• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/sbus/char/
1/* bbc_envctrl.c: UltraSPARC-III environment control driver.
2 *
3 * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6#include <linux/kthread.h>
7#include <linux/delay.h>
8#include <linux/kmod.h>
9#include <linux/reboot.h>
10#include <linux/of.h>
11#include <linux/slab.h>
12#include <linux/of_device.h>
13#include <asm/oplib.h>
14
15#include "bbc_i2c.h"
16#include "max1617.h"
17
18#undef ENVCTRL_TRACE
19
20/* WARNING: Making changes to this driver is very dangerous.
21 *          If you misprogram the sensor chips they can
22 *          cut the power on you instantly.
23 */
24
25/* Two temperature sensors exist in the SunBLADE-1000 enclosure.
26 * Both are implemented using max1617 i2c devices.  Each max1617
27 * monitors 2 temperatures, one for one of the cpu dies and the other
28 * for the ambient temperature.
29 *
30 * The max1617 is capable of being programmed with power-off
31 * temperature values, one low limit and one high limit.  These
32 * can be controlled independently for the cpu or ambient temperature.
33 * If a limit is violated, the power is simply shut off.  The frequency
34 * with which the max1617 does temperature sampling can be controlled
35 * as well.
36 *
37 * Three fans exist inside the machine, all three are controlled with
38 * an i2c digital to analog converter.  There is a fan directed at the
39 * two processor slots, another for the rest of the enclosure, and the
40 * third is for the power supply.  The first two fans may be speed
41 * controlled by changing the voltage fed to them.  The third fan may
42 * only be completely off or on.  The third fan is meant to only be
43 * disabled/enabled when entering/exiting the lowest power-saving
44 * mode of the machine.
45 *
46 * An environmental control kernel thread periodically monitors all
47 * temperature sensors.  Based upon the samples it will adjust the
48 * fan speeds to try and keep the system within a certain temperature
49 * range (the goal being to make the fans as quiet as possible without
50 * allowing the system to get too hot).
51 *
52 * If the temperature begins to rise/fall outside of the acceptable
53 * operating range, a periodic warning will be sent to the kernel log.
54 * The fans will be put on full blast to attempt to deal with this
55 * situation.  After exceeding the acceptable operating range by a
56 * certain threshold, the kernel thread will shut down the system.
57 * Here, the thread is attempting to shut the machine down cleanly
58 * before the hardware based power-off event is triggered.
59 */
60
61/* These settings are in Celsius.  We use these defaults only
62 * if we cannot interrogate the cpu-fru SEEPROM.
63 */
64struct temp_limits {
65	s8 high_pwroff, high_shutdown, high_warn;
66	s8 low_warn, low_shutdown, low_pwroff;
67};
68
69static struct temp_limits cpu_temp_limits[2] = {
70	{ 100, 85, 80, 5, -5, -10 },
71	{ 100, 85, 80, 5, -5, -10 },
72};
73
74static struct temp_limits amb_temp_limits[2] = {
75	{ 65, 55, 40, 5, -5, -10 },
76	{ 65, 55, 40, 5, -5, -10 },
77};
78
79static LIST_HEAD(all_temps);
80static LIST_HEAD(all_fans);
81
82#define CPU_FAN_REG	0xf0
83#define SYS_FAN_REG	0xf2
84#define PSUPPLY_FAN_REG	0xf4
85
86#define FAN_SPEED_MIN	0x0c
87#define FAN_SPEED_MAX	0x3f
88
89#define PSUPPLY_FAN_ON	0x1f
90#define PSUPPLY_FAN_OFF	0x00
91
92static void set_fan_speeds(struct bbc_fan_control *fp)
93{
94	/* Put temperatures into range so we don't mis-program
95	 * the hardware.
96	 */
97	if (fp->cpu_fan_speed < FAN_SPEED_MIN)
98		fp->cpu_fan_speed = FAN_SPEED_MIN;
99	if (fp->cpu_fan_speed > FAN_SPEED_MAX)
100		fp->cpu_fan_speed = FAN_SPEED_MAX;
101	if (fp->system_fan_speed < FAN_SPEED_MIN)
102		fp->system_fan_speed = FAN_SPEED_MIN;
103	if (fp->system_fan_speed > FAN_SPEED_MAX)
104		fp->system_fan_speed = FAN_SPEED_MAX;
105#ifdef ENVCTRL_TRACE
106	printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
107	       fp->index,
108	       fp->cpu_fan_speed, fp->system_fan_speed);
109#endif
110
111	bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
112	bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
113	bbc_i2c_writeb(fp->client,
114		       (fp->psupply_fan_on ?
