• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/net/e1000e/
1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2010 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ethtool support for e1000 */
30
31#include <linux/netdevice.h>
32#include <linux/ethtool.h>
33#include <linux/pci.h>
34#include <linux/slab.h>
35#include <linux/delay.h>
36
37#include "e1000.h"
38
39enum {NETDEV_STATS, E1000_STATS};
40
41struct e1000_stats {
42	char stat_string[ETH_GSTRING_LEN];
43	int type;
44	int sizeof_stat;
45	int stat_offset;
46};
47
48#define E1000_STAT(m)		E1000_STATS, \
49				sizeof(((struct e1000_adapter *)0)->m), \
50		      		offsetof(struct e1000_adapter, m)
51#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
52				sizeof(((struct net_device *)0)->m), \
53				offsetof(struct net_device, m)
54
55static const struct e1000_stats e1000_gstrings_stats[] = {
56	{ "rx_packets", E1000_STAT(stats.gprc) },
57	{ "tx_packets", E1000_STAT(stats.gptc) },
58	{ "rx_bytes", E1000_STAT(stats.gorc) },
59	{ "tx_bytes", E1000_STAT(stats.gotc) },
60	{ "rx_broadcast", E1000_STAT(stats.bprc) },
61	{ "tx_broadcast", E1000_STAT(stats.bptc) },
62	{ "rx_multicast", E1000_STAT(stats.mprc) },
63	{ "tx_multicast", E1000_STAT(stats.mptc) },
64	{ "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
65	{ "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
66	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
67	{ "multicast", E1000_STAT(stats.mprc) },
68	{ "collisions", E1000_STAT(stats.colc) },
69	{ "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
70	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
71	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
73	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
75	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
76	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
78	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
79	{ "tx_window_errors", E1000_STAT(stats.latecol) },
80	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
82	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
83	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85	{ "tx_restart_queue", E1000_STAT(restart_queue) },
86	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
87	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
88	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
89	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95	{ "rx_long_byte_count", E1000_STAT(stats.gorc) },
96	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
99	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100	{ "tx_smbus", E1000_STAT(stats.mgptc) },
101	{ "rx_smbus", E1000_STAT(stats.mgprc) },
102	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
103	{ "rx_dma_failed", E1000_STAT(rx_dma_failed) },
104	{ "tx_dma_failed", E1000_STAT(tx_dma_failed) },
105};
106
107#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
108#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
109static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
110	"Register test  (offline)", "Eeprom test    (offline)",
111	"Interrupt test (offline)", "Loopback test  (offline)",
112	"Link test   (on/offline)"
113};
114#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
115
116static int e1000_get_settings(struct net_device *netdev,
117			      struct ethtool_cmd *ecmd)
118{
119	struct e1000_adapter *adapter = netdev_priv(netdev);
120	struct e1000_hw *hw = &adapter->hw;
121
122	if (hw->phy.media_type == e1000_media_type_copper) {
123
124		ecmd->supported = (SUPPORTED_10baseT_Half |
125				   SUPPORTED_10baseT_Full |
126				   SUPPORTED_100baseT_Half |
127				   SUPPORTED_100baseT_Full |
128				   SUPPORTED_1000baseT_Full |
129				   SUPPORTED_Autoneg |
130				   SUPPORTED_TP);
131		if (hw->phy.type == e1000_phy_ife)
132			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133		ecmd->advertising = ADVERTISED_TP;
134
135		if (hw->mac.autoneg == 1) {
136			ecmd->advertising |= ADVERTISED_Autoneg;
137			/* the e1000 autoneg seems to match ethtool nicely */
138			ecmd->advertising |= hw->phy.autoneg_advertised;
139		}
140
141		ecmd->port = PORT_TP;
142		ecmd->phy_address = hw->phy.addr;
143		ecmd->transceiver = XCVR_INTERNAL;
144
145	} else {
146		ecmd->supported   = (SUPPORTED_1000baseT_Full |
147				     SUPPORTED_FIBRE |
148				     SUPPORTED_Autoneg);
149
150		ecmd->advertising = (ADVERTISED_1000baseT_Full |
151				     ADVERTISED_FIBRE |
152				     ADVERTISED_Autoneg);
153
154		ecmd->port = PORT_FIBRE;
155		ecmd->transceiver = XCVR_EXTERNAL;
156	}
157
158	ecmd->speed = -1;
159	ecmd->duplex = -1;
160
161	if (netif_running(netdev)) {
162		if (netif_carrier_ok(netdev)) {
163			ecmd->speed = adapter->link_speed;
164			ecmd->duplex = adapter->link_duplex - 1;
165		}
166	} else {
167		u32 status = er32(STATUS);
168		if (status & E1000_STATUS_LU) {
169			if (status & E1000_STATUS_SPEED_1000)
170				ecmd->speed = 1000;
171			else if (status & E1000_STATUS_SPEED_100)
172				ecmd->speed = 100;
173			else
174				ecmd->speed = 10;
175
176			if (status & E1000_STATUS_FD)
177				ecmd->duplex = DUPLEX_FULL;
178			else
179				ecmd->duplex = DUPLEX_HALF;
180		}
181	}
182
183	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
184			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
185
186	/* MDI-X => 2; MDI =>1; Invalid =>0 */
187	if ((hw->phy.media_type == e1000_media_type_copper) &&
188	    netif_carrier_ok(netdev))
189		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
190		                                      ETH_TP_MDI;
191	else
192		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
193
194	return 0;
195}
196
197static u32 e1000_get_link(struct net_device *netdev)
198{
199	struct e1000_adapter *adapter = netdev_priv(netdev);
200	struct e1000_hw *hw = &adapter->hw;
201
202	/*
203	 * Avoid touching hardware registers when possible, otherwise
204	 * link negotiation can get messed up when user-level scripts
205	 * are rapidly polling the driver to see if link is up.
