• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/sfc/
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/socket.h>
12#include <linux/in.h>
13#include <linux/slab.h>
14#include <linux/ip.h>
15#include <linux/tcp.h>
16#include <linux/udp.h>
17#include <net/ip.h>
18#include <net/checksum.h>
19#include "net_driver.h"
20#include "efx.h"
21#include "nic.h"
22#include "selftest.h"
23#include "workarounds.h"
24
25/* Number of RX descriptors pushed at once. */
26#define EFX_RX_BATCH  8
27
28/* Maximum size of a buffer sharing a page */
29#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
30
31/* Size of buffer allocated for skb header area. */
32#define EFX_SKB_HEADERS  64u
33
34/*
35 * rx_alloc_method - RX buffer allocation method
36 *
37 * This driver supports two methods for allocating and using RX buffers:
38 * each RX buffer may be backed by an skb or by an order-n page.
39 *
40 * When LRO is in use then the second method has a lower overhead,
41 * since we don't have to allocate then free skbs on reassembled frames.
42 *
43 * Values:
44 *   - RX_ALLOC_METHOD_AUTO = 0
45 *   - RX_ALLOC_METHOD_SKB  = 1
46 *   - RX_ALLOC_METHOD_PAGE = 2
47 *
48 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
49 * controlled by the parameters below.
50 *
51 *   - Since pushing and popping descriptors are separated by the rx_queue
52 *     size, so the watermarks should be ~rxd_size.
53 *   - The performance win by using page-based allocation for LRO is less
54 *     than the performance hit of using page-based allocation of non-LRO,
55 *     so the watermarks should reflect this.
56 *
57 * Per channel we maintain a single variable, updated by each channel:
58 *
59 *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
60 *                      RX_ALLOC_FACTOR_SKB)
61 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
62 * limits the hysteresis), and update the allocation strategy:
63 *
64 *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
65 *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
66 */
67static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
68
69#define RX_ALLOC_LEVEL_LRO 0x2000
70#define RX_ALLOC_LEVEL_MAX 0x3000
71#define RX_ALLOC_FACTOR_LRO 1
72#define RX_ALLOC_FACTOR_SKB (-2)
73
74/* This is the percentage fill level below which new RX descriptors
75 * will be added to the RX descriptor ring.
76 */
77static unsigned int rx_refill_threshold = 90;
78
79/* This is the percentage fill level to which an RX queue will be refilled
80 * when the "RX refill threshold" is reached.
81 */
82static unsigned int rx_refill_limit = 95;
83
84/*
85 * RX maximum head room required.
86 *
87 * This must be at least 1 to prevent overflow and at least 2 to allow
88 * pipelined receives.
89 */
90#define EFX_RXD_HEAD_ROOM 2
91
92static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
93{
94	/* Offset is always within one page, so we don't need to consider
95	 * the page order.
96	 */
97	return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
98}
99static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
100{
101	return PAGE_SIZE << efx->rx_buffer_order;
102}
103
104static inline u32 efx_rx_buf_hash(struct efx_rx_buffer *buf)
105{
106#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
107	return __le32_to_cpup((const __le32 *)(buf->data - 4));
108#else
109	const u8 *data = (const u8 *)(buf->data - 4);
110	return ((u32)data[0]       |
111		(u32)data[1] << 8  |
112		(u32)data[2] << 16 |
113		(u32)data[3] << 24);
114#endif
115}
116
117/**
118 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
119 *
120 * @rx_queue:		Efx RX queue
121 *
122 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
123 * struct efx_rx_buffer for each one. Return a negative error code or 0
124 * on success. May fail having only inserted fewer than EFX_RX_BATCH
125 * buffers.
