• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/media/dvb/frontends/
1/*
2 * Afatech AF9013 demodulator driver
3 *
4 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
5 *
6 * Thanks to Afatech who kindly provided information.
7 *
8 *    This program is free software; you can redistribute it and/or modify
9 *    it under the terms of the GNU General Public License as published by
10 *    the Free Software Foundation; either version 2 of the License, or
11 *    (at your option) any later version.
12 *
13 *    This program is distributed in the hope that it will be useful,
14 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
15 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 *    GNU General Public License for more details.
17 *
18 *    You should have received a copy of the GNU General Public License
19 *    along with this program; if not, write to the Free Software
20 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 */
23
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/moduleparam.h>
27#include <linux/init.h>
28#include <linux/delay.h>
29#include <linux/string.h>
30#include <linux/slab.h>
31#include <linux/firmware.h>
32
33#include "dvb_frontend.h"
34#include "af9013_priv.h"
35#include "af9013.h"
36
37int af9013_debug;
38
39struct af9013_state {
40	struct i2c_adapter *i2c;
41	struct dvb_frontend frontend;
42
43	struct af9013_config config;
44
45	u16 signal_strength;
46	u32 ber;
47	u32 ucblocks;
48	u16 snr;
49	u32 frequency;
50	unsigned long next_statistics_check;
51};
52
53static u8 regmask[8] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
54
55static int af9013_write_regs(struct af9013_state *state, u8 mbox, u16 reg,
56	u8 *val, u8 len)
57{
58	u8 buf[3+len];
59	struct i2c_msg msg = {
60		.addr = state->config.demod_address,
61		.flags = 0,
62		.len = sizeof(buf),
63		.buf = buf };
64
65	buf[0] = reg >> 8;
66	buf[1] = reg & 0xff;
67	buf[2] = mbox;
68	memcpy(&buf[3], val, len);
69
70	if (i2c_transfer(state->i2c, &msg, 1) != 1) {
71		warn("I2C write failed reg:%04x len:%d", reg, len);
72		return -EREMOTEIO;
73	}
74	return 0;
75}
76
77static int af9013_write_ofdm_regs(struct af9013_state *state, u16 reg, u8 *val,
78	u8 len)
79{
80	u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(0 << 6)|(0 << 7);
81	return af9013_write_regs(state, mbox, reg, val, len);
82}
83
84static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
85	u8 len)
86{
87	u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(1 << 6)|(1 << 7);
88	return af9013_write_regs(state, mbox, reg, val, len);
89}
90
91/* write single register */
92static int af9013_write_reg(struct af9013_state *state, u16 reg, u8 val)
93{
94	return af9013_write_ofdm_regs(state, reg, &val, 1);
95}
96
97/* read single register */
98static int af9013_read_reg(struct af9013_state *state, u16 reg, u8 *val)
99{
100	u8 obuf[3] = { reg >> 8, reg & 0xff, 0 };
101	u8 ibuf[1];
102	struct i2c_msg msg[2] = {
103		{
104			.addr = state->config.demod_address,
105			.flags = 0,
106			.len = sizeof(obuf),
107			.buf = obuf
108		}, {
109			.addr = state->config.demod_address,
110			.flags = I2C_M_RD,
111			.len = sizeof(ibuf),
112			.buf = ibuf
113		}
114	};
115
116	if (i2c_transfer(state->i2c, msg, 2) != 2) {
117		warn("I2C read failed reg:%04x", reg);
118		return -EREMOTEIO;
119	}
120	*val = ibuf[0];
121	return 0;
122}
123
124static int af9013_write_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
125	u8 len, u8 val)
126{
127	int ret;
128	u8 tmp, mask;
129
130	ret = af9013_read_reg(state, reg, &tmp);
131	if (ret)
132		return ret;
133
134	mask = regmask[len - 1] << pos;
135	tmp = (tmp & ~mask) | ((val << pos) & mask);