206	 */
207	return netif_running(netdev) ? netif_carrier_ok(netdev) :
208	    !!(er32(STATUS) & E1000_STATUS_LU);
209}
210
211static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
212{
213	struct e1000_mac_info *mac = &adapter->hw.mac;
214
215	mac->autoneg = 0;
216
217	/* Fiber NICs only allow 1000 gbps Full duplex */
218	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
219		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
220		e_err("Unsupported Speed/Duplex configuration\n");
221		return -EINVAL;
222	}
223
224	switch (spddplx) {
225	case SPEED_10 + DUPLEX_HALF:
226		mac->forced_speed_duplex = ADVERTISE_10_HALF;
227		break;
228	case SPEED_10 + DUPLEX_FULL:
229		mac->forced_speed_duplex = ADVERTISE_10_FULL;
230		break;
231	case SPEED_100 + DUPLEX_HALF:
232		mac->forced_speed_duplex = ADVERTISE_100_HALF;
233		break;
234	case SPEED_100 + DUPLEX_FULL:
235		mac->forced_speed_duplex = ADVERTISE_100_FULL;
236		break;
237	case SPEED_1000 + DUPLEX_FULL:
238		mac->autoneg = 1;
239		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
240		break;
241	case SPEED_1000 + DUPLEX_HALF: /* not supported */
242	default:
243		e_err("Unsupported Speed/Duplex configuration\n");
244		return -EINVAL;
245	}
246	return 0;
247}
248
249static int e1000_set_settings(struct net_device *netdev,
250			      struct ethtool_cmd *ecmd)
251{
252	struct e1000_adapter *adapter = netdev_priv(netdev);
253	struct e1000_hw *hw = &adapter->hw;
254
255	/*
256	 * When SoL/IDER sessions are active, autoneg/speed/duplex
257	 * cannot be changed
258	 */
259	if (e1000_check_reset_block(hw)) {
260		e_err("Cannot change link characteristics when SoL/IDER is "
261		      "active.\n");
262		return -EINVAL;
263	}
264
265	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
266		msleep(1);
267
268	if (ecmd->autoneg == AUTONEG_ENABLE) {
269		hw->mac.autoneg = 1;
270		if (hw->phy.media_type == e1000_media_type_fiber)
271			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
272						     ADVERTISED_FIBRE |
273						     ADVERTISED_Autoneg;
274		else
275			hw->phy.autoneg_advertised = ecmd->advertising |
276						     ADVERTISED_TP |
277						     ADVERTISED_Autoneg;
278		ecmd->advertising = hw->phy.autoneg_advertised;
279		if (adapter->fc_autoneg)
280			hw->fc.requested_mode = e1000_fc_default;
281	} else {
282		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
283			clear_bit(__E1000_RESETTING, &adapter->state);
284			return -EINVAL;
285		}
286	}
287
288	/* reset the link */
289
290	if (netif_running(adapter->netdev)) {
291		e1000e_down(adapter);
292		e1000e_up(adapter);
293	} else {
294		e1000e_reset(adapter);
295	}
296
297	clear_bit(__E1000_RESETTING, &adapter->state);
298	return 0;
299}
300
301static void e1000_get_pauseparam(struct net_device *netdev,
302				 struct ethtool_pauseparam *pause)
303{
304	struct e1000_adapter *adapter = netdev_priv(netdev);
305	struct e1000_hw *hw = &adapter->hw;
306
307	pause->autoneg =
308		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
309
310	if (hw->fc.current_mode == e1000_fc_rx_pause) {
311		pause->rx_pause = 1;
312	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
313		pause->tx_pause = 1;
314	} else if (hw->fc.current_mode == e1000_fc_full) {
315		pause->rx_pause = 1;
316		pause->tx_pause = 1;
317	}
318}
319
320static int e1000_set_pauseparam(struct net_device *netdev,
321				struct ethtool_pauseparam *pause)
322{
323	struct e1000_adapter *adapter = netdev_priv(netdev);
324	struct e1000_hw *hw = &adapter->hw;
325	int retval = 0;
326
327	adapter->fc_autoneg = pause->autoneg;
328
329	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
330		msleep(1);
331
332	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
333		hw->fc.requested_mode = e1000_fc_default;
334		if (netif_running(adapter->netdev)) {
335			e1000e_down(adapter);
336			e1000e_up(adapter);
337		} else {
338			e1000e_reset(adapter);
339		}
340	} else {
341		if (pause->rx_pause && pause->tx_pause)
342			hw->fc.requested_mode = e1000_fc_full;
343		else if (pause->rx_pause && !pause->tx_pause)
344			hw->fc.requested_mode = e1000_fc_rx_pause;
345		else if (!pause->rx_pause && pause->tx_pause)
346			hw->fc.requested_mode = e1000_fc_tx_pause;
347		else if (!pause->rx_pause && !pause->tx_pause)
348			hw->fc.requested_mode = e1000_fc_none;
349
350		hw->fc.current_mode = hw->fc.requested_mode;
351
352		if (hw->phy.media_type == e1000_media_type_fiber) {
353			retval = hw->mac.ops.setup_link(hw);
354			/* implicit goto out */
355		} else {
356			retval = e1000e_force_mac_fc(hw);
357			if (retval)
358				goto out;
359			e1000e_set_fc_watermarks(hw);
360		}
361	}
362
363out:
364	clear_bit(__E1000_RESETTING, &adapter->state);
365	return retval;
366}
367
368static u32 e1000_get_rx_csum(struct net_device *netdev)
369{
370	struct e1000_adapter *adapter = netdev_priv(netdev);
371	return (adapter->flags & FLAG_RX_CSUM_ENABLED);
372}
373
374static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
375{
376	struct e1000_adapter *adapter = netdev_priv(netdev);
377
378	if (data)
379		adapter->flags |= FLAG_RX_CSUM_ENABLED;
380	else
381		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
382
383	if (netif_running(netdev))
384		e1000e_reinit_locked(adapter);
385	else
386		e1000e_reset(adapter);
387	return 0;
388}
389
390static u32 e1000_get_tx_csum(struct net_device *netdev)
391{
392	return ((netdev->features & NETIF_F_HW_CSUM) != 0);
393}
394
395static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
396{
397	if (data)
398		netdev->features |= NETIF_F_HW_CSUM;
399	else
400		netdev->features &= ~NETIF_F_HW_CSUM;
401
402	return 0;
403}
404
405static int e1000_set_tso(struct net_device *netdev, u32 data)
406{
407	struct e1000_adapter *adapter = netdev_priv(netdev);
408
409	if (data) {
410		netdev->features |= NETIF_F_TSO;
411		netdev->features |= NETIF_F_TSO6;
412	} else {
413		netdev->features &= ~NETIF_F_TSO;
414		netdev->features &= ~NETIF_F_TSO6;
415	}
416
417	adapter->flags |= FLAG_TSO_FORCE;
418	return 0;
419}
420
421static u32 e1000_get_msglevel(struct net_device *netdev)
422{
423	struct e1000_adapter *adapter = netdev_priv(netdev);
424	return adapter->msg_enable;
425}
426
427static void e1000_set_msglevel(struct net_device *netdev, u32 data)
428{
429	struct e1000_adapter *adapter = netdev_priv(netdev);
430	adapter->msg_enable = data;
431}
432
433static int e1000_get_regs_len(struct net_device *netdev)
434{
435#define E1000_REGS_LEN 32 /* overestimate */
436	return E1000_REGS_LEN * sizeof(u32);
437}
438
439static void e1000_get_regs(struct net_device *netdev,
440			   struct ethtool_regs *regs, void *p)
441{
442	struct e1000_adapter *adapter = netdev_priv(netdev);
443	struct e1000_hw *hw = &adapter->hw;
444	u32 *regs_buff = p;
445	u16 phy_data;
446	u8 revision_id;
447
448	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
449
450	pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
451
452	regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
453
454	regs_buff[0]  = er32(CTRL);
455	regs_buff[1]  = er32(STATUS);
456
457	regs_buff[2]  = er32(RCTL);
458	regs_buff[3]  = er32(RDLEN);
459	regs_buff[4]  = er32(RDH);
460	regs_buff[5]  = er32(RDT);
461	regs_buff[6]  = er32(RDTR);
462
463	regs_buff[7]  = er32(TCTL);
464	regs_buff[8]  = er32(TDLEN);
465	regs_buff[9]  = er32(TDH);
466	regs_buff[10] = er32(TDT);
467	regs_buff[11] = er32(TIDV);
468
469	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
470
471	/* ethtool doesn't use anything past this point, so all this
472	 * code is likely legacy junk for apps that may or may not
473	 * exist */
474	if (hw->phy.type == e1000_phy_m88) {
475		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
476		regs_buff[13] = (u32)phy_data; /* cable length */
477		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
478		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
479		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
480		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
481		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
482		regs_buff[18] = regs_buff[13]; /* cable polarity */
483		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
484		regs_buff[20] = regs_buff[17]; /* polarity correction */
485		/* phy receive errors */
486		regs_buff[22] = adapter->phy_stats.receive_errors;
487		regs_buff[23] = regs_buff[13]; /* mdix mode */
488	}
489	regs_buff[21] = 0; /* was idle_errors */
490	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
491	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
492	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
493}
494
495static int e1000_get_eeprom_len(struct net_device *netdev)
496{
497	struct e1000_adapter *adapter = netdev_priv(netdev);
498	return adapter->hw.nvm.word_size * 2;
499}
500
501static int e1000_get_eeprom(struct net_device *netdev,
502			    struct ethtool_eeprom *eeprom, u8 *bytes)
503{
504	struct e1000_adapter *adapter = netdev_priv(netdev);
505	struct e1000_hw *hw = &adapter->hw;
506	u16 *eeprom_buff;
507	int first_word;
508	int last_word;
509	int ret_val = 0;
510	u16 i;
511
512	if (eeprom->len == 0)
513		return -EINVAL;
514
515	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
516
517	first_word = eeprom->offset >> 1;
518	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
519
520	eeprom_buff = kmalloc(sizeof(u16) *
