• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/rtc/
1/*
2 * Blackfin On-Chip Real Time Clock Driver
3 *  Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
4 *
5 * Copyright 2004-2009 Analog Devices Inc.
6 *
7 * Enter bugs at http://blackfin.uclinux.org/
8 *
9 * Licensed under the GPL-2 or later.
10 */
11
12/* The biggest issue we deal with in this driver is that register writes are
13 * synced to the RTC frequency of 1Hz.  So if you write to a register and
14 * attempt to write again before the first write has completed, the new write
15 * is simply discarded.  This can easily be troublesome if userspace disables
16 * one event (say periodic) and then right after enables an event (say alarm).
17 * Since all events are maintained in the same interrupt mask register, if
18 * we wrote to it to disable the first event and then wrote to it again to
19 * enable the second event, that second event would not be enabled as the
20 * write would be discarded and things quickly fall apart.
21 *
22 * To keep this delay from significantly degrading performance (we, in theory,
23 * would have to sleep for up to 1 second everytime we wanted to write a
24 * register), we only check the write pending status before we start to issue
25 * a new write.  We bank on the idea that it doesnt matter when the sync
26 * happens so long as we don't attempt another write before it does.  The only
27 * time userspace would take this penalty is when they try and do multiple
28 * operations right after another ... but in this case, they need to take the
29 * sync penalty, so we should be OK.
30 *
31 * Also note that the RTC_ISTAT register does not suffer this penalty; its
32 * writes to clear status registers complete immediately.
33 */
34
35/* It may seem odd that there is no SWCNT code in here (which would be exposed
36 * via the periodic interrupt event, or PIE).  Since the Blackfin RTC peripheral
37 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
38 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
39 * The same exact behavior can be accomplished by using the update interrupt
40 * event (UIE).  Maybe down the line the RTC peripheral will suck less in which
41 * case we can re-introduce PIE support.
42 */
43
44#include <linux/bcd.h>
45#include <linux/completion.h>
46#include <linux/delay.h>
47#include <linux/init.h>
48#include <linux/interrupt.h>
49#include <linux/kernel.h>
50#include <linux/module.h>
51#include <linux/platform_device.h>
52#include <linux/rtc.h>
53#include <linux/seq_file.h>
54#include <linux/slab.h>
55
56#include <asm/blackfin.h>
57
58#define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
59
60struct bfin_rtc {
61	struct rtc_device *rtc_dev;
62	struct rtc_time rtc_alarm;
63	u16 rtc_wrote_regs;
64};
65
66/* Bit values for the ISTAT / ICTL registers */
67#define RTC_ISTAT_WRITE_COMPLETE  0x8000
68#define RTC_ISTAT_WRITE_PENDING   0x4000
69#define RTC_ISTAT_ALARM_DAY       0x0040
70#define RTC_ISTAT_24HR            0x0020
71#define RTC_ISTAT_HOUR            0x0010
72#define RTC_ISTAT_MIN             0x0008
73#define RTC_ISTAT_SEC             0x0004
74#define RTC_ISTAT_ALARM           0x0002
75#define RTC_ISTAT_STOPWATCH       0x0001
76
77/* Shift values for RTC_STAT register */
78#define DAY_BITS_OFF    17
79#define HOUR_BITS_OFF   12
80#define MIN_BITS_OFF    6
81#define SEC_BITS_OFF    0
82
83/* Some helper functions to convert between the common RTC notion of time
84 * and the internal Blackfin notion that is encoded in 32bits.
85 */
86static inline u32 rtc_time_to_bfin(unsigned long now)
87{
88	u32 sec  = (now % 60);
89	u32 min  = (now % (60 * 60)) / 60;
90	u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
91	u32 days = (now / (60 * 60 * 24));
92	return (sec  << SEC_BITS_OFF) +
93	       (min  << MIN_BITS_OFF) +
94	       (hour << HOUR_BITS_OFF) +
95	       (days << DAY_BITS_OFF);
96}
97static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
98{
99	return (((rtc_bfin >> SEC_BITS_OFF)  & 0x003F)) +
100	       (((rtc_bfin >> MIN_BITS_OFF)  & 0x003F) * 60) +
101	       (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
102	       (((rtc_bfin >> DAY_BITS_OFF)  & 0x7FFF) * 60 * 60 * 24);
103}
104static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
105{
106	rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
107}
108
109/**
110 *	bfin_rtc_sync_pending - make sure pending writes have complete
111 *
112 * Wait for the previous write to a RTC register to complete.
