• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/wireless/ath/ath9k/
1/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17/**
18 * DOC: Programming Atheros 802.11n analog front end radios
19 *
20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21 * devices have either an external AR2133 analog front end radio for single
22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23 * band 2.4 GHz / 5 GHz communication.
24 *
25 * All devices after the AR5416 and AR5418 family starting with the AR9280
26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27 * into a single-chip and require less programming.
28 *
29 * The following single-chips exist with a respective embedded radio:
30 *
31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
33 * AR9285 - 11n single-band 1x1 for PCIe
34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
35 *
36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
37 * AR9223 - 11n single-band 2x2 MIMO for PCI
38 *
39 * AR9287 - 11n single-band 1x1 MIMO for USB
40 */
41
42#include "hw.h"
43#include "ar9002_phy.h"
44
45/**
46 * ar9002_hw_set_channel - set channel on single-chip device
47 * @ah: atheros hardware structure
48 * @chan:
49 *
50 * This is the function to change channel on single-chip devices, that is
51 * all devices after ar9280.
52 *
53 * This function takes the channel value in MHz and sets
54 * hardware channel value. Assumes writes have been enabled to analog bus.
55 *
56 * Actual Expression,
57 *
58 * For 2GHz channel,
59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60 * (freq_ref = 40MHz)
61 *
62 * For 5GHz channel,
63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64 * (freq_ref = 40MHz/(24>>amodeRefSel))
65 */
66static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67{
68	u16 bMode, fracMode, aModeRefSel = 0;
69	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70	struct chan_centers centers;
71	u32 refDivA = 24;
72
73	ath9k_hw_get_channel_centers(ah, chan, &centers);
74	freq = centers.synth_center;
75
76	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77	reg32 &= 0xc0000000;
78
79	if (freq < 4800) { /* 2 GHz, fractional mode */
80		u32 txctl;
81		int regWrites = 0;
82
83		bMode = 1;
84		fracMode = 1;
85		aModeRefSel = 0;
86		channelSel = CHANSEL_2G(freq);
87
88		if (AR_SREV_9287_11_OR_LATER(ah)) {
89			if (freq == 2484) {
90				/* Enable channel spreading for channel 14 */
91				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92						1, regWrites);
93			} else {
94				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95						1, regWrites);
96			}
97		} else {
98			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99			if (freq == 2484) {
100				/* Enable channel spreading for channel 14 */
101				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103			} else {
104				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106			}
107		}
108	} else {
109		bMode = 0;
110		fracMode = 0;
111
112		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113		case 0:
114			if ((freq % 20) == 0)
115				aModeRefSel = 3;
116			else if ((freq % 10) == 0)
117				aModeRefSel = 2;
118			if (aModeRefSel)
119				break;
120		case 1:
121		default:
122			aModeRefSel = 0;
123			/*
124			 * Enable 2G (fractional) mode for channels
125			 * which are 5MHz spaced.
126			 */
127			fracMode = 1;
128			refDivA = 1;
129			channelSel = CHANSEL_5G(freq);
130
131			/* RefDivA setting */
132			REG_RMW_FIELD(ah, AR_AN_SYNTH9,
133				      AR_AN_SYNTH9_REFDIVA, refDivA);
134
135		}
136
137		if (!fracMode) {
138			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
139			channelSel = ndiv & 0x1ff;
140			channelFrac = (ndiv & 0xfffffe00) * 2;
141			channelSel = (channelSel << 17) | channelFrac;
142		}
143	}
144
145	reg32 = reg32 |
146	    (bMode << 29) |
147	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
148
149	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
150
151	ah->curchan = chan;
152	ah->curchan_rad_index = -1;
153
154	return 0;
155}
156
157/**
158 * ar9002_hw_spur_mitigate - convert baseband spur frequency
159 * @ah: atheros hardware structure
160 * @chan:
161 *
162 * For single-chip solutions. Converts to baseband spur frequency given the
163 * input channel frequency and compute register settings below.