126 */
127static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
128{
129	struct efx_nic *efx = rx_queue->efx;
130	struct net_device *net_dev = efx->net_dev;
131	struct efx_rx_buffer *rx_buf;
132	int skb_len = efx->rx_buffer_len;
133	unsigned index, count;
134
135	for (count = 0; count < EFX_RX_BATCH; ++count) {
136		index = rx_queue->added_count & EFX_RXQ_MASK;
137		rx_buf = efx_rx_buffer(rx_queue, index);
138
139		rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
140		if (unlikely(!rx_buf->skb))
141			return -ENOMEM;
142		rx_buf->page = NULL;
143
144		/* Adjust the SKB for padding and checksum */
145		skb_reserve(rx_buf->skb, NET_IP_ALIGN);
146		rx_buf->len = skb_len - NET_IP_ALIGN;
147		rx_buf->data = (char *)rx_buf->skb->data;
148		rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
149
150		rx_buf->dma_addr = pci_map_single(efx->pci_dev,
151						  rx_buf->data, rx_buf->len,
152						  PCI_DMA_FROMDEVICE);
153		if (unlikely(pci_dma_mapping_error(efx->pci_dev,
154						   rx_buf->dma_addr))) {
155			dev_kfree_skb_any(rx_buf->skb);
156			rx_buf->skb = NULL;
157			return -EIO;
158		}
159
160		++rx_queue->added_count;
161		++rx_queue->alloc_skb_count;
162	}
163
164	return 0;
165}
166
167/**
168 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
169 *
170 * @rx_queue:		Efx RX queue
171 *
172 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
173 * and populates struct efx_rx_buffers for each one. Return a negative error
174 * code or 0 on success. If a single page can be split between two buffers,
175 * then the page will either be inserted fully, or not at at all.
176 */
177static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
178{
179	struct efx_nic *efx = rx_queue->efx;
180	struct efx_rx_buffer *rx_buf;
181	struct page *page;
182	void *page_addr;
183	struct efx_rx_page_state *state;
184	dma_addr_t dma_addr;
185	unsigned index, count;
186
187	/* We can split a page between two buffers */
188	BUILD_BUG_ON(EFX_RX_BATCH & 1);
189
190	for (count = 0; count < EFX_RX_BATCH; ++count) {
191		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
192				   efx->rx_buffer_order);
193		if (unlikely(page == NULL))
194			return -ENOMEM;
195		dma_addr = pci_map_page(efx->pci_dev, page, 0,
196					efx_rx_buf_size(efx),
197					PCI_DMA_FROMDEVICE);
198		if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
199			__free_pages(page, efx->rx_buffer_order);
200			return -EIO;
201		}
202		page_addr = page_address(page);
203		state = page_addr;
204		state->refcnt = 0;
205		state->dma_addr = dma_addr;
206
207		page_addr += sizeof(struct efx_rx_page_state);
208		dma_addr += sizeof(struct efx_rx_page_state);
209
210	split:
211		index = rx_queue->added_count & EFX_RXQ_MASK;
212		rx_buf = efx_rx_buffer(rx_queue, index);
213		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
214		rx_buf->skb = NULL;
215		rx_buf->page = page;
216		rx_buf->data = page_addr + EFX_PAGE_IP_ALIGN;
217		rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
218		++rx_queue->added_count;
219		++rx_queue->alloc_page_count;
220		++state->refcnt;
221
222		if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
223			/* Use the second half of the page */
224			get_page(page);
225			dma_addr += (PAGE_SIZE >> 1);
226			page_addr += (PAGE_SIZE >> 1);
227			++count;
228			goto split;
229		}
230	}
231
232	return 0;
233}
234
235static void efx_unmap_rx_buffer(struct efx_nic *efx,
236				struct efx_rx_buffer *rx_buf)
237{
238	if (rx_buf->page) {
239		struct efx_rx_page_state *state;
240
241		EFX_BUG_ON_PARANOID(rx_buf->skb);
