcs_signature = bcs->Signature;
1139		if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1140			US_DEBUGP("Learnt BCS signature 0x%08X\n",
1141					le32_to_cpu(us->bcs_signature));
1142	} else if (bcs->Signature != us->bcs_signature) {
1143		US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n",
1144			  le32_to_cpu(bcs->Signature),
1145			  le32_to_cpu(us->bcs_signature));
1146		return USB_STOR_TRANSPORT_ERROR;
1147	}
1148
1149	/* try to compute the actual residue, based on how much data
1150	 * was really transferred and what the device tells us */
1151	if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1152
1153		/* Heuristically detect devices that generate bogus residues
1154		 * by seeing what happens with INQUIRY and READ CAPACITY
1155		 * commands.
1156		 */
1157		if (bcs->Status == US_BULK_STAT_OK &&
1158				scsi_get_resid(srb) == 0 &&
1159					((srb->cmnd[0] == INQUIRY &&
1160						transfer_length == 36) ||
1161					(srb->cmnd[0] == READ_CAPACITY &&
1162						transfer_length == 8))) {
1163			us->fflags |= US_FL_IGNORE_RESIDUE;
1164
1165		} else {
1166			residue = min(residue, transfer_length);
1167			scsi_set_resid(srb, max(scsi_get_resid(srb),
1168			                                       (int) residue));
1169		}
1170	}
1171
1172	/* based on the status code, we report good or bad */
1173	switch (bcs->Status) {
1174		case US_BULK_STAT_OK:
1175			/* device babbled -- return fake sense data */
1176			if (fake_sense) {
1177				memcpy(srb->sense_buffer,
1178				       usb_stor_sense_invalidCDB,
1179				       sizeof(usb_stor_sense_invalidCDB));
1180				return USB_STOR_TRANSPORT_NO_SENSE;
1181			}
1182
1183			/* command good -- note that data could be short */
1184			return USB_STOR_TRANSPORT_GOOD;
1185
1186		case US_BULK_STAT_FAIL:
1187			/* command failed */
1188			return USB_STOR_TRANSPORT_FAILED;
1189
1190		case US_BULK_STAT_PHASE:
1191			/* phase error -- note that a transport reset will be
1192			 * invoked by the invoke_transport() function
1193			 */
1194			return USB_STOR_TRANSPORT_ERROR;
1195	}
1196
1197	/* we should never get here, but if we do, we're in trouble */
1198	return USB_STOR_TRANSPORT_ERROR;
1199}
1200EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
1201
1202/***********************************************************************
1203 * Reset routines
1204 ***********************************************************************/
1205
1206/* This is the common part of the device reset code.
1207 *
1208 * It's handy that every transport mechanism uses the control endpoint for
1209 * resets.
1210 *
1211 * Basically, we send a reset with a 5-second timeout, so we don't get
1212 * jammed attempting to do the reset.
1213 */
1214static int usb_stor_reset_common(struct us_data *us,
1215		u8 request, u8 requesttype,
1216		u16 value, u16 index, void *data, u16 size)
1217{
1218	int result;
1219	int result2;
1220
1221	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1222		US_DEBUGP("No reset during disconnect\n");
1223		return -EIO;
1224	}
1225
1226	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1227			request, requesttype, value, index, data, size,
1228			5*HZ);
1229	if (result < 0) {
1230		US_DEBUGP("Soft reset failed: %d\n", result);
1231		return result;
1232	}
1233
1234	/* Give the device some time to recover from the reset,
1235	 * but don't delay disconnect processing. */
1236	wait_event_interruptible_timeout(us->delay_wait,
1237			test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1238			HZ*6);
1239	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1240		US_DEBUGP("Reset interrupted by disconnect\n");
1241		return -EIO;
1242	}
1243
1244	US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n");
1245	result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1246
1247	US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n");
1248	result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1249
1250	/* return a result code based on the result of the clear-halts */
1251	if (result >= 0)
1252		result = result2;
1253	if (result < 0)
1254		US_DEBUGP("Soft reset failed\n");
1255	else
1256		US_DEBUGP("Soft reset done\n");
1257	return result;
1258}
1259
1260/* This issues a CB[I] Reset to the device in question
1261 */
1262#define CB_RESET_CMD_SIZE	12
1263
1264int usb_stor_CB_reset(struct us_data *us)
1265{
1266	US_DEBUGP("%s called\n", __func__);
1267
1268	memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1269	us->iobuf[0] = SEND_DIAGNOSTIC;
1270	us->iobuf[1] = 4;
1271	return usb_stor_reset_common(us, US_CBI_ADSC,
1272				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1273				 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1274}
1275EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
1276
1277/* This issues a Bulk-only Reset to the device in question, including
1278 * clearing the subsequent endpoint halts that may occur.
1279 */
1280int usb_stor_Bulk_reset(struct us_data *us)
1281{
1282	US_DEBUGP("%s called\n", __func__);
1283
1284	return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1285				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1286				 0, us->ifnum, NULL, 0);
1287}
1288EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
1289
1290/* Issue a USB port reset to the device.  The caller must not hold
1291 * us->dev_mutex.
1292 */
1293int usb_stor_port_reset(struct us_data *us)
1294{
1295	int result;
1296
1297	/*for these devices we must use the class specific method */
1298	if (us->pusb_dev->quirks & USB_QUIRK_RESET_MORPHS)
1299		return -EPERM;
1300
1301	result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1302	if (result < 0)
1303		US_DEBUGP("unable to lock device for reset: %d\n", result);
1304	else {
1305		/* Were we disconnected while waiting for the lock? */
1306		if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1307			result = -EIO;
1308			US_DEBUGP("No reset during disconnect\n");
1309		} else {
1310			result = usb_reset_device(us->pusb_dev);
1311			US_DEBUGP("usb_reset_device returns %d\n",
1312					result);
1313		}
1314		usb_unlock_device(us->pusb_dev);
1315	}
1316	return result;
1317}
1318