113 * Unfortunately, we can't sleep here as that introduces a race condition when
114 * turning on interrupt events.  Consider this:
115 *  - process sets alarm
116 *  - process enables alarm
117 *  - process sleeps while waiting for rtc write to sync
118 *  - interrupt fires while process is sleeping
119 *  - interrupt acks the event by writing to ISTAT
120 *  - interrupt sets the WRITE PENDING bit
121 *  - interrupt handler finishes
122 *  - process wakes up, sees WRITE PENDING bit set, goes to sleep
123 *  - interrupt fires while process is sleeping
124 * If anyone can point out the obvious solution here, i'm listening :).  This
125 * shouldn't be an issue on an SMP or preempt system as this function should
126 * only be called with the rtc lock held.
127 *
128 * Other options:
129 *  - disable PREN so the sync happens at 32.768kHZ ... but this changes the
130 *    inc rate for all RTC registers from 1HZ to 32.768kHZ ...
131 *  - use the write complete IRQ
132 */
133/*
134static void bfin_rtc_sync_pending_polled(void)
135{
136	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
137		if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
138			break;
139	bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
140}
141*/
142static DECLARE_COMPLETION(bfin_write_complete);
143static void bfin_rtc_sync_pending(struct device *dev)
144{
145	dev_dbg_stamp(dev);
146	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
147		wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
148	dev_dbg_stamp(dev);
149}
150
151/**
152 *	bfin_rtc_reset - set RTC to sane/known state
153 *
154 * Initialize the RTC.  Enable pre-scaler to scale RTC clock
155 * to 1Hz and clear interrupt/status registers.
156 */
157static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
158{
159	struct bfin_rtc *rtc = dev_get_drvdata(dev);
160	dev_dbg_stamp(dev);
161	bfin_rtc_sync_pending(dev);
162	bfin_write_RTC_PREN(0x1);
163	bfin_write_RTC_ICTL(rtc_ictl);
164	bfin_write_RTC_ALARM(0);
165	bfin_write_RTC_ISTAT(0xFFFF);
166	rtc->rtc_wrote_regs = 0;
167}
168
169/**
170 *	bfin_rtc_interrupt - handle interrupt from RTC
171 *
172 * Since we handle all RTC events here, we have to make sure the requested
173 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
174 * always gets updated regardless of the interrupt being enabled.  So when one
175 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
176 * and say that other events have happened as well (e.g. second).  We do not
177 * have to worry about pending writes to the RTC_ICTL register as interrupts
178 * only fire if they are enabled in the RTC_ICTL register.
179 */
180static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
181{
182	struct device *dev = dev_id;
183	struct bfin_rtc *rtc = dev_get_drvdata(dev);
184	unsigned long events = 0;
185	bool write_complete = false;
186	u16 rtc_istat, rtc_ictl;
187
188	dev_dbg_stamp(dev);
189
190	rtc_istat = bfin_read_RTC_ISTAT();
191	rtc_ictl = bfin_read_RTC_ICTL();
192
193	if (rtc_istat & RTC_ISTAT_WRITE_COMPLETE) {
194		bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
195		write_complete = true;
196		complete(&bfin_write_complete);
197	}
198
199	if (rtc_ictl & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
200		if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
201			bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
202			events |= RTC_AF | RTC_IRQF;
203		}
204	}
205
206	if (rtc_ictl & RTC_ISTAT_SEC) {
207		if (rtc_istat & RTC_ISTAT_SEC) {
208			bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
209			events |= RTC_UF | RTC_IRQF;
210		}
211	}
212
213	if (events)
214		rtc_update_irq(rtc->rtc_dev, 1, events);
215
216	if (write_complete || events)
217		return IRQ_HANDLED;
218	else
219		return IRQ_NONE;
220}
221
222static void bfin_rtc_int_set(u16 rtc_int)
223{
224	bfin_write_RTC_ISTAT(rtc_int);
225	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
226}
227static void bfin_rtc_int_clear(u16 rtc_int)
228{
229	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
230}
231static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
232{
233	/* Blackfin has different bits for whether the alarm is
234	 * more than 24 hours away.