242
243		state = page_address(rx_buf->page);
244		if (--state->refcnt == 0) {
245			pci_unmap_page(efx->pci_dev,
246				       state->dma_addr,
247				       efx_rx_buf_size(efx),
248				       PCI_DMA_FROMDEVICE);
249		}
250	} else if (likely(rx_buf->skb)) {
251		pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
252				 rx_buf->len, PCI_DMA_FROMDEVICE);
253	}
254}
255
256static void efx_free_rx_buffer(struct efx_nic *efx,
257			       struct efx_rx_buffer *rx_buf)
258{
259	if (rx_buf->page) {
260		__free_pages(rx_buf->page, efx->rx_buffer_order);
261		rx_buf->page = NULL;
262	} else if (likely(rx_buf->skb)) {
263		dev_kfree_skb_any(rx_buf->skb);
264		rx_buf->skb = NULL;
265	}
266}
267
268static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
269			       struct efx_rx_buffer *rx_buf)
270{
271	efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
272	efx_free_rx_buffer(rx_queue->efx, rx_buf);
273}
274
275/* Attempt to resurrect the other receive buffer that used to share this page,
276 * which had previously been passed up to the kernel and freed. */
277static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
278				    struct efx_rx_buffer *rx_buf)
279{
280	struct efx_rx_page_state *state = page_address(rx_buf->page);
281	struct efx_rx_buffer *new_buf;
282	unsigned fill_level, index;
283
284	/* +1 because efx_rx_packet() incremented removed_count. +1 because
285	 * we'd like to insert an additional descriptor whilst leaving
286	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
287	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
288	if (unlikely(fill_level >= EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM)) {
289		/* We could place "state" on a list, and drain the list in
290		 * efx_fast_push_rx_descriptors(). For now, this will do. */
291		return;
292	}
293
294	++state->refcnt;
295	get_page(rx_buf->page);
296
297	index = rx_queue->added_count & EFX_RXQ_MASK;
298	new_buf = efx_rx_buffer(rx_queue, index);
299	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
300	new_buf->skb = NULL;
301	new_buf->page = rx_buf->page;
302	new_buf->data = (void *)
303		((__force unsigned long)rx_buf->data ^ (PAGE_SIZE >> 1));
304	new_buf->len = rx_buf->len;
305	++rx_queue->added_count;
306}
307
308/* Recycle the given rx buffer directly back into the rx_queue. There is
309 * always room to add this buffer, because we've just popped a buffer. */
310static void efx_recycle_rx_buffer(struct efx_channel *channel,
311				  struct efx_rx_buffer *rx_buf)
312{
313	struct efx_nic *efx = channel->efx;
314	struct efx_rx_queue *rx_queue = &efx->rx_queue[channel->channel];
315	struct efx_rx_buffer *new_buf;
316	unsigned index;
317
318	if (rx_buf->page != NULL && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
319	    page_count(rx_buf->page) == 1)
320		efx_resurrect_rx_buffer(rx_queue, rx_buf);
321
322	index = rx_queue->added_count & EFX_RXQ_MASK;
323	new_buf = efx_rx_buffer(rx_queue, index);
324
325	memcpy(new_buf, rx_buf, sizeof(*new_buf));
326	rx_buf->page = NULL;
327	rx_buf->skb = NULL;
328	++rx_queue->added_count;
329}
330
331/**
332 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
333 * @rx_queue:		RX descriptor queue
334 * This will aim to fill the RX descriptor queue up to
335 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
336 * memory to do so, a slow fill will be scheduled.
337 *
338 * The caller must provide serialisation (none is used here). In practise,
339 * this means this function must run from the NAPI handler, or be called
340 * when NAPI is disabled.