521			(last_word - first_word + 1), GFP_KERNEL);
522	if (!eeprom_buff)
523		return -ENOMEM;
524
525	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
526		ret_val = e1000_read_nvm(hw, first_word,
527					 last_word - first_word + 1,
528					 eeprom_buff);
529	} else {
530		for (i = 0; i < last_word - first_word + 1; i++) {
531			ret_val = e1000_read_nvm(hw, first_word + i, 1,
532						      &eeprom_buff[i]);
533			if (ret_val)
534				break;
535		}
536	}
537
538	if (ret_val) {
539		/* a read error occurred, throw away the result */
540		memset(eeprom_buff, 0xff, sizeof(u16) *
541		       (last_word - first_word + 1));
542	} else {
543		/* Device's eeprom is always little-endian, word addressable */
544		for (i = 0; i < last_word - first_word + 1; i++)
545			le16_to_cpus(&eeprom_buff[i]);
546	}
547
548	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
549	kfree(eeprom_buff);
550
551	return ret_val;
552}
553
554static int e1000_set_eeprom(struct net_device *netdev,
555			    struct ethtool_eeprom *eeprom, u8 *bytes)
556{
557	struct e1000_adapter *adapter = netdev_priv(netdev);
558	struct e1000_hw *hw = &adapter->hw;
559	u16 *eeprom_buff;
560	void *ptr;
561	int max_len;
562	int first_word;
563	int last_word;
564	int ret_val = 0;
565	u16 i;
566
567	if (eeprom->len == 0)
568		return -EOPNOTSUPP;
569
570	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
571		return -EFAULT;
572
573	if (adapter->flags & FLAG_READ_ONLY_NVM)
574		return -EINVAL;
575
576	max_len = hw->nvm.word_size * 2;
577
578	first_word = eeprom->offset >> 1;
579	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
580	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
581	if (!eeprom_buff)
582		return -ENOMEM;
583
584	ptr = (void *)eeprom_buff;
585
586	if (eeprom->offset & 1) {
587		/* need read/modify/write of first changed EEPROM word */
588		/* only the second byte of the word is being modified */
589		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
590		ptr++;
591	}
592	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
593		/* need read/modify/write of last changed EEPROM word */
594		/* only the first byte of the word is being modified */
595		ret_val = e1000_read_nvm(hw, last_word, 1,
596				  &eeprom_buff[last_word - first_word]);
597
598	if (ret_val)
599		goto out;
600
601	/* Device's eeprom is always little-endian, word addressable */
602	for (i = 0; i < last_word - first_word + 1; i++)
603		le16_to_cpus(&eeprom_buff[i]);
604
605	memcpy(ptr, bytes, eeprom->len);
606
607	for (i = 0; i < last_word - first_word + 1; i++)
608		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
609
610	ret_val = e1000_write_nvm(hw, first_word,
611				  last_word - first_word + 1, eeprom_buff);
612
613	if (ret_val)
614		goto out;
615
616	/*
617	 * Update the checksum over the first part of the EEPROM if needed
618	 * and flush shadow RAM for applicable controllers
619	 */
620	if ((first_word <= NVM_CHECKSUM_REG) ||
621	    (hw->mac.type == e1000_82583) ||
622	    (hw->mac.type == e1000_82574) ||
623	    (hw->mac.type == e1000_82573))
624		ret_val = e1000e_update_nvm_checksum(hw);
625
626out:
627	kfree(eeprom_buff);
628	return ret_val;
629}
630
631static void e1000_get_drvinfo(struct net_device *netdev,
632			      struct ethtool_drvinfo *drvinfo)
633{
634	struct e1000_adapter *adapter = netdev_priv(netdev);
635	char firmware_version[32];
636
637	strncpy(drvinfo->driver,  e1000e_driver_name, 32);
638	strncpy(drvinfo->version, e1000e_driver_version, 32);
639
640	/*
641	 * EEPROM image version # is reported as firmware version # for
642	 * PCI-E controllers
643	 */
644	sprintf(firmware_version, "%d.%d-%d",
645		(adapter->eeprom_vers & 0xF000) >> 12,
646		(adapter->eeprom_vers & 0x0FF0) >> 4,
647		(adapter->eeprom_vers & 0x000F));
648
649	strncpy(drvinfo->fw_version, firmware_version, 32);
650	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
651	drvinfo->regdump_len = e1000_get_regs_len(netdev);
652	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
653}
654
655static void e1000_get_ringparam(struct net_device *netdev,
656				struct ethtool_ringparam *ring)
657{
658	struct e1000_adapter *adapter = netdev_priv(netdev);
659	struct e1000_ring *tx_ring = adapter->tx_ring;
660	struct e1000_ring *rx_ring = adapter->rx_ring;
661
662	ring->rx_max_pending = E1000_MAX_RXD;
663	ring->tx_max_pending = E1000_MAX_TXD;
664	ring->rx_mini_max_pending = 0;
665	ring->rx_jumbo_max_pending = 0;
666	ring->rx_pending = rx_ring->count;
667	ring->tx_pending = tx_ring->count;
668	ring->rx_mini_pending = 0;
669	ring->rx_jumbo_pending = 0;
670}
671
672static int e1000_set_ringparam(struct net_device *netdev,
673			       struct ethtool_ringparam *ring)
674{
675	struct e1000_adapter *adapter = netdev_priv(netdev);
676	struct e1000_ring *tx_ring, *tx_old;
677	struct e1000_ring *rx_ring, *rx_old;
678	int err;
679
680	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
681		return -EINVAL;
682
683	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
684		msleep(1);
685
686	if (netif_running(adapter->netdev))
687		e1000e_down(adapter);
688
689	tx_old = adapter->tx_ring;
690	rx_old = adapter->rx_ring;
691
692	err = -ENOMEM;
693	tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
694	if (!tx_ring)
695		goto err_alloc_tx;
696	/*
697	 * use a memcpy to save any previously configured
698	 * items like napi structs from having to be
699	 * reinitialized
700	 */
701	memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
702
703	rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
704	if (!rx_ring)
705		goto err_alloc_rx;
706	memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
707
708	adapter->tx_ring = tx_ring;
709	adapter->rx_ring = rx_ring;
710
711	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
712	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
713	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
714
715	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
716	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
717	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
718
719	if (netif_running(adapter->netdev)) {
720		/* Try to get new resources before deleting old */
721		err = e1000e_setup_rx_resources(adapter);
722		if (err)
723			goto err_setup_rx;
724		err = e1000e_setup_tx_resources(adapter);
725		if (err)
726			goto err_setup_tx;
727
728		/*
729		 * restore the old in order to free it,
730		 * then add in the new
731		 */
732		adapter->rx_ring = rx_old;
733		adapter->tx_ring = tx_old;
734		e1000e_free_rx_resources(adapter);
735		e1000e_free_tx_resources(adapter);
736		kfree(tx_old);
737		kfree(rx_old);
738		adapter->rx_ring = rx_ring;
739		adapter->tx_ring = tx_ring;
740		err = e1000e_up(adapter);
741		if (err)
742			goto err_setup;
743	}
744
745	clear_bit(__E1000_RESETTING, &adapter->state);
746	return 0;
747err_setup_tx:
748	e1000e_free_rx_resources(adapter);
749err_setup_rx:
750	adapter->rx_ring = rx_old;
751	adapter->tx_ring = tx_old;
752	kfree(rx_ring);
753err_alloc_rx:
754	kfree(tx_ring);
755err_alloc_tx:
756	e1000e_up(adapter);
757err_setup:
758	clear_bit(__E1000_RESETTING, &adapter->state);
759	return err;
760}
761
762static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
763			     int reg, int offset, u32 mask, u32 write)
764{
765	u32 pat, val;
766	static const u32 test[] =
767		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
768	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
769		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
770				      (test[pat] & write));
771		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
772		if (val != (test[pat] & write & mask)) {
773			e_err("pattern test reg %04X failed: got 0x%08X "
774			      "expected 0x%08X\n", reg + offset, val,
775			      (test[pat] & write & mask));
776			*data = reg;
777			return 1;
778		}
779	}
780	return 0;
781}
782
783static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
784			      int reg, u32 mask, u32 write)
785{
786	u32 val;
787	__ew32(&adapter->hw, reg, write & mask);
788	val = __er32(&adapter->hw, reg);
789	if ((write & mask) != (val & mask)) {
790		e_err("set/check reg %04X test failed: got 0x%08X "
791		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
792		*data = reg;
793		return 1;
794	}
795	return 0;
796}
797#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
798	do {                                                                   \
799		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
800			return 1;                                              \
801	} while (0)
802#define REG_PATTERN_TEST(reg, mask, write)                                     \
803	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
804
805#define REG_SET_AND_CHECK(reg, mask, write)                                    \
806	do {                                                                   \
807		if (reg_set_and_check(adapter, data, reg, mask, write))        \
808			return 1;                                              \
809	} while (0)
810
811static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
812{
813	struct e1000_hw *hw = &adapter->hw;
814	struct e1000_mac_info *mac = &adapter->hw.mac;
815	u32 value;
816	u32 before;
817	u32 after;
818	u32 i;
819	u32 toggle;
820	u32 mask;
821
822	/*
823	 * The status register is Read Only, so a write should fail.