115			PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
116		       PSUPPLY_FAN_REG);
117}
118
119static void get_current_temps(struct bbc_cpu_temperature *tp)
120{
121	tp->prev_amb_temp = tp->curr_amb_temp;
122	bbc_i2c_readb(tp->client,
123		      (unsigned char *) &tp->curr_amb_temp,
124		      MAX1617_AMB_TEMP);
125	tp->prev_cpu_temp = tp->curr_cpu_temp;
126	bbc_i2c_readb(tp->client,
127		      (unsigned char *) &tp->curr_cpu_temp,
128		      MAX1617_CPU_TEMP);
129#ifdef ENVCTRL_TRACE
130	printk("temp%d: cpu(%d C) amb(%d C)\n",
131	       tp->index,
132	       (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
133#endif
134}
135
136
137static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
138{
139	static int shutting_down = 0;
140	char *type = "???";
141	s8 val = -1;
142
143	if (shutting_down != 0)
144		return;
145
146	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
147	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
148		type = "ambient";
149		val = tp->curr_amb_temp;
150	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
151		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
152		type = "CPU";
153		val = tp->curr_cpu_temp;
154	}
155
156	printk(KERN_CRIT "temp%d: Outside of safe %s "
157	       "operating temperature, %d C.\n",
158	       tp->index, type, val);
159
160	printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
161
162	shutting_down = 1;
163	if (orderly_poweroff(true) < 0)
164		printk(KERN_CRIT "envctrl: shutdown execution failed\n");
165}
166
167#define WARN_INTERVAL	(30 * HZ)
168
169static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
170{
171	int ret = 0;
172
173	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
174		if (tp->curr_amb_temp >=
175		    amb_temp_limits[tp->index].high_warn) {
176			printk(KERN_WARNING "temp%d: "
177			       "Above safe ambient operating temperature, %d C.\n",
178			       tp->index, (int) tp->curr_amb_temp);
179			ret = 1;
180		} else if (tp->curr_amb_temp <
181			   amb_temp_limits[tp->index].low_warn) {
182			printk(KERN_WARNING "temp%d: "
183			       "Below safe ambient operating temperature, %d C.\n",
184			       tp->index, (int) tp->curr_amb_temp);
185			ret = 1;
186		}
187		if (ret)
188			*last_warn = jiffies;
189	} else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
190		   tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
191		ret = 1;
192
193	/* Now check the shutdown limits. */
194	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
195	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
196		do_envctrl_shutdown(tp);
197		ret = 1;
198	}
199
200	if (ret) {
201		tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
202	} else if ((tick & (8 - 1)) == 0) {
203		s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
204		s8 amb_goal_lo;
205
206		amb_goal_lo = amb_goal_hi - 3;
207
208		/* We do not try to avoid 'too cold' events.  Basically we
209		 * only try to deal with over-heating and fan noise reduction.
210		 */
211		if (tp->avg_amb_temp < amb_goal_hi) {
212			if (tp->avg_amb_temp >= amb_goal_lo)
213				tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
214			else
215				tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
216		} else {
217			tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
218		}
219	} else {
220		tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
221	}
222}
223
224static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
225{
226	int ret = 0;
227
228	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
229		if (tp->curr_cpu_temp >=
230		    cpu_temp_limits[tp->index].high_warn) {
231			printk(KERN_WARNING "temp%d: "
232			       "Above safe CPU operating temperature, %d C.\n",
233			       tp->index, (int) tp->curr_cpu_temp);
234			ret = 1;
235		} else if (tp->curr_cpu_temp <
236			   cpu_temp_limits[tp->index].low_warn) {
237			printk(KERN_WARNING "temp%d: "
238			       "Below safe CPU operating temperature, %d C.\n",
239			       tp->index, (int) tp->curr_cpu_temp);
240			ret = 1;
241		}
242		if (ret)
243			*last_warn = jiffies;
244	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
245		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
246		ret = 1;
247
248	/* Now check the shutdown limits. */
249	if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
250	    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
251		do_envctrl_shutdown(tp);
252		ret = 1;
253	}
254
255	if (ret) {
256		tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
257	} else if ((tick & (8 - 1)) == 0) {
258		s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
259		s8 cpu_goal_lo;
260
261		cpu_goal_lo = cpu_goal_hi - 3;
262
263		/* We do not try to avoid 'too cold' events.  Basically we
264		 * only try to deal with over-heating and fan noise reduction.