341 */
342void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
343{
344	struct efx_channel *channel = rx_queue->channel;
345	unsigned fill_level;
346	int space, rc = 0;
347
348	/* Calculate current fill level, and exit if we don't need to fill */
349	fill_level = (rx_queue->added_count - rx_queue->removed_count);
350	EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
351	if (fill_level >= rx_queue->fast_fill_trigger)
352		goto out;
353
354	/* Record minimum fill level */
355	if (unlikely(fill_level < rx_queue->min_fill)) {
356		if (fill_level)
357			rx_queue->min_fill = fill_level;
358	}
359
360	space = rx_queue->fast_fill_limit - fill_level;
361	if (space < EFX_RX_BATCH)
362		goto out;
363
364	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
365		   "RX queue %d fast-filling descriptor ring from"
366		   " level %d to level %d using %s allocation\n",
367		   rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
368		   channel->rx_alloc_push_pages ? "page" : "skb");
369
370	do {
371		if (channel->rx_alloc_push_pages)
372			rc = efx_init_rx_buffers_page(rx_queue);
373		else
374			rc = efx_init_rx_buffers_skb(rx_queue);
375		if (unlikely(rc)) {
376			/* Ensure that we don't leave the rx queue empty */
377			if (rx_queue->added_count == rx_queue->removed_count)
378				efx_schedule_slow_fill(rx_queue);
379			goto out;
380		}
381	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
382
383	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
384		   "RX queue %d fast-filled descriptor ring "
385		   "to level %d\n", rx_queue->queue,
386		   rx_queue->added_count - rx_queue->removed_count);
387
388 out:
389	if (rx_queue->notified_count != rx_queue->added_count)
390		efx_nic_notify_rx_desc(rx_queue);
391}
392
393void efx_rx_slow_fill(unsigned long context)
394{
395	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
396	struct efx_channel *channel = rx_queue->channel;
397
398	/* Post an event to cause NAPI to run and refill the queue */
399	efx_nic_generate_fill_event(channel);
400	++rx_queue->slow_fill_count;
401}
402
403static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
404				     struct efx_rx_buffer *rx_buf,
405				     int len, bool *discard,
406				     bool *leak_packet)
407{
408	struct efx_nic *efx = rx_queue->efx;
409	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
410
411	if (likely(len <= max_len))
412		return;
413
414	/* The packet must be discarded, but this is only a fatal error
415	 * if the caller indicated it was
416	 */
417	*discard = true;
418
419	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
420		if (net_ratelimit())
421			netif_err(efx, rx_err, efx->net_dev,
422				  " RX queue %d seriously overlength "
423				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
424				  rx_queue->queue, len, max_len,
425				  efx->type->rx_buffer_padding);
426		/* If this buffer was skb-allocated, then the meta
427		 * data at the end of the skb will be trashed. So
428		 * we have no choice but to leak the fragment.
429		 */
430		*leak_packet = (rx_buf->skb != NULL);
431		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
432	} else {
433		if (net_ratelimit())
434			netif_err(efx, rx_err, efx->net_dev,
435				  " RX queue %d overlength RX event "
436				  "(0x%x > 0x%x)\n",
437				  rx_queue->queue, len, max_len);
438	}
439
440	rx_queue->channel->n_rx_overlength++;
441}
442
443/* Pass a received packet up through the generic LRO stack
444 *
445 * Handles driverlink veto, and passes the fragment up via
446 * the appropriate LRO method
447 */
448static void efx_rx_packet_lro(struct efx_channel *channel,
449			      struct efx_rx_buffer *rx_buf,
450			      bool checksummed)
451{
452	struct napi_struct *napi = &channel->napi_str;
453	gro_result_t gro_result;
454
455	/* Pass the skb/page into the LRO engine */
456	if (rx_buf->page) {
457		struct efx_nic *efx = channel->efx;
458		struct page *page = rx_buf->page;
459		struct sk_buff *skb;
460
461		EFX_BUG_ON_PARANOID(rx_buf->skb);
462		rx_buf->page = NULL;
463
464		skb = napi_get_frags(napi);
465		if (!skb) {
466			put_page(page);
467			return;
468		}
469
470		if (efx->net_dev->features & NETIF_F_RXHASH)
471			skb->rxhash = efx_rx_buf_hash(rx_buf);
472
473		skb_shinfo(skb)->frags[0].page = page;
474		skb_shinfo(skb)->frags[0].page_offset =
475			efx_rx_buf_offset(rx_buf);
476		skb_shinfo(skb)->frags[0].size = rx_buf->len;
477		skb_shinfo(skb)->nr_frags = 1;
478
479		skb->len = rx_buf->len;
480		skb->data_len = rx_buf->len;
481		skb->truesize += rx_buf->len;
482		skb->ip_summed =
483			checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
484
485		skb_record_rx_queue(skb, channel->channel);
486
487		gro_result = napi_gro_frags(napi);
488	} else {
489		struct sk_buff *skb = rx_buf->skb;
490
491		EFX_BUG_ON_PARANOID(!skb);
492		EFX_BUG_ON_PARANOID(!checksummed);
493		rx_buf->skb = NULL;
494
495		gro_result = napi_gro_receive(napi, skb);
496	}
497
498	if (gro_result == GRO_NORMAL) {
499		channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
500	} else if (gro_result != GRO_DROP) {
501		channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
502		channel->irq_mod_score += 2;
503	}
504}
505
506void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
507		   unsigned int len, bool checksummed, bool discard)
508{
509	struct efx_nic *efx = rx_queue->efx;
510	struct efx_channel *channel = rx_queue->channel;
511	struct efx_rx_buffer *rx_buf;
512	bool leak_packet = false;
513
514	rx_buf = efx_rx_buffer(rx_queue, index);
515	EFX_BUG_ON_PARANOID(!rx_buf->data);
516	EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
517	EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
518
519	/* This allows the refill path to post another buffer.