824	 * Some bits that get toggled are ignored.
825	 */
826	switch (mac->type) {
827	/* there are several bits on newer hardware that are r/w */
828	case e1000_82571:
829	case e1000_82572:
830	case e1000_80003es2lan:
831		toggle = 0x7FFFF3FF;
832		break;
833        default:
834		toggle = 0x7FFFF033;
835		break;
836	}
837
838	before = er32(STATUS);
839	value = (er32(STATUS) & toggle);
840	ew32(STATUS, toggle);
841	after = er32(STATUS) & toggle;
842	if (value != after) {
843		e_err("failed STATUS register test got: 0x%08X expected: "
844		      "0x%08X\n", after, value);
845		*data = 1;
846		return 1;
847	}
848	/* restore previous status */
849	ew32(STATUS, before);
850
851	if (!(adapter->flags & FLAG_IS_ICH)) {
852		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
853		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
854		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
855		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
856	}
857
858	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
859	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
860	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
861	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
862	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
863	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
864	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
865	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
866	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
867	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
868
869	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
870
871	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
872	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
873	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
874
875	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
876	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
877	if (!(adapter->flags & FLAG_IS_ICH))
878		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
879	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
880	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
881	mask = 0x8003FFFF;
882	switch (mac->type) {
883	case e1000_ich10lan:
884	case e1000_pchlan:
885	case e1000_pch2lan:
886		mask |= (1 << 18);
887		break;
888	default:
889		break;
890	}
891	for (i = 0; i < mac->rar_entry_count; i++)
892		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
893		                       mask, 0xFFFFFFFF);
894
895	for (i = 0; i < mac->mta_reg_count; i++)
896		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
897
898	*data = 0;
899	return 0;
900}
901
902static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
903{
904	u16 temp;
905	u16 checksum = 0;
906	u16 i;
907
908	*data = 0;
909	/* Read and add up the contents of the EEPROM */
910	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
911		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
912			*data = 1;
913			return *data;
914		}
915		checksum += temp;
916	}
917
918	/* If Checksum is not Correct return error else test passed */
919	if ((checksum != (u16) NVM_SUM) && !(*data))
920		*data = 2;
921
922	return *data;
923}
924
925static irqreturn_t e1000_test_intr(int irq, void *data)
926{
927	struct net_device *netdev = (struct net_device *) data;
928	struct e1000_adapter *adapter = netdev_priv(netdev);
929	struct e1000_hw *hw = &adapter->hw;
930
931	adapter->test_icr |= er32(ICR);
932
933	return IRQ_HANDLED;
934}
935
936static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
937{
938	struct net_device *netdev = adapter->netdev;
939	struct e1000_hw *hw = &adapter->hw;
940	u32 mask;
941	u32 shared_int = 1;
942	u32 irq = adapter->pdev->irq;
943	int i;
944	int ret_val = 0;
945	int int_mode = E1000E_INT_MODE_LEGACY;
946
947	*data = 0;
948
949	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
950	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
951		int_mode = adapter->int_mode;
952		e1000e_reset_interrupt_capability(adapter);
953		adapter->int_mode = E1000E_INT_MODE_LEGACY;
954		e1000e_set_interrupt_capability(adapter);
955	}
956	/* Hook up test interrupt handler just for this test */
957	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
958			 netdev)) {
959		shared_int = 0;
960	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
961		 netdev->name, netdev)) {
962		*data = 1;
963		ret_val = -1;
964		goto out;
965	}
966	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
967
968	/* Disable all the interrupts */
969	ew32(IMC, 0xFFFFFFFF);
970	msleep(10);
971
972	/* Test each interrupt */
973	for (i = 0; i < 10; i++) {
974		/* Interrupt to test */
975		mask = 1 << i;
976
977		if (adapter->flags & FLAG_IS_ICH) {
978			switch (mask) {
979			case E1000_ICR_RXSEQ:
980				continue;
981			case 0x00000100:
982				if (adapter->hw.mac.type == e1000_ich8lan ||
983				    adapter->hw.mac.type == e1000_ich9lan)
984					continue;
985				break;
986			default:
987				break;
988			}
989		}
990
991		if (!shared_int) {
992			/*
993			 * Disable the interrupt to be reported in
994			 * the cause register and then force the same
995			 * interrupt and see if one gets posted.  If
996			 * an interrupt was posted to the bus, the
997			 * test failed.
998			 */
999			adapter->test_icr = 0;
1000			ew32(IMC, mask);
1001			ew32(ICS, mask);
1002			msleep(10);
1003
1004			if (adapter->test_icr & mask) {
1005				*data = 3;
1006				break;
1007			}
1008		}
1009
1010		/*
1011		 * Enable the interrupt to be reported in
1012		 * the cause register and then force the same
1013		 * interrupt and see if one gets posted.  If
1014		 * an interrupt was not posted to the bus, the
1015		 * test failed.
1016		 */
1017		adapter->test_icr = 0;
1018		ew32(IMS, mask);
1019		ew32(ICS, mask);
1020		msleep(10);
1021
1022		if (!(adapter->test_icr & mask)) {
1023			*data = 4;
1024			break;
1025		}
1026
1027		if (!shared_int) {
1028			/*
1029			 * Disable the other interrupts to be reported in
1030			 * the cause register and then force the other
1031			 * interrupts and see if any get posted.  If
1032			 * an interrupt was posted to the bus, the
1033			 * test failed.