265		 */
266		if (tp->avg_cpu_temp < cpu_goal_hi) {
267			if (tp->avg_cpu_temp >= cpu_goal_lo)
268				tp->fan_todo[FAN_CPU] = FAN_SAME;
269			else
270				tp->fan_todo[FAN_CPU] = FAN_SLOWER;
271		} else {
272			tp->fan_todo[FAN_CPU] = FAN_FASTER;
273		}
274	} else {
275		tp->fan_todo[FAN_CPU] = FAN_SAME;
276	}
277}
278
279static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
280{
281	tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
282	tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
283
284	analyze_ambient_temp(tp, last_warn, tp->sample_tick);
285	analyze_cpu_temp(tp, last_warn, tp->sample_tick);
286
287	tp->sample_tick++;
288}
289
290static enum fan_action prioritize_fan_action(int which_fan)
291{
292	struct bbc_cpu_temperature *tp;
293	enum fan_action decision = FAN_STATE_MAX;
294
295	/* Basically, prioritize what the temperature sensors
296	 * recommend we do, and perform that action on all the
297	 * fans.
298	 */
299	list_for_each_entry(tp, &all_temps, glob_list) {
300		if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
301			decision = FAN_FULLBLAST;
302			break;
303		}
304		if (tp->fan_todo[which_fan] == FAN_SAME &&
305		    decision != FAN_FASTER)
306			decision = FAN_SAME;
307		else if (tp->fan_todo[which_fan] == FAN_FASTER)
308			decision = FAN_FASTER;
309		else if (decision != FAN_FASTER &&
310			 decision != FAN_SAME &&
311			 tp->fan_todo[which_fan] == FAN_SLOWER)
312			decision = FAN_SLOWER;
313	}
314	if (decision == FAN_STATE_MAX)
315		decision = FAN_SAME;
316
317	return decision;
318}
319
320static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
321{
322	enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
323	int ret;
324
325	if (decision == FAN_SAME)
326		return 0;
327
328	ret = 1;
329	if (decision == FAN_FULLBLAST) {
330		if (fp->system_fan_speed >= FAN_SPEED_MAX)
331			ret = 0;
332		else
333			fp->system_fan_speed = FAN_SPEED_MAX;
334	} else {
335		if (decision == FAN_FASTER) {
336			if (fp->system_fan_speed >= FAN_SPEED_MAX)
337				ret = 0;
338			else
339				fp->system_fan_speed += 2;
340		} else {
341			int orig_speed = fp->system_fan_speed;
342
343			if (orig_speed <= FAN_SPEED_MIN ||
344			    orig_speed <= (fp->cpu_fan_speed - 3))
345				ret = 0;
346			else
347				fp->system_fan_speed -= 1;
348		}
349	}
350
351	return ret;
352}
353
354static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
355{
356	enum fan_action decision = prioritize_fan_action(FAN_CPU);
357	int ret;
358
359	if (decision == FAN_SAME)
360		return 0;
361
362	ret = 1;
363	if (decision == FAN_FULLBLAST) {
364		if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
365			ret = 0;
366		else
367			fp->cpu_fan_speed = FAN_SPEED_MAX;
368	} else {
369		if (decision == FAN_FASTER) {
370			if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
371				ret = 0;
372			else {
373				fp->cpu_fan_speed += 2;
374				if (fp->system_fan_speed <
375				    (fp->cpu_fan_speed - 3))
376					fp->system_fan_speed =
377						fp->cpu_fan_speed - 3;
378			}
379		} else {
380			if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
381				ret = 0;
382			else
383				fp->cpu_fan_speed -= 1;
384		}
385	}
386
387	return ret;
388}
389
390static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
391{
392	int new;
393
394	new  = maybe_new_ambient_fan_speed(fp);
395	new |= maybe_new_cpu_fan_speed(fp);
396
397	if (new)
398		set_fan_speeds(fp);
399}
400
401static void fans_full_blast(void)
402{
403	struct bbc_fan_control *fp;
404
405	/* Since we will not be monitoring things anymore, put
406	 * the fans on full blast.