235	 */
236	bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
237}
238static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
239{
240	struct bfin_rtc *rtc = dev_get_drvdata(dev);
241	int ret = 0;
242
243	dev_dbg_stamp(dev);
244
245	bfin_rtc_sync_pending(dev);
246
247	switch (cmd) {
248	case RTC_UIE_ON:
249		dev_dbg_stamp(dev);
250		bfin_rtc_int_set(RTC_ISTAT_SEC);
251		break;
252	case RTC_UIE_OFF:
253		dev_dbg_stamp(dev);
254		bfin_rtc_int_clear(~RTC_ISTAT_SEC);
255		break;
256
257	case RTC_AIE_ON:
258		dev_dbg_stamp(dev);
259		bfin_rtc_int_set_alarm(rtc);
260		break;
261	case RTC_AIE_OFF:
262		dev_dbg_stamp(dev);
263		bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
264		break;
265
266	default:
267		dev_dbg_stamp(dev);
268		ret = -ENOIOCTLCMD;
269	}
270
271	return ret;
272}
273
274static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
275{
276	struct bfin_rtc *rtc = dev_get_drvdata(dev);
277
278	dev_dbg_stamp(dev);
279
280	if (rtc->rtc_wrote_regs & 0x1)
281		bfin_rtc_sync_pending(dev);
282
283	rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
284
285	return 0;
286}
287
288static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
289{
290	struct bfin_rtc *rtc = dev_get_drvdata(dev);
291	int ret;
292	unsigned long now;
293
294	dev_dbg_stamp(dev);
295
296	ret = rtc_tm_to_time(tm, &now);
297	if (ret == 0) {
298		if (rtc->rtc_wrote_regs & 0x1)
299			bfin_rtc_sync_pending(dev);
300		bfin_write_RTC_STAT(rtc_time_to_bfin(now));
301		rtc->rtc_wrote_regs = 0x1;
302	}
303
304	return ret;
305}
306
307static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
308{
309	struct bfin_rtc *rtc = dev_get_drvdata(dev);
310	dev_dbg_stamp(dev);
311	alrm->time = rtc->rtc_alarm;
312	bfin_rtc_sync_pending(dev);
313	alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
314	return 0;
315}
316
317static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
318{
319	struct bfin_rtc *rtc = dev_get_drvdata(dev);
320	unsigned long rtc_alarm;
321
322	dev_dbg_stamp(dev);
323
324	if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
325		return -EINVAL;
326
327	rtc->rtc_alarm = alrm->time;
328
329	bfin_rtc_sync_pending(dev);
330	bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
331	if (alrm->enabled)
332		bfin_rtc_int_set_alarm(rtc);
333
334	return 0;
335}
336
337static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
338{
339#define yesno(x) ((x) ? "yes" : "no")
340	u16 ictl = bfin_read_RTC_ICTL();
341	dev_dbg_stamp(dev);
342	seq_printf(seq,
343		"alarm_IRQ\t: %s\n"
344		"wkalarm_IRQ\t: %s\n"
345		"seconds_IRQ\t: %s\n",
346		yesno(ictl & RTC_ISTAT_ALARM),
347		yesno(ictl & RTC_ISTAT_ALARM_DAY),
348		yesno(ictl & RTC_ISTAT_SEC));
349	return 0;
350#undef yesno
351}
352
353static struct rtc_class_ops bfin_rtc_ops = {
354	.ioctl         = bfin_rtc_ioctl,
355	.read_time     = bfin_rtc_read_time,
356	.set_time      = bfin_rtc_set_time,
357	.read_alarm    = bfin_rtc_read_alarm,
358	.set_alarm     = bfin_rtc_set_alarm,
359	.proc          = bfin_rtc_proc,
360};
361
362static int __devinit bfin_rtc_probe(struct platform_device *pdev)
363{
364	struct bfin_rtc *rtc;
365	struct device *dev = &pdev->dev;
366	int ret = 0;
367	unsigned long timeout = jiffies + HZ;