1034			 */
1035			adapter->test_icr = 0;
1036			ew32(IMC, ~mask & 0x00007FFF);
1037			ew32(ICS, ~mask & 0x00007FFF);
1038			msleep(10);
1039
1040			if (adapter->test_icr) {
1041				*data = 5;
1042				break;
1043			}
1044		}
1045	}
1046
1047	/* Disable all the interrupts */
1048	ew32(IMC, 0xFFFFFFFF);
1049	msleep(10);
1050
1051	/* Unhook test interrupt handler */
1052	free_irq(irq, netdev);
1053
1054out:
1055	if (int_mode == E1000E_INT_MODE_MSIX) {
1056		e1000e_reset_interrupt_capability(adapter);
1057		adapter->int_mode = int_mode;
1058		e1000e_set_interrupt_capability(adapter);
1059	}
1060
1061	return ret_val;
1062}
1063
1064static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1065{
1066	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1067	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1068	struct pci_dev *pdev = adapter->pdev;
1069	int i;
1070
1071	if (tx_ring->desc && tx_ring->buffer_info) {
1072		for (i = 0; i < tx_ring->count; i++) {
1073			if (tx_ring->buffer_info[i].dma)
1074				dma_unmap_single(&pdev->dev,
1075					tx_ring->buffer_info[i].dma,
1076					tx_ring->buffer_info[i].length,
1077					DMA_TO_DEVICE);
1078			if (tx_ring->buffer_info[i].skb)
1079				dev_kfree_skb(tx_ring->buffer_info[i].skb);
1080		}
1081	}
1082
1083	if (rx_ring->desc && rx_ring->buffer_info) {
1084		for (i = 0; i < rx_ring->count; i++) {
1085			if (rx_ring->buffer_info[i].dma)
1086				dma_unmap_single(&pdev->dev,
1087					rx_ring->buffer_info[i].dma,
1088					2048, DMA_FROM_DEVICE);
1089			if (rx_ring->buffer_info[i].skb)
1090				dev_kfree_skb(rx_ring->buffer_info[i].skb);
1091		}
1092	}
1093
1094	if (tx_ring->desc) {
1095		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1096				  tx_ring->dma);
1097		tx_ring->desc = NULL;
1098	}
1099	if (rx_ring->desc) {
1100		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1101				  rx_ring->dma);
1102		rx_ring->desc = NULL;
1103	}
1104
1105	kfree(tx_ring->buffer_info);
1106	tx_ring->buffer_info = NULL;
1107	kfree(rx_ring->buffer_info);
1108	rx_ring->buffer_info = NULL;
1109}
1110
1111static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1112{
1113	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1114	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1115	struct pci_dev *pdev = adapter->pdev;
1116	struct e1000_hw *hw = &adapter->hw;
1117	u32 rctl;
1118	int i;
1119	int ret_val;
1120
1121	/* Setup Tx descriptor ring and Tx buffers */
1122
1123	if (!tx_ring->count)
1124		tx_ring->count = E1000_DEFAULT_TXD;
1125
1126	tx_ring->buffer_info = kcalloc(tx_ring->count,
1127				       sizeof(struct e1000_buffer),
1128				       GFP_KERNEL);
1129	if (!(tx_ring->buffer_info)) {
1130		ret_val = 1;
1131		goto err_nomem;
1132	}
1133
1134	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1135	tx_ring->size = ALIGN(tx_ring->size, 4096);
1136	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1137					   &tx_ring->dma, GFP_KERNEL);
1138	if (!tx_ring->desc) {
1139		ret_val = 2;
1140		goto err_nomem;
1141	}
1142	tx_ring->next_to_use = 0;
1143	tx_ring->next_to_clean = 0;
1144
1145	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1146	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1147	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1148	ew32(TDH, 0);
1149	ew32(TDT, 0);
1150	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1151	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1152	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1153
1154	for (i = 0; i < tx_ring->count; i++) {
1155		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1156		struct sk_buff *skb;
1157		unsigned int skb_size = 1024;
1158
1159		skb = alloc_skb(skb_size, GFP_KERNEL);
1160		if (!skb) {
1161			ret_val = 3;
1162			goto err_nomem;
1163		}
1164		skb_put(skb, skb_size);
1165		tx_ring->buffer_info[i].skb = skb;
1166		tx_ring->buffer_info[i].length = skb->len;
1167		tx_ring->buffer_info[i].dma =
1168			dma_map_single(&pdev->dev, skb->data, skb->len,
1169				       DMA_TO_DEVICE);
1170		if (dma_mapping_error(&pdev->dev,
1171				      tx_ring->buffer_info[i].dma)) {
1172			ret_val = 4;
1173			goto err_nomem;
1174		}
1175		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1176		tx_desc->lower.data = cpu_to_le32(skb->len);
1177		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1178						   E1000_TXD_CMD_IFCS |
1179						   E1000_TXD_CMD_RS);
1180		tx_desc->upper.data = 0;
1181	}
1182
1183	/* Setup Rx descriptor ring and Rx buffers */
1184
1185	if (!rx_ring->count)
1186		rx_ring->count = E1000_DEFAULT_RXD;
1187
1188	rx_ring->buffer_info = kcalloc(rx_ring->count,
1189				       sizeof(struct e1000_buffer),
1190				       GFP_KERNEL);
1191	if (!(rx_ring->buffer_info)) {
1192		ret_val = 5;
1193		goto err_nomem;
1194	}
1195
1196	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1197	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1198					   &rx_ring->dma, GFP_KERNEL);
1199	if (!rx_ring->desc) {
1200		ret_val = 6;
1201		goto err_nomem;
1202	}
1203	rx_ring->next_to_use = 0;
1204	rx_ring->next_to_clean = 0;
1205
1206	rctl = er32(RCTL);
1207	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1208	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1209	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1210	ew32(RDLEN, rx_ring->size);
1211	ew32(RDH, 0);
1212	ew32(RDT, 0);
1213	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1214		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1215		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1216		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1217		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1218	ew32(RCTL, rctl);
1219
1220	for (i = 0; i < rx_ring->count; i++) {
1221		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1222		struct sk_buff *skb;
1223
1224		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1225		if (!skb) {
1226			ret_val = 7;
1227			goto err_nomem;
1228		}
1229		skb_reserve(skb, NET_IP_ALIGN);
1230		rx_ring->buffer_info[i].skb = skb;
1231		rx_ring->buffer_info[i].dma =
1232			dma_map_single(&pdev->dev, skb->data, 2048,
1233				       DMA_FROM_DEVICE);
1234		if (dma_mapping_error(&pdev->dev,
1235				      rx_ring->buffer_info[i].dma)) {
1236			ret_val = 8;
1237			goto err_nomem;
1238		}
1239		rx_desc->buffer_addr =
1240			cpu_to_le64(rx_ring->buffer_info[i].dma);
1241		memset(skb->data, 0x00, skb->len);
1242	}
1243
1244	return 0;
1245
1246err_nomem:
1247	e1000_free_desc_rings(adapter);
1248	return ret_val;
1249}
1250
1251static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1252{
1253	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1254	e1e_wphy(&adapter->hw, 29, 0x001F);
1255	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1256	e1e_wphy(&adapter->hw, 29, 0x001A);
1257	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1258}
1259
1260static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1261{
1262	struct e1000_hw *hw = &adapter->hw;
1263	u32 ctrl_reg = 0;
1264	u32 stat_reg = 0;
1265	u16 phy_reg = 0;
1266
1267	hw->mac.autoneg = 0;
1268
1269	if (hw->phy.type == e1000_phy_ife) {
1270		/* force 100, set loopback */
1271		e1e_wphy(hw, PHY_CONTROL, 0x6100);
1272
1273		/* Now set up the MAC to the same speed/duplex as the PHY. */
1274		ctrl_reg = er32(CTRL);
1275		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1276		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1277			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1278			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1279			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1280
1281		ew32(CTRL, ctrl_reg);
1282		udelay(500);
1283
1284		return 0;
1285	}
1286
1287	/* Specific PHY configuration for loopback */
1288	switch (hw->phy.type) {
1289	case e1000_phy_m88:
1290		/* Auto-MDI/MDIX Off */
1291		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1292		/* reset to update Auto-MDI/MDIX */
1293		e1e_wphy(hw, PHY_CONTROL, 0x9140);
1294		/* autoneg off */
1295		e1e_wphy(hw, PHY_CONTROL, 0x8140);
1296		break;
1297	case e1000_phy_gg82563:
1298		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1299		break;
1300	case e1000_phy_bm:
1301		/* Set Default MAC Interface speed to 1GB */
1302		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1303		phy_reg &= ~0x0007;
1304		phy_reg |= 0x006;
1305		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1306		/* Assert SW reset for above settings to take effect */
1307		e1000e_commit_phy(hw);
1308		mdelay(1);
1309		/* Force Full Duplex */
1310		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1311		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1312		/* Set Link Up (in force link) */
1313		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1314		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1315		/* Force Link */
1316		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1317		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1318		/* Set Early Link Enable */
1319		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1320		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1321		break;
1322	case e1000_phy_82577:
1323	case e1000_phy_82578:
1324		e1000_configure_k1_ich8lan(hw, false);
1325		break;
1326	case e1000_phy_82579:
1327		/* Disable PHY energy detect power down */
1328		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1329		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1330		/* Disable full chip energy detect */
1331		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1332		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1333		/* Enable loopback on the PHY */
1334#define I82577_PHY_LBK_CTRL          19
1335		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1336		break;
1337	default:
1338		break;
1339	}
1340
1341	/* force 1000, set loopback */
1342	e1e_wphy(hw, PHY_CONTROL, 0x4140);
1343	mdelay(250);
1344
1345	/* Now set up the MAC to the same speed/duplex as the PHY. */
1346	ctrl_reg = er32(CTRL);
1347	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1351		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1352
1353	if (adapter->flags & FLAG_IS_ICH)
1354		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1355
1356	if (hw->phy.media_type == e1000_media_type_copper &&
1357	    hw->phy.type == e1000_phy_m88) {
1358		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1359	} else {
1360		/*
1361		 * Set the ILOS bit on the fiber Nic if half duplex link is
1362		 * detected.