407	 */
408	list_for_each_entry(fp, &all_fans, glob_list) {
409		fp->cpu_fan_speed = FAN_SPEED_MAX;
410		fp->system_fan_speed = FAN_SPEED_MAX;
411		fp->psupply_fan_on = 1;
412		set_fan_speeds(fp);
413	}
414}
415
416#define POLL_INTERVAL	(5 * 1000)
417static unsigned long last_warning_jiffies;
418static struct task_struct *kenvctrld_task;
419
420static int kenvctrld(void *__unused)
421{
422	printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
423	last_warning_jiffies = jiffies - WARN_INTERVAL;
424	for (;;) {
425		struct bbc_cpu_temperature *tp;
426		struct bbc_fan_control *fp;
427
428		msleep_interruptible(POLL_INTERVAL);
429		if (kthread_should_stop())
430			break;
431
432		list_for_each_entry(tp, &all_temps, glob_list) {
433			get_current_temps(tp);
434			analyze_temps(tp, &last_warning_jiffies);
435		}
436		list_for_each_entry(fp, &all_fans, glob_list)
437			maybe_new_fan_speeds(fp);
438	}
439	printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
440
441	fans_full_blast();
442
443	return 0;
444}
445
446static void attach_one_temp(struct bbc_i2c_bus *bp, struct platform_device *op,
447			    int temp_idx)
448{
449	struct bbc_cpu_temperature *tp;
450
451	tp = kzalloc(sizeof(*tp), GFP_KERNEL);
452	if (!tp)
453		return;
454
455	tp->client = bbc_i2c_attach(bp, op);
456	if (!tp->client) {
457		kfree(tp);
458		return;
459	}
460
461
462	tp->index = temp_idx;
463
464	list_add(&tp->glob_list, &all_temps);
465	list_add(&tp->bp_list, &bp->temps);
466
467	/* Tell it to convert once every 5 seconds, clear all cfg
468	 * bits.
469	 */
470	bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
471	bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
472
473	/* Program the hard temperature limits into the chip. */
474	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
475		       MAX1617_WR_AMB_HIGHLIM);
476	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
477		       MAX1617_WR_AMB_LOWLIM);
478	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
479		       MAX1617_WR_CPU_HIGHLIM);
480	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
481		       MAX1617_WR_CPU_LOWLIM);
482
483	get_current_temps(tp);
484	tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
485	tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
486
487	tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
488	tp->fan_todo[FAN_CPU] = FAN_SAME;
489}
490
491static void attach_one_fan(struct bbc_i2c_bus *bp, struct platform_device *op,
492			   int fan_idx)
493{
494	struct bbc_fan_control *fp;
495
496	fp = kzalloc(sizeof(*fp), GFP_KERNEL);
497	if (!fp)
498		return;
499
500	fp->client = bbc_i2c_attach(bp, op);
501	if (!fp->client) {
502		kfree(fp);
503		return;
504	}
505
506	fp->index = fan_idx;
507
508	list_add(&fp->glob_list, &all_fans);
509	list_add(&fp->bp_list, &bp->fans);
510
511	/* The i2c device controlling the fans is write-only.
512	 * So the only way to keep track of the current power
513	 * level fed to the fans is via software.  Choose half
514	 * power for cpu/system and 'on' fo the powersupply fan
515	 * and set it now.
516	 */
517	fp->psupply_fan_on = 1;
518	fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
519	fp->cpu_fan_speed += FAN_SPEED_MIN;
520	fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
521	fp->system_fan_speed += FAN_SPEED_MIN;
522
523	set_fan_speeds(fp);
524}
525
526static void destroy_one_temp(struct bbc_cpu_temperature *tp)
527{
528	bbc_i2c_detach(tp->client);
529	kfree(tp);
530}
531
532static void destroy_all_temps(struct bbc_i2c_bus *bp)
533{
534	struct bbc_cpu_temperature *tp, *tpos;
535
536	list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) {
537		list_del(&tp->bp_list);
538		list_del(&tp->glob_list);
539		destroy_one_temp(tp);
540	}
541}
542
543static void destroy_one_fan(struct bbc_fan_control *fp)
544{
545	bbc_i2c_detach(fp->client);
546	kfree(fp);
547}
548
549static void destroy_all_fans(struct bbc_i2c_bus *bp)
550{
551	struct bbc_fan_control *fp, *fpos;
552
553	list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) {
554		list_del(&fp->bp_list);
555		list_del(&fp->glob_list);
556		destroy_one_fan(fp);
557	}
558}
559
560int bbc_envctrl_init(struct bbc_i2c_bus *bp)
561{
562	struct platform_device *op;
563	int temp_index = 0;
564	int fan_index = 0;
565	int devidx = 0;
566
567	while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) {
568		if (!strcmp(op->dev.of_node->name, "temperature"))
569			attach_one_temp(bp, op, temp_index++);
570		if (!strcmp(op->dev.of_node->name, "fan-control"))
571			attach_one_fan(bp, op, fan_index++);
572	}
573	if (temp_index != 0 && fan_index != 0) {
574		kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
575		if (IS_ERR(kenvctrld_task)) {
576			int err = PTR_ERR(kenvctrld_task);
577
578			kenvctrld_task = NULL;
579			destroy_all_temps(bp);
580			destroy_all_fans(bp);
581			return err;
582		}
583	}
584
585	return 0;
586}
587
588void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp)
589{
590	if (kenvctrld_task)
591		kthread_stop(kenvctrld_task);
592
593	destroy_all_temps(bp);
594	destroy_all_fans(bp);
595}
596