520	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
521	 * isn't overwritten yet.
522	 */
523	rx_queue->removed_count++;
524
525	/* Validate the length encoded in the event vs the descriptor pushed */
526	efx_rx_packet__check_len(rx_queue, rx_buf, len,
527				 &discard, &leak_packet);
528
529	netif_vdbg(efx, rx_status, efx->net_dev,
530		   "RX queue %d received id %x at %llx+%x %s%s\n",
531		   rx_queue->queue, index,
532		   (unsigned long long)rx_buf->dma_addr, len,
533		   (checksummed ? " [SUMMED]" : ""),
534		   (discard ? " [DISCARD]" : ""));
535
536	/* Discard packet, if instructed to do so */
537	if (unlikely(discard)) {
538		if (unlikely(leak_packet))
539			channel->n_skbuff_leaks++;
540		else
541			efx_recycle_rx_buffer(channel, rx_buf);
542
543		/* Don't hold off the previous receive */
544		rx_buf = NULL;
545		goto out;
546	}
547
548	/* Release card resources - assumes all RX buffers consumed in-order
549	 * per RX queue
550	 */
551	efx_unmap_rx_buffer(efx, rx_buf);
552
553	/* Prefetch nice and early so data will (hopefully) be in cache by
554	 * the time we look at it.
555	 */
556	prefetch(rx_buf->data);
557
558	/* Pipeline receives so that we give time for packet headers to be
559	 * prefetched into cache.
560	 */
561	rx_buf->len = len;
562out:
563	if (rx_queue->channel->rx_pkt)
564		__efx_rx_packet(rx_queue->channel,
565				rx_queue->channel->rx_pkt,
566				rx_queue->channel->rx_pkt_csummed);
567	rx_queue->channel->rx_pkt = rx_buf;
568	rx_queue->channel->rx_pkt_csummed = checksummed;
569}
570
571/* Handle a received packet.  Second half: Touches packet payload. */
572void __efx_rx_packet(struct efx_channel *channel,
573		     struct efx_rx_buffer *rx_buf, bool checksummed)
574{
575	struct efx_nic *efx = channel->efx;
576	struct sk_buff *skb;
577
578	rx_buf->data += efx->type->rx_buffer_hash_size;
579	rx_buf->len -= efx->type->rx_buffer_hash_size;
580
581	/* If we're in loopback test, then pass the packet directly to the
582	 * loopback layer, and free the rx_buf here
583	 */
584	if (unlikely(efx->loopback_selftest)) {
585		efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
586		efx_free_rx_buffer(efx, rx_buf);
587		return;
588	}
589
590	if (rx_buf->skb) {
591		prefetch(skb_shinfo(rx_buf->skb));
592
593		skb_reserve(rx_buf->skb, efx->type->rx_buffer_hash_size);
594		skb_put(rx_buf->skb, rx_buf->len);
595
596		if (efx->net_dev->features & NETIF_F_RXHASH)
597			rx_buf->skb->rxhash = efx_rx_buf_hash(rx_buf);
598
599		/* Move past the ethernet header. rx_buf->data still points
600		 * at the ethernet header */
601		rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
602						       efx->net_dev);
603
604		skb_record_rx_queue(rx_buf->skb, channel->channel);
605	}
606
607	if (likely(checksummed || rx_buf->page)) {
608		efx_rx_packet_lro(channel, rx_buf, checksummed);
609		return;
610	}
611
612	/* We now own the SKB */
613	skb = rx_buf->skb;
614	rx_buf->skb = NULL;
615	EFX_BUG_ON_PARANOID(!skb);
616
617	/* Set the SKB flags */
618	skb->ip_summed = CHECKSUM_NONE;
619
620	/* Pass the packet up */
621	netif_receive_skb(skb);
622
623	/* Update allocation strategy method */
624	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
625}
626
627void efx_rx_strategy(struct efx_channel *channel)
628{