136
137	return af9013_write_reg(state, reg, tmp);
138}
139
140static int af9013_read_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
141	u8 len, u8 *val)
142{
143	int ret;
144	u8 tmp;
145
146	ret = af9013_read_reg(state, reg, &tmp);
147	if (ret)
148		return ret;
149	*val = (tmp >> pos) & regmask[len - 1];
150	return 0;
151}
152
153static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
154{
155	int ret;
156	u8 pos;
157	u16 addr;
158	deb_info("%s: gpio:%d gpioval:%02x\n", __func__, gpio, gpioval);
159
160/* GPIO0 & GPIO1 0xd735
161   GPIO2 & GPIO3 0xd736 */
162
163	switch (gpio) {
164	case 0:
165	case 1:
166		addr = 0xd735;
167		break;
168	case 2:
169	case 3:
170		addr = 0xd736;
171		break;
172
173	default:
174		err("invalid gpio:%d\n", gpio);
175		ret = -EINVAL;
176		goto error;
177	};
178
179	switch (gpio) {
180	case 0:
181	case 2:
182		pos = 0;
183		break;
184	case 1:
185	case 3:
186	default:
187		pos = 4;
188		break;
189	};
190
191	ret = af9013_write_reg_bits(state, addr, pos, 4, gpioval);
192
193error:
194	return ret;
195}
196
197static u32 af913_div(u32 a, u32 b, u32 x)
198{
199	u32 r = 0, c = 0, i;
200	deb_info("%s: a:%d b:%d x:%d\n", __func__, a, b, x);
201
202	if (a > b) {
203		c = a / b;
204		a = a - c * b;
205	}
206
207	for (i = 0; i < x; i++) {
208		if (a >= b) {
209			r += 1;
210			a -= b;
211		}
212		a <<= 1;
213		r <<= 1;
214	}
215	r = (c << (u32)x) + r;
216
217	deb_info("%s: a:%d b:%d x:%d r:%d r:%x\n", __func__, a, b, x, r, r);
218	return r;
219}
220
221static int af9013_set_coeff(struct af9013_state *state, fe_bandwidth_t bw)
222{
223	int ret = 0;
224	u8 i = 0;
225	u8 buf[24];
226	u32 uninitialized_var(ns_coeff1_2048nu);
227	u32 uninitialized_var(ns_coeff1_8191nu);
228	u32 uninitialized_var(ns_coeff1_8192nu);
229	u32 uninitialized_var(ns_coeff1_8193nu);
230	u32 uninitialized_var(ns_coeff2_2k);
231	u32 uninitialized_var(ns_coeff2_8k);
232
233	deb_info("%s: adc_clock:%d bw:%d\n", __func__,
234		state->config.adc_clock, bw);
235
236	switch (state->config.adc_clock) {
237	case 28800: /* 28.800 MHz */
238		switch (bw) {
239		case BANDWIDTH_6_MHZ:
240			ns_coeff1_2048nu = 0x01e79e7a;
241			ns_coeff1_8191nu = 0x0079eb6e;
242			ns_coeff1_8192nu = 0x0079e79e;
243			ns_coeff1_8193nu = 0x0079e3cf;
244			ns_coeff2_2k     = 0x00f3cf3d;
245			ns_coeff2_8k     = 0x003cf3cf;
246			break;
247		case BANDWIDTH_7_MHZ:
248			ns_coeff1_2048nu = 0x0238e38e;
249			ns_coeff1_8191nu = 0x008e3d55;
250			ns_coeff1_8192nu = 0x008e38e4;
251			ns_coeff1_8193nu = 0x008e3472;
252			ns_coeff2_2k     = 0x011c71c7;
253			ns_coeff2_8k     = 0x00471c72;
254			break;
255		case BANDWIDTH_8_MHZ:
256			ns_coeff1_2048nu = 0x028a28a3;
257			ns_coeff1_8191nu = 0x00a28f3d;
258			ns_coeff1_8192nu = 0x00a28a29;
259			ns_coeff1_8193nu = 0x00a28514;
260			ns_coeff2_2k     = 0x01451451;
261			ns_coeff2_8k     = 0x00514514;
262			break;
263		default:
264			ret = -EINVAL;
265		}
266		break;
267	case 20480: /* 20.480 MHz */
268		switch (bw) {
269		case BANDWIDTH_6_MHZ:
270			ns_coeff1_2048nu = 0x02adb6dc;
271			ns_coeff1_8191nu = 0x00ab7313;
272			ns_coeff1_8192nu = 0x00ab6db7;
273			ns_coeff1_8193nu = 0x00ab685c;
274			ns_coeff2_2k     = 0x0156db6e;
275			ns_coeff2_8k     = 0x0055b6dc;
276			break;
277		case BANDWIDTH_7_MHZ:
278			ns_coeff1_2048nu = 0x03200001;
279			ns_coeff1_8191nu = 0x00c80640;
280			ns_coeff1_8192nu = 0x00c80000;
281			ns_coeff1_8193nu = 0x00c7f9c0;
282			ns_coeff2_2k     = 0x01900000;
283			ns_coeff2_8k     = 0x00640000;
284			break;
285		case BANDWIDTH_8_MHZ:
286			ns_coeff1_2048nu = 0x03924926;
287			ns_coeff1_8191nu = 0x00e4996e;
288			ns_coeff1_8192nu = 0x00e49249;