368
369	dev_dbg_stamp(dev);
370
371	/* Allocate memory for our RTC struct */
372	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
373	if (unlikely(!rtc))
374		return -ENOMEM;
375	platform_set_drvdata(pdev, rtc);
376	device_init_wakeup(dev, 1);
377
378	/* Register our RTC with the RTC framework */
379	rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops,
380						THIS_MODULE);
381	if (unlikely(IS_ERR(rtc->rtc_dev))) {
382		ret = PTR_ERR(rtc->rtc_dev);
383		goto err;
384	}
385
386	/* Grab the IRQ and init the hardware */
387	ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, 0, pdev->name, dev);
388	if (unlikely(ret))
389		goto err_reg;
390	/* sometimes the bootloader touched things, but the write complete was not
391	 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
392	 */
393	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
394		if (time_after(jiffies, timeout))
395			break;
396	bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
397	bfin_write_RTC_SWCNT(0);
398
399	return 0;
400
401err_reg:
402	rtc_device_unregister(rtc->rtc_dev);
403err:
404	kfree(rtc);
405	return ret;
406}
407
408static int __devexit bfin_rtc_remove(struct platform_device *pdev)
409{
410	struct bfin_rtc *rtc = platform_get_drvdata(pdev);
411	struct device *dev = &pdev->dev;
412
413	bfin_rtc_reset(dev, 0);
414	free_irq(IRQ_RTC, dev);
415	rtc_device_unregister(rtc->rtc_dev);
416	platform_set_drvdata(pdev, NULL);
417	kfree(rtc);
418
419	return 0;
420}
421
422#ifdef CONFIG_PM
423static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state)
424{
425	if (device_may_wakeup(&pdev->dev)) {
426		enable_irq_wake(IRQ_RTC);
427		bfin_rtc_sync_pending(&pdev->dev);
428	} else
429		bfin_rtc_int_clear(0);
430
431	return 0;
432}
433
434static int bfin_rtc_resume(struct platform_device *pdev)
435{
436	if (device_may_wakeup(&pdev->dev))
437		disable_irq_wake(IRQ_RTC);
438
439	/*
440	 * Since only some of the RTC bits are maintained externally in the
441	 * Vbat domain, we need to wait for the RTC MMRs to be synced into
442	 * the core after waking up.  This happens every RTC 1HZ.  Once that
443	 * has happened, we can go ahead and re-enable the important write
444	 * complete interrupt event.
445	 */
446	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC))
447		continue;
448	bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE);
449
450	return 0;
451}
452#else
453# define bfin_rtc_suspend NULL
454# define bfin_rtc_resume  NULL
455#endif
456
457static struct platform_driver bfin_rtc_driver = {
458	.driver		= {
459		.name	= "rtc-bfin",
460		.owner	= THIS_MODULE,
461	},
462	.probe		= bfin_rtc_probe,
463	.remove		= __devexit_p(bfin_rtc_remove),
464	.suspend	= bfin_rtc_suspend,
465	.resume		= bfin_rtc_resume,
466};
467
468static int __init bfin_rtc_init(void)
469{
470	return platform_driver_register(&bfin_rtc_driver);
471}
472
473static void __exit bfin_rtc_exit(void)
474{
475	platform_driver_unregister(&bfin_rtc_driver);
476}
477
478module_init(bfin_rtc_init);
479module_exit(bfin_rtc_exit);
480
481MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
482MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
483MODULE_LICENSE("GPL");
484MODULE_ALIAS("platform:rtc-bfin");
485