164 */
165static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
166				    struct ath9k_channel *chan)
167{
168	int bb_spur = AR_NO_SPUR;
169	int freq;
170	int bin, cur_bin;
171	int bb_spur_off, spur_subchannel_sd;
172	int spur_freq_sd;
173	int spur_delta_phase;
174	int denominator;
175	int upper, lower, cur_vit_mask;
176	int tmp, newVal;
177	int i;
178	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
179			  AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
180	};
181	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
182			 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
183	};
184	int inc[4] = { 0, 100, 0, 0 };
185	struct chan_centers centers;
186
187	int8_t mask_m[123];
188	int8_t mask_p[123];
189	int8_t mask_amt;
190	int tmp_mask;
191	int cur_bb_spur;
192	bool is2GHz = IS_CHAN_2GHZ(chan);
193
194	memset(&mask_m, 0, sizeof(int8_t) * 123);
195	memset(&mask_p, 0, sizeof(int8_t) * 123);
196
197	ath9k_hw_get_channel_centers(ah, chan, &centers);
198	freq = centers.synth_center;
199
200	ah->config.spurmode = SPUR_ENABLE_EEPROM;
201	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
202		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
203
204		if (is2GHz)
205			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
206		else
207			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
208
209		if (AR_NO_SPUR == cur_bb_spur)
210			break;
211		cur_bb_spur = cur_bb_spur - freq;
212
213		if (IS_CHAN_HT40(chan)) {
214			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
215			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
216				bb_spur = cur_bb_spur;
217				break;
218			}
219		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
220			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
221			bb_spur = cur_bb_spur;
222			break;
223		}
224	}
225
226	if (AR_NO_SPUR == bb_spur) {
227		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
228			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
229		return;
230	} else {
231		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
232			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
233	}
234
235	bin = bb_spur * 320;
236
237	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
238
239	ENABLE_REGWRITE_BUFFER(ah);
240
241	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
242			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
243			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
244			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
245	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
246
247	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
248		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
249		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
250		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
251		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
252	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
253
254	if (IS_CHAN_HT40(chan)) {
255		if (bb_spur < 0) {
256			spur_subchannel_sd = 1;
257			bb_spur_off = bb_spur + 10;
258		} else {
259			spur_subchannel_sd = 0;
260			bb_spur_off = bb_spur - 10;
261		}
262	} else {
263		spur_subchannel_sd = 0;
264		bb_spur_off = bb_spur;
265	}
266
267	if (IS_CHAN_HT40(chan))
268		spur_delta_phase =
269			((bb_spur * 262144) /
270			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
271	else
272		spur_delta_phase =
273			((bb_spur * 524288) /
274			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
275
276	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
277	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
278
279	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
280		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
281		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
282	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
283
284	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
285	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
286
287	cur_bin = -6000;
288	upper = bin + 100;
289	lower = bin - 100;
290
291	for (i = 0; i < 4; i++) {
292		int pilot_mask = 0;
293		int chan_mask = 0;
294		int bp = 0;
295		for (bp = 0; bp < 30; bp++) {
296			if ((cur_bin > lower) && (cur_bin < upper)) {
297				pilot_mask = pilot_mask | 0x1 << bp;
298				chan_mask = chan_mask | 0x1 << bp;
299			}
300			cur_bin += 100;
301		}
302		cur_bin += inc[i];
303		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
304		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
305	}
306
307	cur_vit_mask = 6100;
308	upper = bin + 120;
309	lower = bin - 120;
310
311	for (i = 0; i < 123; i++) {
312		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
313
314			volatile int tmp_v = abs(cur_vit_mask - bin);
315
316			if (tmp_v < 75)
317				mask_amt = 1;
318			else
319				mask_amt = 0;
320			if (cur_vit_mask < 0)
321				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
322			else
323				mask_p[cur_vit_mask / 100] = mask_amt;
324		}
325		cur_vit_mask -= 100;
326	}
327
328	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
329		| (mask_m[48] << 26) | (mask_m[49] << 24)
330		| (mask_m[50] << 22) | (mask_m[51] << 20)
331		| (mask_m[52] << 18) | (mask_m[53] << 16)
332		| (mask_m[54] << 14) | (mask_m[55] << 12)
333		| (mask_m[56] << 10) | (mask_m[57] << 8)
334		| (mask_m[58] << 6) | (mask_m[59] << 4)
335		| (mask_m[60] << 2) | (mask_m[61] << 0);
336	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
337	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
338
339	tmp_mask = (mask_m[31] << 28)
340		| (mask_m[32] << 26) | (mask_m[33] << 24)
341		| (mask_m[34] << 22) | (mask_m[35] << 20)
342		| (mask_m[36] << 18) | (mask_m[37] << 16)
343		| (mask_m[48] << 14) | (mask_m[39] << 12)
344		| (mask_m[40] << 10) | (mask_m[41] << 8)
345		| (mask_m[42] << 6) | (mask_m[43] << 4)
346		| (mask_m[44] << 2) | (mask_m[45] << 0);
347	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
348	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
349
350	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
351		| (mask_m[18] << 26) | (mask_m[18] << 24)
352		| (mask_m[20] << 22) | (mask_m[20] << 20)
353		| (mask_m[22] << 18) | (mask_m[22] << 16)
354		| (mask_m[24] << 14) | (mask_m[24] << 12)
355		| (mask_m[25] << 10) | (mask_m[26] << 8)
356		| (mask_m[27] << 6) | (mask_m[28] << 4)
357		| (mask_m[29] << 2) | (mask_m[30] << 0);