289			ns_coeff1_8193nu = 0x00e48b25;
290			ns_coeff2_2k     = 0x01c92493;
291			ns_coeff2_8k     = 0x00724925;
292			break;
293		default:
294			ret = -EINVAL;
295		}
296		break;
297	case 28000: /* 28.000 MHz */
298		switch (bw) {
299		case BANDWIDTH_6_MHZ:
300			ns_coeff1_2048nu = 0x01f58d10;
301			ns_coeff1_8191nu = 0x007d672f;
302			ns_coeff1_8192nu = 0x007d6344;
303			ns_coeff1_8193nu = 0x007d5f59;
304			ns_coeff2_2k     = 0x00fac688;
305			ns_coeff2_8k     = 0x003eb1a2;
306			break;
307		case BANDWIDTH_7_MHZ:
308			ns_coeff1_2048nu = 0x02492492;
309			ns_coeff1_8191nu = 0x00924db7;
310			ns_coeff1_8192nu = 0x00924925;
311			ns_coeff1_8193nu = 0x00924492;
312			ns_coeff2_2k     = 0x01249249;
313			ns_coeff2_8k     = 0x00492492;
314			break;
315		case BANDWIDTH_8_MHZ:
316			ns_coeff1_2048nu = 0x029cbc15;
317			ns_coeff1_8191nu = 0x00a7343f;
318			ns_coeff1_8192nu = 0x00a72f05;
319			ns_coeff1_8193nu = 0x00a729cc;
320			ns_coeff2_2k     = 0x014e5e0a;
321			ns_coeff2_8k     = 0x00539783;
322			break;
323		default:
324			ret = -EINVAL;
325		}
326		break;
327	case 25000: /* 25.000 MHz */
328		switch (bw) {
329		case BANDWIDTH_6_MHZ:
330			ns_coeff1_2048nu = 0x0231bcb5;
331			ns_coeff1_8191nu = 0x008c7391;
332			ns_coeff1_8192nu = 0x008c6f2d;
333			ns_coeff1_8193nu = 0x008c6aca;
334			ns_coeff2_2k     = 0x0118de5b;
335			ns_coeff2_8k     = 0x00463797;
336			break;
337		case BANDWIDTH_7_MHZ:
338			ns_coeff1_2048nu = 0x028f5c29;
339			ns_coeff1_8191nu = 0x00a3dc29;
340			ns_coeff1_8192nu = 0x00a3d70a;
341			ns_coeff1_8193nu = 0x00a3d1ec;
342			ns_coeff2_2k     = 0x0147ae14;
343			ns_coeff2_8k     = 0x0051eb85;
344			break;
345		case BANDWIDTH_8_MHZ:
346			ns_coeff1_2048nu = 0x02ecfb9d;
347			ns_coeff1_8191nu = 0x00bb44c1;
348			ns_coeff1_8192nu = 0x00bb3ee7;
349			ns_coeff1_8193nu = 0x00bb390d;
350			ns_coeff2_2k     = 0x01767dce;
351			ns_coeff2_8k     = 0x005d9f74;
352			break;
353		default:
354			ret = -EINVAL;
355		}
356		break;
357	default:
358		err("invalid xtal");
359		return -EINVAL;
360	}
361	if (ret) {
362		err("invalid bandwidth");
363		return ret;
364	}
365
366	buf[i++] = (u8) ((ns_coeff1_2048nu & 0x03000000) >> 24);
367	buf[i++] = (u8) ((ns_coeff1_2048nu & 0x00ff0000) >> 16);
368	buf[i++] = (u8) ((ns_coeff1_2048nu & 0x0000ff00) >> 8);
369	buf[i++] = (u8) ((ns_coeff1_2048nu & 0x000000ff));
370	buf[i++] = (u8) ((ns_coeff2_2k     & 0x01c00000) >> 22);
371	buf[i++] = (u8) ((ns_coeff2_2k     & 0x003fc000) >> 14);
372	buf[i++] = (u8) ((ns_coeff2_2k     & 0x00003fc0) >> 6);
373	buf[i++] = (u8) ((ns_coeff2_2k     & 0x0000003f));
374	buf[i++] = (u8) ((ns_coeff1_8191nu & 0x03000000) >> 24);
375	buf[i++] = (u8) ((ns_coeff1_8191nu & 0x00ffc000) >> 16);
376	buf[i++] = (u8) ((ns_coeff1_8191nu & 0x0000ff00) >> 8);
377	buf[i++] = (u8) ((ns_coeff1_8191nu & 0x000000ff));
378	buf[i++] = (u8) ((ns_coeff1_8192nu & 0x03000000) >> 24);
379	buf[i++] = (u8) ((ns_coeff1_8192nu & 0x00ffc000) >> 16);
380	buf[i++] = (u8) ((ns_coeff1_8192nu & 0x0000ff00) >> 8);
381	buf[i++] = (u8) ((ns_coeff1_8192nu & 0x000000ff));
382	buf[i++] = (u8) ((ns_coeff1_8193nu & 0x03000000) >> 24);
383	buf[i++] = (u8) ((ns_coeff1_8193nu & 0x00ffc000) >> 16);
384	buf[i++] = (u8) ((ns_coeff1_8193nu & 0x0000ff00) >> 8);
385	buf[i++] = (u8) ((ns_coeff1_8193nu & 0x000000ff));
386	buf[i++] = (u8) ((ns_coeff2_8k     & 0x01c00000) >> 22);
387	buf[i++] = (u8) ((ns_coeff2_8k     & 0x003fc000) >> 14);
388	buf[i++] = (u8) ((ns_coeff2_8k     & 0x00003fc0) >> 6);
389	buf[i++] = (u8) ((ns_coeff2_8k     & 0x0000003f));
390
391	deb_info("%s: coeff:", __func__);
392	debug_dump(buf, sizeof(buf), deb_info);
393
394	/* program */