1363		 */
1364		stat_reg = er32(STATUS);
1365		if ((stat_reg & E1000_STATUS_FD) == 0)
1366			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1367	}
1368
1369	ew32(CTRL, ctrl_reg);
1370
1371	/*
1372	 * Disable the receiver on the PHY so when a cable is plugged in, the
1373	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1374	 */
1375	if (hw->phy.type == e1000_phy_m88)
1376		e1000_phy_disable_receiver(adapter);
1377
1378	udelay(500);
1379
1380	return 0;
1381}
1382
1383static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1384{
1385	struct e1000_hw *hw = &adapter->hw;
1386	u32 ctrl = er32(CTRL);
1387	int link = 0;
1388
1389	/* special requirements for 82571/82572 fiber adapters */
1390
1391	/*
1392	 * jump through hoops to make sure link is up because serdes
1393	 * link is hardwired up
1394	 */
1395	ctrl |= E1000_CTRL_SLU;
1396	ew32(CTRL, ctrl);
1397
1398	/* disable autoneg */
1399	ctrl = er32(TXCW);
1400	ctrl &= ~(1 << 31);
1401	ew32(TXCW, ctrl);
1402
1403	link = (er32(STATUS) & E1000_STATUS_LU);
1404
1405	if (!link) {
1406		/* set invert loss of signal */
1407		ctrl = er32(CTRL);
1408		ctrl |= E1000_CTRL_ILOS;
1409		ew32(CTRL, ctrl);
1410	}
1411
1412	/*
1413	 * special write to serdes control register to enable SerDes analog
1414	 * loopback
1415	 */
1416#define E1000_SERDES_LB_ON 0x410
1417	ew32(SCTL, E1000_SERDES_LB_ON);
1418	msleep(10);
1419
1420	return 0;
1421}
1422
1423/* only call this for fiber/serdes connections to es2lan */
1424static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1425{
1426	struct e1000_hw *hw = &adapter->hw;
1427	u32 ctrlext = er32(CTRL_EXT);
1428	u32 ctrl = er32(CTRL);
1429
1430	/*
1431	 * save CTRL_EXT to restore later, reuse an empty variable (unused
1432	 * on mac_type 80003es2lan)
1433	 */
1434	adapter->tx_fifo_head = ctrlext;
1435
1436	/* clear the serdes mode bits, putting the device into mac loopback */
1437	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1438	ew32(CTRL_EXT, ctrlext);
1439
1440	/* force speed to 1000/FD, link up */
1441	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1442	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1443		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1444	ew32(CTRL, ctrl);
1445
1446	/* set mac loopback */
1447	ctrl = er32(RCTL);
1448	ctrl |= E1000_RCTL_LBM_MAC;
1449	ew32(RCTL, ctrl);
1450
1451	/* set testing mode parameters (no need to reset later) */
1452#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1453#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1454	ew32(KMRNCTRLSTA,
1455	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1456
1457	return 0;
1458}
1459
1460static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1461{
1462	struct e1000_hw *hw = &adapter->hw;
1463	u32 rctl;
1464
1465	if (hw->phy.media_type == e1000_media_type_fiber ||
1466	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1467		switch (hw->mac.type) {
1468		case e1000_80003es2lan:
1469			return e1000_set_es2lan_mac_loopback(adapter);
1470			break;
1471		case e1000_82571:
1472		case e1000_82572:
1473			return e1000_set_82571_fiber_loopback(adapter);
1474			break;
1475		default:
1476			rctl = er32(RCTL);
1477			rctl |= E1000_RCTL_LBM_TCVR;
1478			ew32(RCTL, rctl);
1479			return 0;
1480		}
1481	} else if (hw->phy.media_type == e1000_media_type_copper) {
1482		return e1000_integrated_phy_loopback(adapter);
1483	}
1484
1485	return 7;
1486}
1487
1488static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1489{
1490	struct e1000_hw *hw = &adapter->hw;
1491	u32 rctl;
1492	u16 phy_reg;
1493
1494	rctl = er32(RCTL);
1495	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1496	ew32(RCTL, rctl);
1497
1498	switch (hw->mac.type) {
1499	case e1000_80003es2lan:
1500		if (hw->phy.media_type == e1000_media_type_fiber ||
1501		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1502			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1503			ew32(CTRL_EXT, adapter->tx_fifo_head);
1504			adapter->tx_fifo_head = 0;
1505		}
1506		/* fall through */
1507	case e1000_82571:
1508	case e1000_82572:
1509		if (hw->phy.media_type == e1000_media_type_fiber ||
1510		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1511#define E1000_SERDES_LB_OFF 0x400
1512			ew32(SCTL, E1000_SERDES_LB_OFF);
1513			msleep(10);
1514			break;
1515		}
1516		/* Fall Through */
1517	default:
1518		hw->mac.autoneg = 1;
1519		if (hw->phy.type == e1000_phy_gg82563)
1520			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1521		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1522		if (phy_reg & MII_CR_LOOPBACK) {
1523			phy_reg &= ~MII_CR_LOOPBACK;
1524			e1e_wphy(hw, PHY_CONTROL, phy_reg);
1525			e1000e_commit_phy(hw);
1526		}
1527		break;
1528	}
1529}
1530
1531static void e1000_create_lbtest_frame(struct sk_buff *skb,
1532				      unsigned int frame_size)
1533{
1534	memset(skb->data, 0xFF, frame_size);
1535	frame_size &= ~1;
1536	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1537	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1538	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1539}
1540
1541static int e1000_check_lbtest_frame(struct sk_buff *skb,
1542				    unsigned int frame_size)
1543{
1544	frame_size &= ~1;
1545	if (*(skb->data + 3) == 0xFF)
1546		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1547		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
1548			return 0;
1549	return 13;
1550}
1551
1552static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1553{
1554	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1555	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1556	struct pci_dev *pdev = adapter->pdev;
1557	struct e1000_hw *hw = &adapter->hw;
1558	int i, j, k, l;
1559	int lc;
1560	int good_cnt;
1561	int ret_val = 0;
1562	unsigned long time;
1563
1564	ew32(RDT, rx_ring->count - 1);
1565
1566	/*
1567	 * Calculate the loop count based on the largest descriptor ring
1568	 * The idea is to wrap the largest ring a number of times using 64
1569	 * send/receive pairs during each loop
1570	 */
1571
1572	if (rx_ring->count <= tx_ring->count)
1573		lc = ((tx_ring->count / 64) * 2) + 1;
1574	else
1575		lc = ((rx_ring->count / 64) * 2) + 1;
1576
1577	k = 0;
1578	l = 0;
1579	for (j = 0; j <= lc; j++) { /* loop count loop */
1580		for (i = 0; i < 64; i++) { /* send the packets */
1581			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1582						  1024);
1583			dma_sync_single_for_device(&pdev->dev,
1584					tx_ring->buffer_info[k].dma,
1585					tx_ring->buffer_info[k].length,
1586					DMA_TO_DEVICE);
1587			k++;
1588			if (k == tx_ring->count)
1589				k = 0;
1590		}
1591		ew32(TDT, k);
1592		msleep(200);
1593		time = jiffies; /* set the start time for the receive */
1594		good_cnt = 0;
1595		do { /* receive the sent packets */
1596			dma_sync_single_for_cpu(&pdev->dev,
1597					rx_ring->buffer_info[l].dma, 2048,
1598					DMA_FROM_DEVICE);
1599
1600			ret_val = e1000_check_lbtest_frame(