629	enum efx_rx_alloc_method method = rx_alloc_method;
630
631	/* Only makes sense to use page based allocation if LRO is enabled */
632	if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
633		method = RX_ALLOC_METHOD_SKB;
634	} else if (method == RX_ALLOC_METHOD_AUTO) {
635		/* Constrain the rx_alloc_level */
636		if (channel->rx_alloc_level < 0)
637			channel->rx_alloc_level = 0;
638		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
639			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
640
641		/* Decide on the allocation method */
642		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
643			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
644	}
645
646	/* Push the option */
647	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
648}
649
650int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
651{
652	struct efx_nic *efx = rx_queue->efx;
653	unsigned int rxq_size;
654	int rc;
655
656	netif_dbg(efx, probe, efx->net_dev,
657		  "creating RX queue %d\n", rx_queue->queue);
658
659	/* Allocate RX buffers */
660	rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
661	rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
662	if (!rx_queue->buffer)
663		return -ENOMEM;
664
665	rc = efx_nic_probe_rx(rx_queue);
666	if (rc) {
667		kfree(rx_queue->buffer);
668		rx_queue->buffer = NULL;
669	}
670	return rc;
671}
672
673void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
674{
675	unsigned int max_fill, trigger, limit;
676
677	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
678		  "initialising RX queue %d\n", rx_queue->queue);
679
680	/* Initialise ptr fields */
681	rx_queue->added_count = 0;
682	rx_queue->notified_count = 0;
683	rx_queue->removed_count = 0;
684	rx_queue->min_fill = -1U;
685	rx_queue->min_overfill = -1U;
686
687	/* Initialise limit fields */
688	max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
689	trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
690	limit = max_fill * min(rx_refill_limit, 100U) / 100U;
691
692	rx_queue->max_fill = max_fill;
693	rx_queue->fast_fill_trigger = trigger;
694	rx_queue->fast_fill_limit = limit;
695
696	/* Set up RX descriptor ring */
697	efx_nic_init_rx(rx_queue);
698}
699
700void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
701{
702	int i;
703	struct efx_rx_buffer *rx_buf;
704
705	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
706		  "shutting down RX queue %d\n", rx_queue->queue);
707
708	del_timer_sync(&rx_queue->slow_fill);
709	efx_nic_fini_rx(rx_queue);
710
711	/* Release RX buffers NB start at index 0 not current HW ptr */
712	if (rx_queue->buffer) {
713		for (i = 0; i <= EFX_RXQ_MASK; i++) {
714			rx_buf = efx_rx_buffer(rx_queue, i);
715			efx_fini_rx_buffer(rx_queue, rx_buf);
716		}
717	}
718}
719
720void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
721{
722	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
723		  "destroying RX queue %d\n", rx_queue->queue);
724
725	efx_nic_remove_rx(rx_queue);
726
727	kfree(rx_queue->buffer);
728	rx_queue->buffer = NULL;
729}
730
731
732module_param(rx_alloc_method, int, 0644);
733MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
734
735module_param(rx_refill_threshold, uint, 0444);
736MODULE_PARM_DESC(rx_refill_threshold,
737		 "RX descriptor ring fast/slow fill threshold (%)");
738