395	for (i = 0; i < sizeof(buf); i++) {
396		ret = af9013_write_reg(state, 0xae00 + i, buf[i]);
397		if (ret)
398			break;
399	}
400
401	return ret;
402}
403
404static int af9013_set_adc_ctrl(struct af9013_state *state)
405{
406	int ret;
407	u8 buf[3], tmp, i;
408	u32 adc_cw;
409
410	deb_info("%s: adc_clock:%d\n", __func__, state->config.adc_clock);
411
412	/* adc frequency type */
413	switch (state->config.adc_clock) {
414	case 28800: /* 28.800 MHz */
415		tmp = 0;
416		break;
417	case 20480: /* 20.480 MHz */
418		tmp = 1;
419		break;
420	case 28000: /* 28.000 MHz */
421		tmp = 2;
422		break;
423	case 25000: /* 25.000 MHz */
424		tmp = 3;
425		break;
426	default:
427		err("invalid xtal");
428		return -EINVAL;
429	}
430
431	adc_cw = af913_div(state->config.adc_clock*1000, 1000000ul, 19ul);
432
433	buf[0] = (u8) ((adc_cw & 0x000000ff));
434	buf[1] = (u8) ((adc_cw & 0x0000ff00) >> 8);
435	buf[2] = (u8) ((adc_cw & 0x00ff0000) >> 16);
436
437	deb_info("%s: adc_cw:", __func__);
438	debug_dump(buf, sizeof(buf), deb_info);
439
440	/* program */
441	for (i = 0; i < sizeof(buf); i++) {
442		ret = af9013_write_reg(state, 0xd180 + i, buf[i]);
443		if (ret)
444			goto error;
445	}
446	ret = af9013_write_reg_bits(state, 0x9bd2, 0, 4, tmp);
447error:
448	return ret;
449}
450
451static int af9013_set_freq_ctrl(struct af9013_state *state, fe_bandwidth_t bw)
452{
453	int ret;
454	u16 addr;
455	u8 buf[3], i, j;
456	u32 adc_freq, freq_cw;
457	s8 bfs_spec_inv;
458	int if_sample_freq;
459
460	for (j = 0; j < 3; j++) {
461		if (j == 0) {
462			addr = 0xd140; /* fcw normal */
463			bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
464		} else if (j == 1) {
465			addr = 0x9be7; /* fcw dummy ram */
466			bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
467		} else {
468			addr = 0x9bea; /* fcw inverted */
469			bfs_spec_inv = state->config.rf_spec_inv ? 1 : -1;
470		}
471
472		adc_freq       = state->config.adc_clock * 1000;
473		if_sample_freq = state->config.tuner_if * 1000;
474
475		/* TDA18271 uses different sampling freq for every bw */
476		if (state->config.tuner == AF9013_TUNER_TDA18271) {
477			switch (bw) {
478			case BANDWIDTH_6_MHZ:
479				if_sample_freq = 3300000; /* 3.3 MHz */
480				break;
481			case BANDWIDTH_7_MHZ:
482				if_sample_freq = 3800000; /* 3.8 MHz */
483				break;
484			case BANDWIDTH_8_MHZ:
485			default:
486				if_sample_freq = 4300000; /* 4.3 MHz */
487				break;
488			}
489		}
490
491		while (if_sample_freq > (adc_freq / 2))
492			if_sample_freq = if_sample_freq - adc_freq;
493
494		if (if_sample_freq >= 0)
495			bfs_spec_inv = bfs_spec_inv * (-1);
496		else
497			if_sample_freq = if_sample_freq * (-1);
498
499		freq_cw = af913_div(if_sample_freq, adc_freq, 23ul);
500
501		if (bfs_spec_inv == -1)
502			freq_cw = 0x00800000 - freq_cw;
503
504		buf[0] = (u8) ((freq_cw & 0x000000ff));
505		buf[1] = (u8) ((freq_cw & 0x0000ff00) >> 8);
506		buf[2] = (u8) ((freq_cw & 0x007f0000) >> 16);
507
508
509		deb_info("%s: freq_cw:", __func__);
510		debug_dump(buf, sizeof(buf), deb_info);
511
512		/* program */
513		for (i = 0; i < sizeof(buf); i++) {
514			ret = af9013_write_reg(state, addr++, buf[i]);
515			if (ret)
516				goto error;
517		}
518	}
519error:
520	return ret;
521}
522
523static int af9013_set_ofdm_params(struct af9013_state *state,
524	struct dvb_ofdm_parameters *params, u8 *auto_mode)
525{
526	int ret;
527	u8 i, buf[3] = {0, 0, 0};
528	*auto_mode = 0; /* set if parameters are requested to auto set */
529
530	/* Try auto-detect transmission parameters in case of AUTO requested or
531	   garbage parameters given by application for compatibility.