1601					rx_ring->buffer_info[l].skb, 1024);
1602			if (!ret_val)
1603				good_cnt++;
1604			l++;
1605			if (l == rx_ring->count)
1606				l = 0;
1607			/*
1608			 * time + 20 msecs (200 msecs on 2.4) is more than
1609			 * enough time to complete the receives, if it's
1610			 * exceeded, break and error off
1611			 */
1612		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1613		if (good_cnt != 64) {
1614			ret_val = 13; /* ret_val is the same as mis-compare */
1615			break;
1616		}
1617		if (jiffies >= (time + 20)) {
1618			ret_val = 14; /* error code for time out error */
1619			break;
1620		}
1621	} /* end loop count loop */
1622	return ret_val;
1623}
1624
1625static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1626{
1627	/*
1628	 * PHY loopback cannot be performed if SoL/IDER
1629	 * sessions are active
1630	 */
1631	if (e1000_check_reset_block(&adapter->hw)) {
1632		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1633		*data = 0;
1634		goto out;
1635	}
1636
1637	*data = e1000_setup_desc_rings(adapter);
1638	if (*data)
1639		goto out;
1640
1641	*data = e1000_setup_loopback_test(adapter);
1642	if (*data)
1643		goto err_loopback;
1644
1645	*data = e1000_run_loopback_test(adapter);
1646	e1000_loopback_cleanup(adapter);
1647
1648err_loopback:
1649	e1000_free_desc_rings(adapter);
1650out:
1651	return *data;
1652}
1653
1654static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1655{
1656	struct e1000_hw *hw = &adapter->hw;
1657
1658	*data = 0;
1659	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1660		int i = 0;
1661		hw->mac.serdes_has_link = false;
1662
1663		/*
1664		 * On some blade server designs, link establishment
1665		 * could take as long as 2-3 minutes
1666		 */
1667		do {
1668			hw->mac.ops.check_for_link(hw);
1669			if (hw->mac.serdes_has_link)
1670				return *data;
1671			msleep(20);
1672		} while (i++ < 3750);
1673
1674		*data = 1;
1675	} else {
1676		hw->mac.ops.check_for_link(hw);
1677		if (hw->mac.autoneg)
1678			msleep(4000);
1679
1680		if (!(er32(STATUS) &
1681		      E1000_STATUS_LU))
1682			*data = 1;
1683	}
1684	return *data;
1685}
1686
1687static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1688{
1689	switch (sset) {
1690	case ETH_SS_TEST:
1691		return E1000_TEST_LEN;
1692	case ETH_SS_STATS:
1693		return E1000_STATS_LEN;
1694	default:
1695		return -EOPNOTSUPP;
1696	}
1697}
1698
1699static void e1000_diag_test(struct net_device *netdev,
1700			    struct ethtool_test *eth_test, u64 *data)
1701{
1702	struct e1000_adapter *adapter = netdev_priv(netdev);
1703	u16 autoneg_advertised;
1704	u8 forced_speed_duplex;
1705	u8 autoneg;
1706	bool if_running = netif_running(netdev);
1707
1708	set_bit(__E1000_TESTING, &adapter->state);
1709	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1710		/* Offline tests */
1711
1712		/* save speed, duplex, autoneg settings */
1713		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1714		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1715		autoneg = adapter->hw.mac.autoneg;
1716
1717		e_info("offline testing starting\n");
1718
1719		/*
1720		 * Link test performed before hardware reset so autoneg doesn't
1721		 * interfere with test result
1722		 */
1723		if (e1000_link_test(adapter, &data[4]))
1724			eth_test->flags |= ETH_TEST_FL_FAILED;
1725
1726		if (if_running)
1727			/* indicate we're in test mode */
1728			dev_close(netdev);
1729		else
1730			e1000e_reset(adapter);
1731
1732		if (e1000_reg_test(adapter, &data[0]))
1733			eth_test->flags |= ETH_TEST_FL_FAILED;
1734
1735		e1000e_reset(adapter);
1736		if (e1000_eeprom_test(adapter, &data[1]))
1737			eth_test->flags |= ETH_TEST_FL_FAILED;
1738
1739		e1000e_reset(adapter);
1740		if (e1000_intr_test(adapter, &data[2]))
1741			eth_test->flags |= ETH_TEST_FL_FAILED;
1742
1743		e1000e_reset(adapter);
1744		/* make sure the phy is powered up */
1745		e1000e_power_up_phy(adapter);
1746		if (e1000_loopback_test(adapter, &data[3]))
1747			eth_test->flags |= ETH_TEST_FL_FAILED;
1748
1749		/* restore speed, duplex, autoneg settings */
1750		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1751		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1752		adapter->hw.mac.autoneg = autoneg;
1753
1754		/* force this routine to wait until autoneg complete/timeout */
1755		adapter->hw.phy.autoneg_wait_to_complete = 1;
1756		e1000e_reset(adapter);
1757		adapter->hw.phy.autoneg_wait_to_complete = 0;
1758
1759		clear_bit(__E1000_TESTING, &adapter->state);
1760		if (if_running)
1761			dev_open(netdev);
1762	} else {
1763		if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
1764			clear_bit(__E1000_TESTING, &adapter->state);
1765			dev_open(netdev);
1766			set_bit(__E1000_TESTING, &adapter->state);
1767		}
1768
1769		e_info("online testing starting\n");
1770		/* Online tests */
1771		if (e1000_link_test(adapter, &data[4]))
1772			eth_test->flags |= ETH_TEST_FL_FAILED;
1773
1774		/* Online tests aren't run; pass by default */
1775		data[0] = 0;
1776		data[1] = 0;
1777		data[2] = 0;
1778		data[3] = 0;
1779
1780		if (!if_running && (adapter->flags & FLAG_HAS_AMT))
1781			dev_close(netdev);
1782
1783		clear_bit(__E1000_TESTING, &adapter->state);
1784	}
1785	msleep_interruptible(4 * 1000);
1786}
1787
1788static void e1000_get_wol(struct net_device *netdev,
1789			  struct ethtool_wolinfo *wol)
1790{
1791	struct e1000_adapter *adapter = netdev_priv(netdev);
1792
1793	wol->supported = 0;
1794	wol->wolopts = 0;
1795
1796	if (!(adapter->flags & FLAG_HAS_WOL) ||
1797	    !device_can_wakeup(&adapter->pdev->dev))
1798		return;
1799
1800	wol->supported = WAKE_UCAST | WAKE_MCAST |
1801	                 WAKE_BCAST | WAKE_MAGIC |
1802	                 WAKE_PHY | WAKE_ARP;
1803
1804	/* apply any specific unsupported masks here */
1805	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1806		wol->supported &= ~WAKE_UCAST;
1807
1808		if (adapter->wol & E1000_WUFC_EX)
1809			e_err("Interface does not support directed (unicast) "
1810			      "frame wake-up packets\n");
1811	}
1812
1813	if (adapter->wol & E1000_WUFC_EX)
1814		wol->wolopts |= WAKE_UCAST;
1815	if (adapter->wol & E1000_WUFC_MC)
1816		wol->wolopts |= WAKE_MCAST;
1817	if (adapter->wol & E1000_WUFC_BC)
1818		wol->wolopts |= WAKE_BCAST;
1819	if (adapter->wol & E1000_WUFC_MAG)
1820		wol->wolopts |= WAKE_MAGIC;
1821	if (adapter->wol & E1000_WUFC_LNKC)
1822		wol->wolopts |= WAKE_PHY;
1823	if (adapter->wol & E1000_WUFC_ARP)
1824		wol->wolopts |= WAKE_ARP;
1825}
1826
1827static int e1000_set_wol(struct net_device *netdev,
1828			 struct ethtool_wolinfo *wol)
1829{
1830	struct e1000_adapter *adapter = netdev_priv(netdev);
1831
1832	if (!(adapter->flags & FLAG_HAS_WOL) ||
1833	    !device_can_wakeup(&adapter->pdev->dev) ||
1834	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1835	                      WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1836		return -EOPNOTSUPP;
1837