358	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
359	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
360
361	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
362		| (mask_m[2] << 26) | (mask_m[3] << 24)
363		| (mask_m[4] << 22) | (mask_m[5] << 20)
364		| (mask_m[6] << 18) | (mask_m[7] << 16)
365		| (mask_m[8] << 14) | (mask_m[9] << 12)
366		| (mask_m[10] << 10) | (mask_m[11] << 8)
367		| (mask_m[12] << 6) | (mask_m[13] << 4)
368		| (mask_m[14] << 2) | (mask_m[15] << 0);
369	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
370	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
371
372	tmp_mask = (mask_p[15] << 28)
373		| (mask_p[14] << 26) | (mask_p[13] << 24)
374		| (mask_p[12] << 22) | (mask_p[11] << 20)
375		| (mask_p[10] << 18) | (mask_p[9] << 16)
376		| (mask_p[8] << 14) | (mask_p[7] << 12)
377		| (mask_p[6] << 10) | (mask_p[5] << 8)
378		| (mask_p[4] << 6) | (mask_p[3] << 4)
379		| (mask_p[2] << 2) | (mask_p[1] << 0);
380	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
381	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
382
383	tmp_mask = (mask_p[30] << 28)
384		| (mask_p[29] << 26) | (mask_p[28] << 24)
385		| (mask_p[27] << 22) | (mask_p[26] << 20)
386		| (mask_p[25] << 18) | (mask_p[24] << 16)
387		| (mask_p[23] << 14) | (mask_p[22] << 12)
388		| (mask_p[21] << 10) | (mask_p[20] << 8)
389		| (mask_p[19] << 6) | (mask_p[18] << 4)
390		| (mask_p[17] << 2) | (mask_p[16] << 0);
391	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
392	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
393
394	tmp_mask = (mask_p[45] << 28)
395		| (mask_p[44] << 26) | (mask_p[43] << 24)
396		| (mask_p[42] << 22) | (mask_p[41] << 20)
397		| (mask_p[40] << 18) | (mask_p[39] << 16)
398		| (mask_p[38] << 14) | (mask_p[37] << 12)
399		| (mask_p[36] << 10) | (mask_p[35] << 8)
400		| (mask_p[34] << 6) | (mask_p[33] << 4)
401		| (mask_p[32] << 2) | (mask_p[31] << 0);
402	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
403	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
404
405	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
406		| (mask_p[59] << 26) | (mask_p[58] << 24)
407		| (mask_p[57] << 22) | (mask_p[56] << 20)
408		| (mask_p[55] << 18) | (mask_p[54] << 16)
409		| (mask_p[53] << 14) | (mask_p[52] << 12)
410		| (mask_p[51] << 10) | (mask_p[50] << 8)
411		| (mask_p[49] << 6) | (mask_p[48] << 4)
412		| (mask_p[47] << 2) | (mask_p[46] << 0);
413	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
414	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
415
416	REGWRITE_BUFFER_FLUSH(ah);
417	DISABLE_REGWRITE_BUFFER(ah);
418}
419
420static void ar9002_olc_init(struct ath_hw *ah)
421{
422	u32 i;
423
424	if (!OLC_FOR_AR9280_20_LATER)
425		return;
426
427	if (OLC_FOR_AR9287_10_LATER) {
428		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
429				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
430		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
431				AR9287_AN_TXPC0_TXPCMODE,
432				AR9287_AN_TXPC0_TXPCMODE_S,
433				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
434		udelay(100);
435	} else {
436		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
437			ah->originalGain[i] =
438				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
439						AR_PHY_TX_GAIN);
440		ah->PDADCdelta = 0;
441	}
442}
443
444static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
445					 struct ath9k_channel *chan)
446{
447	u32 pll;
448
449	pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
450
451	if (chan && IS_CHAN_HALF_RATE(chan))
452		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
453	else if (chan && IS_CHAN_QUARTER_RATE(chan))
454		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
455
456	if (chan && IS_CHAN_5GHZ(chan)) {
457		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
458			pll = 0x142c;
459		else if (AR_SREV_9280_20(ah))
460			pll = 0x2850;
461		else
462			pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
463	} else {
464		pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
465	}
466
467	return pll;
468}
469
470static void ar9002_hw_do_getnf(struct ath_hw *ah,
471			      int16_t nfarray[NUM_NF_READINGS])
472{
473	int16_t nf;
474
475	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
476	nfarray[0] = sign_extend(nf, 9);
477
478	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
479	if (IS_CHAN_HT40(ah->curchan))
480		nfarray[3] = sign_extend(nf, 9);
481
482	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
483		return;
484
485	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
486	nfarray[1] = sign_extend(nf, 9);
487
488	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
489	if (IS_CHAN_HT40(ah->curchan))
490		nfarray[4] = sign_extend(nf, 9);
491}
492
493static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
494{
495	if (AR_SREV_9285(ah)) {
496		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
497		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
498		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
499	} else if (AR_SREV_9287(ah)) {
500		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
501		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
502		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
503	} else if (AR_SREV_9271(ah)) {
504		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
505		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
506		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
507	} else {
508		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
509		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
510		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
511		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
512		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
513		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
514	}
515}
516
517void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
518{
519	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
520
521	priv_ops->set_rf_regs = NULL;
522	priv_ops->rf_alloc_ext_banks = NULL;
523	priv_ops->rf_free_ext_banks = NULL;
524	priv_ops->rf_set_freq = ar9002_hw_set_channel;
525	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
526	priv_ops->olc_init = ar9002_olc_init;
527	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
528	priv_ops->do_getnf = ar9002_hw_do_getnf;
529
530	ar9002_hw_set_nf_limits(ah);
531}
532