532	   MPlayer seems to provide garbage parameters currently. */
533
534	switch (params->transmission_mode) {
535	case TRANSMISSION_MODE_AUTO:
536		*auto_mode = 1;
537	case TRANSMISSION_MODE_2K:
538		break;
539	case TRANSMISSION_MODE_8K:
540		buf[0] |= (1 << 0);
541		break;
542	default:
543		deb_info("%s: invalid transmission_mode\n", __func__);
544		*auto_mode = 1;
545	}
546
547	switch (params->guard_interval) {
548	case GUARD_INTERVAL_AUTO:
549		*auto_mode = 1;
550	case GUARD_INTERVAL_1_32:
551		break;
552	case GUARD_INTERVAL_1_16:
553		buf[0] |= (1 << 2);
554		break;
555	case GUARD_INTERVAL_1_8:
556		buf[0] |= (2 << 2);
557		break;
558	case GUARD_INTERVAL_1_4:
559		buf[0] |= (3 << 2);
560		break;
561	default:
562		deb_info("%s: invalid guard_interval\n", __func__);
563		*auto_mode = 1;
564	}
565
566	switch (params->hierarchy_information) {
567	case HIERARCHY_AUTO:
568		*auto_mode = 1;
569	case HIERARCHY_NONE:
570		break;
571	case HIERARCHY_1:
572		buf[0] |= (1 << 4);
573		break;
574	case HIERARCHY_2:
575		buf[0] |= (2 << 4);
576		break;
577	case HIERARCHY_4:
578		buf[0] |= (3 << 4);
579		break;
580	default:
581		deb_info("%s: invalid hierarchy_information\n", __func__);
582		*auto_mode = 1;
583	};
584
585	switch (params->constellation) {
586	case QAM_AUTO:
587		*auto_mode = 1;
588	case QPSK:
589		break;
590	case QAM_16:
591		buf[1] |= (1 << 6);
592		break;
593	case QAM_64:
594		buf[1] |= (2 << 6);
595		break;
596	default:
597		deb_info("%s: invalid constellation\n", __func__);
598		*auto_mode = 1;
599	}
600
601	/* Use HP. How and which case we can switch to LP? */
602	buf[1] |= (1 << 4);
603
604	switch (params->code_rate_HP) {
605	case FEC_AUTO:
606		*auto_mode = 1;
607	case FEC_1_2:
608		break;
609	case FEC_2_3:
610		buf[2] |= (1 << 0);
611		break;
612	case FEC_3_4:
613		buf[2] |= (2 << 0);
614		break;
615	case FEC_5_6:
616		buf[2] |= (3 << 0);
617		break;
618	case FEC_7_8:
619		buf[2] |= (4 << 0);
620		break;
621	default:
622		deb_info("%s: invalid code_rate_HP\n", __func__);
623		*auto_mode = 1;
624	}
625
626	switch (params->code_rate_LP) {
627	case FEC_AUTO:
628	/* if HIERARCHY_NONE and FEC_NONE then LP FEC is set to FEC_AUTO
629	   by dvb_frontend.c for compatibility */
630		if (params->hierarchy_information != HIERARCHY_NONE)
631			*auto_mode = 1;
632	case FEC_1_2:
633		break;
634	case FEC_2_3:
635		buf[2] |= (1 << 3);
636		break;
637	case FEC_3_4:
638		buf[2] |= (2 << 3);
639		break;
640	case FEC_5_6:
641		buf[2] |= (3 << 3);
642		break;
643	case FEC_7_8:
644		buf[2] |= (4 << 3);
645		break;
646	case FEC_NONE:
647		if (params->hierarchy_information == HIERARCHY_AUTO)
648			break;
649	default:
650		deb_info("%s: invalid code_rate_LP\n", __func__);
651		*auto_mode = 1;
652	}
653
654	switch (params->bandwidth) {
655	case BANDWIDTH_6_MHZ:
656		break;
657	case BANDWIDTH_7_MHZ:
658		buf[1] |= (1 << 2);
659		break;
660	case BANDWIDTH_8_MHZ:
661		buf[1] |= (2 << 2);
662		break;
663	default:
664		deb_info("%s: invalid bandwidth\n", __func__);
665		buf[1] |= (2 << 2); /* cannot auto-detect BW, try 8 MHz */
666	}
667
668	/* program */
669	for (i = 0; i < sizeof(buf); i++) {
670		ret = af9013_write_reg(state, 0xd3c0 + i, buf[i]);
671		if (ret)
672			break;
673	}
674
675	return ret;
676}
677
678static int af9013_reset(struct af9013_state *state, u8 sleep)
679{
680	int ret;
681	u8 tmp, i;
682	deb_info("%s\n", __func__);
683
684	/* enable OFDM reset */
685	ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 1);
686	if (ret)
687		goto error;
688
689	/* start reset mechanism */
690	ret = af9013_write_reg(state, 0xaeff, 1);
691	if (ret)
692		goto error;
693
694	/* reset is done when bit 1 is set */
695	for (i = 0; i < 150; i++) {
696		ret = af9013_read_reg_bits(state, 0xd417, 1, 1, &tmp);
697		if (ret)
698			goto error;
699		if (tmp)
700			break; /* reset done */
701		msleep(10);
702	}