1838	/* these settings will always override what we currently have */
1839	adapter->wol = 0;
1840
1841	if (wol->wolopts & WAKE_UCAST)
1842		adapter->wol |= E1000_WUFC_EX;
1843	if (wol->wolopts & WAKE_MCAST)
1844		adapter->wol |= E1000_WUFC_MC;
1845	if (wol->wolopts & WAKE_BCAST)
1846		adapter->wol |= E1000_WUFC_BC;
1847	if (wol->wolopts & WAKE_MAGIC)
1848		adapter->wol |= E1000_WUFC_MAG;
1849	if (wol->wolopts & WAKE_PHY)
1850		adapter->wol |= E1000_WUFC_LNKC;
1851	if (wol->wolopts & WAKE_ARP)
1852		adapter->wol |= E1000_WUFC_ARP;
1853
1854	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1855
1856	return 0;
1857}
1858
1859/* toggle LED 4 times per second = 2 "blinks" per second */
1860#define E1000_ID_INTERVAL	(HZ/4)
1861
1862/* bit defines for adapter->led_status */
1863#define E1000_LED_ON		0
1864
1865static void e1000e_led_blink_task(struct work_struct *work)
1866{
1867	struct e1000_adapter *adapter = container_of(work,
1868	                                struct e1000_adapter, led_blink_task);
1869
1870	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1871		adapter->hw.mac.ops.led_off(&adapter->hw);
1872	else
1873		adapter->hw.mac.ops.led_on(&adapter->hw);
1874}
1875
1876static void e1000_led_blink_callback(unsigned long data)
1877{
1878	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1879
1880	schedule_work(&adapter->led_blink_task);
1881	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1882}
1883
1884static int e1000_phys_id(struct net_device *netdev, u32 data)
1885{
1886	struct e1000_adapter *adapter = netdev_priv(netdev);
1887	struct e1000_hw *hw = &adapter->hw;
1888
1889	if (!data)
1890		data = INT_MAX;
1891
1892	if ((hw->phy.type == e1000_phy_ife) ||
1893	    (hw->mac.type == e1000_pchlan) ||
1894	    (hw->mac.type == e1000_pch2lan) ||
1895	    (hw->mac.type == e1000_82583) ||
1896	    (hw->mac.type == e1000_82574)) {
1897		INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1898		if (!adapter->blink_timer.function) {
1899			init_timer(&adapter->blink_timer);
1900			adapter->blink_timer.function =
1901				e1000_led_blink_callback;
1902			adapter->blink_timer.data = (unsigned long) adapter;
1903		}
1904		mod_timer(&adapter->blink_timer, jiffies);
1905		msleep_interruptible(data * 1000);
1906		del_timer_sync(&adapter->blink_timer);
1907		if (hw->phy.type == e1000_phy_ife)
1908			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1909	} else {
1910		e1000e_blink_led(hw);
1911		msleep_interruptible(data * 1000);
1912	}
1913
1914	hw->mac.ops.led_off(hw);
1915	clear_bit(E1000_LED_ON, &adapter->led_status);
1916	hw->mac.ops.cleanup_led(hw);
1917
1918	return 0;
1919}
1920
1921static int e1000_get_coalesce(struct net_device *netdev,
1922			      struct ethtool_coalesce *ec)
1923{
1924	struct e1000_adapter *adapter = netdev_priv(netdev);
1925
1926	if (adapter->itr_setting <= 4)
1927		ec->rx_coalesce_usecs = adapter->itr_setting;
1928	else
1929		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1930
1931	return 0;
1932}
1933
1934static int e1000_set_coalesce(struct net_device *netdev,
1935			      struct ethtool_coalesce *ec)
1936{
1937	struct e1000_adapter *adapter = netdev_priv(netdev);
1938	struct e1000_hw *hw = &adapter->hw;
1939
1940	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1941	    ((ec->rx_coalesce_usecs > 4) &&
1942	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1943	    (ec->rx_coalesce_usecs == 2))
1944		return -EINVAL;
1945
1946	if (ec->rx_coalesce_usecs == 4) {
1947		adapter->itr = adapter->itr_setting = 4;
1948	} else if (ec->rx_coalesce_usecs <= 3) {
1949		adapter->itr = 20000;
1950		adapter->itr_setting = ec->rx_coalesce_usecs;
1951	} else {
1952		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1953		adapter->itr_setting = adapter->itr & ~3;
1954	}
1955
1956	if (adapter->itr_setting != 0)
1957		ew32(ITR, 1000000000 / (adapter->itr * 256));
1958	else
1959		ew32(ITR, 0);
1960
1961	return 0;
1962}
1963
1964static int e1000_nway_reset(struct net_device *netdev)
1965{
1966	struct e1000_adapter *adapter = netdev_priv(netdev);
1967	if (netif_running(netdev))
1968		e1000e_reinit_locked(adapter);
1969	return 0;
1970}
1971
1972static void e1000_get_ethtool_stats(struct net_device *netdev,
1973				    struct ethtool_stats *stats,
1974				    u64 *data)
1975{
1976	struct e1000_adapter *adapter = netdev_priv(netdev);
1977	int i;
1978	char *p = NULL;
1979
1980	e1000e_update_stats(adapter);
1981	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1982		switch (e1000_gstrings_stats[i].type) {
1983		case NETDEV_STATS:
1984			p = (char *) netdev +
1985					e1000_gstrings_stats[i].stat_offset;
1986			break;
1987		case E1000_STATS:
1988			p = (char *) adapter +
1989					e1000_gstrings_stats[i].stat_offset;
1990			break;
1991		}
1992
1993		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1994			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1995	}
1996}
1997
1998static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1999			      u8 *data)
2000{
2001	u8 *p = data;
2002	int i;
2003
2004	switch (stringset) {
2005	case ETH_SS_TEST:
2006		memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
2007		break;
2008	case ETH_SS_STATS:
2009		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2010			memcpy(p, e1000_gstrings_stats[i].stat_string,
2011			       ETH_GSTRING_LEN);
2012			p += ETH_GSTRING_LEN;
2013		}
2014		break;
2015	}
2016}
2017
2018static const struct ethtool_ops e1000_ethtool_ops = {
2019	.get_settings		= e1000_get_settings,
2020	.set_settings		= e1000_set_settings,
2021	.get_drvinfo		= e1000_get_drvinfo,
2022	.get_regs_len		= e1000_get_regs_len,
2023	.get_regs		= e1000_get_regs,
2024	.get_wol		= e1000_get_wol,
2025	.set_wol		= e1000_set_wol,
2026	.get_msglevel		= e1000_get_msglevel,
2027	.set_msglevel		= e1000_set_msglevel,
2028	.nway_reset		= e1000_nway_reset,
2029	.get_link		= e1000_get_link,
2030	.get_eeprom_len		= e1000_get_eeprom_len,
2031	.get_eeprom		= e1000_get_eeprom,
2032	.set_eeprom		= e1000_set_eeprom,
2033	.get_ringparam		= e1000_get_ringparam,
2034	.set_ringparam		= e1000_set_ringparam,
2035	.get_pauseparam		= e1000_get_pauseparam,
2036	.set_pauseparam		= e1000_set_pauseparam,
2037	.get_rx_csum		= e1000_get_rx_csum,
2038	.set_rx_csum		= e1000_set_rx_csum,
2039	.get_tx_csum		= e1000_get_tx_csum,
2040	.set_tx_csum		= e1000_set_tx_csum,
2041	.get_sg			= ethtool_op_get_sg,
2042	.set_sg			= ethtool_op_set_sg,
2043	.get_tso		= ethtool_op_get_tso,
2044	.set_tso		= e1000_set_tso,
2045	.self_test		= e1000_diag_test,
2046	.get_strings		= e1000_get_strings,
2047	.phys_id		= e1000_phys_id,
2048	.get_ethtool_stats	= e1000_get_ethtool_stats,
2049	.get_sset_count		= e1000e_get_sset_count,
2050	.get_coalesce		= e1000_get_coalesce,
2051	.set_coalesce		= e1000_set_coalesce,
2052	.get_flags		= ethtool_op_get_flags,
2053};
2054
2055void e1000e_set_ethtool_ops(struct net_device *netdev)
2056{
2057	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2058}
2059