703	if (!tmp)
704		return -ETIMEDOUT;
705
706	/* don't clear reset when going to sleep */
707	if (!sleep) {
708		/* clear OFDM reset */
709		ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
710		if (ret)
711			goto error;
712
713		/* disable OFDM reset */
714		ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
715	}
716error:
717	return ret;
718}
719
720static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
721{
722	int ret;
723	deb_info("%s: onoff:%d\n", __func__, onoff);
724
725	if (onoff) {
726		/* power on */
727		ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 0);
728		if (ret)
729			goto error;
730		ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
731		if (ret)
732			goto error;
733		ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
734	} else {
735		/* power off */
736		ret = af9013_reset(state, 1);
737		if (ret)
738			goto error;
739		ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 1);
740	}
741error:
742	return ret;
743}
744
745static int af9013_lock_led(struct af9013_state *state, u8 onoff)
746{
747	deb_info("%s: onoff:%d\n", __func__, onoff);
748
749	return af9013_write_reg_bits(state, 0xd730, 0, 1, onoff);
750}
751
752static int af9013_set_frontend(struct dvb_frontend *fe,
753	struct dvb_frontend_parameters *params)
754{
755	struct af9013_state *state = fe->demodulator_priv;
756	int ret;
757	u8 auto_mode; /* auto set TPS */
758
759	deb_info("%s: freq:%d bw:%d\n", __func__, params->frequency,
760		params->u.ofdm.bandwidth);
761
762	state->frequency = params->frequency;
763
764	/* program tuner */
765	if (fe->ops.tuner_ops.set_params)
766		fe->ops.tuner_ops.set_params(fe, params);
767
768	/* program CFOE coefficients */
769	ret = af9013_set_coeff(state, params->u.ofdm.bandwidth);
770	if (ret)
771		goto error;
772
773	/* program frequency control */
774	ret = af9013_set_freq_ctrl(state, params->u.ofdm.bandwidth);
775	if (ret)
776		goto error;
777
778	/* clear TPS lock flag (inverted flag) */
779	ret = af9013_write_reg_bits(state, 0xd330, 3, 1, 1);
780	if (ret)
781		goto error;
782
783	/* clear MPEG2 lock flag */
784	ret = af9013_write_reg_bits(state, 0xd507, 6, 1, 0);
785	if (ret)
786		goto error;
787
788	/* empty channel function */
789	ret = af9013_write_reg_bits(state, 0x9bfe, 0, 1, 0);
790	if (ret)
791		goto error;
792
793	/* empty DVB-T channel function */
794	ret = af9013_write_reg_bits(state, 0x9bc2, 0, 1, 0);
795	if (ret)
796		goto error;
797
798	/* program TPS and bandwidth, check if auto mode needed */
799	ret = af9013_set_ofdm_params(state, &params->u.ofdm, &auto_mode);
800	if (ret)
801		goto error;
802
803	if (auto_mode) {
804		/* clear easy mode flag */
805		ret = af9013_write_reg(state, 0xaefd, 0);
806		deb_info("%s: auto TPS\n", __func__);
807	} else {
808		/* set easy mode flag */
809		ret = af9013_write_reg(state, 0xaefd, 1);
810		if (ret)
811			goto error;
812		ret = af9013_write_reg(state, 0xaefe, 0);
813		deb_info("%s: manual TPS\n", __func__);
814	}
815	if (ret)
816		goto error;
817
818	/* everything is set, lets try to receive channel - OFSM GO! */
819	ret = af9013_write_reg(state, 0xffff, 0);
820	if (ret)
821		goto error;
822
823error:
824	return ret;
825}
826
827static int af9013_get_frontend(struct dvb_frontend *fe,
828	struct dvb_frontend_parameters *p)
829{
830	struct af9013_state *state = fe->demodulator_priv;
831	int ret;
832	u8 i, buf[3];
833	deb_info("%s\n", __func__);
834
835	/* read TPS registers */
836	for (i = 0; i < 3; i++) {
837		ret = af9013_read_reg(state, 0xd3c0 + i, &buf[i]);
838		if (ret)
839			goto error;
840	}
841
842	switch ((buf[1] >> 6) & 3) {
843	case 0:
844		p->u.ofdm.constellation = QPSK;
845		break;
846	case 1:
847		p->u.ofdm.constellation = QAM_16;
848		break;
849	case 2:
850		p->u.ofdm.constellation = QAM_64;
851		break;
852	}
853
854	switch ((buf[0] >> 0) & 3) {
855	case 0:
856		p->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
857		break;
858	case 1:
859		p->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
860	}
861
862	switch ((buf[0] >> 2) & 3) {
863	case 0:
864		p->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
865		break;
866	case 1:
867		p->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
868		break;
869	case 2:
870		p->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
871		break;
872	case 3:
873		p->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
874		break;
875	}
876
877	switch ((buf[0] >> 4) & 7) {
878	case 0:
879		p->u.ofdm.hierarchy_information = HIERARCHY_NONE;
880		break;
881	case 1:
882		p->u.ofdm.hierarchy_information = HIERARCHY_1;
883		break;
884	case 2:
885		p->u.ofdm.hierarchy_information = HIERARCHY_2;
886		break;
887	case 3:
888		p->u.ofdm.hierarchy_information = HIERARCHY_4;
889		break;
890	}
891
892	switch ((buf[2] >> 0) & 7) {
893	case 0:
894		p->u.ofdm.code_rate_HP = FEC_1_2;
895		break;
896	case 1:
897		p->u.ofdm.code_rate_HP = FEC_2_3;
898		break;
899	case 2:
900		p->u.ofdm.code_rate_HP = FEC_3_4;
901		break;
902	case 3:
903		p->u.ofdm.code_rate_HP = FEC_5_6;
904		break;
905	case 4:
906		p->u.ofdm.code_rate_HP = FEC_7_8;
907		break;
908	}
909
910	switch ((buf[2] >> 3) & 7) {
911	case 0:
912		p->u.ofdm.code_rate_LP = FEC_1_2;
913		break;
914	case 1:
915		p->u.ofdm.code_rate_LP = FEC_2_3;
916		break;
917	case 2:
918		p->u.ofdm.code_rate_LP = FEC_3_4;
919		break;
920	case 3:
921		p->u.ofdm.code_rate_LP = FEC_5_6;
922		break;
923	case 4:
924		p->u.ofdm.code_rate_LP = FEC_7_8;
925		break;
926	}
927
928	switch ((buf[1] >> 2) & 3) {
929	case 0:
930		p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
931		break;
932	case 1:
933		p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
934		break;
935	case 2:
936		p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
937		break;
938	}
939
940	p->inversion = INVERSION_AUTO;
941	p->frequency = state->frequency;
942
943error:
944	return ret;
945}
946
947static int af9013_update_ber_unc(struct dvb_frontend *fe)
948{
949	struct af9013_state *state = fe->demodulator_priv;
950	int ret;
951	u8 buf[3], i;
952	u32 error_bit_count = 0;
953	u32 total_bit_count = 0;
954	u32 abort_packet_count = 0;
955
956	state->ber = 0;
957
958	/* check if error bit count is ready */
959	ret = af9013_read_reg_bits(state, 0xd391, 4, 1, &buf[0]);
960	if (ret)
961		goto error;
962	if (!buf[0])
963		goto exit;
964
965	/* get RSD packet abort count */
966	for (i = 0; i < 2; i++) {
967		ret = af9013_read_reg(state, 0xd38a + i, &buf[i]);
968		if (ret)
969			goto error;
970	}
971	abort_packet_count = (buf[1] << 8) + buf[0];
972
973	/* get error bit count */
974	for (i = 0; i < 3; i++) {
975		ret = af9013_read_reg(state, 0xd387 + i, &buf[i]);
976		if (ret)
977			goto error;
978	}
979	error_bit_count = (buf[2] << 16) + (buf[1] << 8) + buf[0];
980	error_bit_count = error_bit_count - abort_packet_count * 8 * 8;
981
982	/* get used RSD counting period (10000 RSD packets used) */
983	for (i = 0; i < 2; i++) {
984		ret = af9013_read_reg(state, 0xd385 + i, &buf[i]);
985		if (ret)
986			goto error;
987	}
988	total_bit_count = (buf[1] << 8) + buf[0];
989	total_bit_count = total_bit_count - abort_packet_count;
990	total_bit_count = total_bit_count * 204 * 8;
991
992	if (total_bit_count)
993		state->ber = error_bit_count * 1000000000 / total_bit_count;
994
995	state->ucblocks += abort_packet_count;
996
997	deb_info("%s: err bits:%d total bits:%d abort count:%d\n", __func__,
998		error_bit_count, total_bit_count, abort_packet_count);
999
1000	/* set BER counting range */
1001	ret = af9013_write_reg(state, 0xd385, 10000 & 0xff);
1002	if (ret)
1003		goto error;
1004	ret = af9013_write_reg(state, 0xd386, 10000 >> 8);
1005	if (ret)
1006		goto error;
1007	/* reset and start BER counter */
1008	ret = af9013_write_reg_bits(state, 0xd391, 4, 1, 1);
1009	if (ret)
1010		goto error;
1011
1012exit:
1013error:
1014	return ret;
1015}
1016
1017static int af9013_update_snr(struct dvb_frontend *fe)
1018{
1019	struct af9013_state *state = fe->demodulator_priv;
1020	int ret;
1021	u8 buf[3], i, len;
1022	u32 quant = 0;
1023	struct snr_table *uninitialized_var(snr_table);
1024
1025	/* check if quantizer ready (for snr) */
1026	ret = af9013_read_reg_bits(state, 0xd2e1, 3, 1, &buf[0]);
1027	if (ret)
1028		goto error;
1029	if (buf[0]) {
1030		/* quantizer ready - read it */
1031		for (i = 0; i < 3; i++) {
1032			ret = af9013_read_reg(state, 0xd2e3 + i, &buf[i]);
1033			if (ret)
1034				goto error;
1035		}
1036		quant = (buf[2] << 16) + (buf[1] << 8) + buf[0];
1037
1038		/* read current constellation */
1039		ret = af9013_read_reg(state, 0xd3c1, &buf[0]);
1040		if (ret)
1041			goto error;
1042
1043		switch ((buf[0] >> 6) & 3) {
1044		case 0:
1045			len = ARRAY_SIZE(qpsk_snr_table);
1046			snr_table = qpsk_snr_table;
1047			break;
1048		case 1:
1049			len = ARRAY_SIZE(qam16_snr_table);
1050			snr_table = qam16_snr_table;
1051			break;
1052		case 2:
1053			len = ARRAY_SIZE(qam64_snr_table);
1054			snr_table = qam64_snr_table;
1055			break;
1056		default:
1057			len = 0;
1058			break;
1059		}
1060
1061		if (len) {
1062			for (i = 0; i < len; i++) {
1063				if (quant < snr_table[i].val) {
1064					state->snr = snr_table[i].snr * 10;
1065					break;
1066				}
1067			}
1068		}
1069
1070		/* set quantizer super frame count */
1071		ret = af9013_write_reg(state, 0xd2e2, 1);
1072		if (ret)
1073			goto error;
1074
1075		/* check quantizer availability */
1076		for (i = 0; i < 10; i++) {
1077			msleep(10);
1078			ret = af9013_read_reg_bits(state, 0xd2e6, 0, 1,
1079				&buf[0]);
1080			if (ret)
1081				goto error;
1082			if (!buf[0])
1083				break;
1084		}
1085
1086		/* reset quantizer */
1087		ret = af9013_write_reg_bits(state, 0xd2e1, 3, 1, 1);
1088		if (ret)
1089			goto error;
1090	}
1091
1092error:
1093	return ret;
1094}
1095
1096static int af9013_update_signal_strength(struct dvb_frontend *fe)
1097{
1098	struct af9013_state *state = fe->demodulator_priv;
1099	int ret;
1100	u8 tmp0;
1101	u8 rf_gain, rf_50, rf_80, if_gain, if_50, if_80;
1102	int signal_strength;
1103
1104	deb_info("%s\n", __func__);
1105
1106	state->signal_strength = 0;
1107
1108	ret = af9013_read_reg_bits(state, 0x9bee, 0, 1, &tmp0);
1109	if (ret)
1110		goto error;
1111	if (tmp0) {
1112		ret = af9013_read_reg(state, 0x9bbd, &rf_50);
1113		if (ret)
1114			goto error;
1115		ret = af9013_read_reg(state, 0x9bd0, &rf_80);
1116		if (ret)
1117			goto error;
1118		ret = af9013_read_reg(state, 0x9be2, &if_50);
1119		if (ret)
1120			goto error;
1121		ret = af9013_read_reg(state, 0x9be4, &if_80);
1122		if (ret)
1123			goto error;
1124		ret = af9013_read_reg(state, 0xd07c, &rf_gain);
1125		if (ret)
1126			goto error;
1127		ret = af9013_read_reg(state, 0xd07d, &if_gain);
1128		if (ret)
1129			goto error;
1130		signal_strength = (0xffff / (9 * (rf_50 + if_50) - \
1131			11 * (rf_80 + if_80))) * (10 * (rf_gain + if_gain) - \
1132			11 * (rf_80 + if_80));
1133		if (signal_strength < 0)
1134			signal_strength = 0;
1135		else if (signal_strength > 0xffff)
1136			signal_strength = 0xffff;
1137
1138		state->signal_strength = signal_strength;
1139	}
1140
1141error:
1142	return ret;
1143}
1144
1145static int af9013_update_statistics(struct dvb_frontend *fe)
1146{
1147	struct af9013_state *state = fe->demodulator_priv;
1148	int ret;
1149
1150	if (time_before(jiffies, state->next_statistics_check))
1151		return 0;
1152
1153	/* set minimum statistic update interval */
1154	state->next_statistics_check = jiffies + msecs_to_jiffies(1200);
1155
1156	ret = af9013_update_signal_strength(fe);
1157	if (ret)
1158		goto error;
1159	ret = af9013_update_snr(fe);
1160	if (ret)
1161		goto error;
1162	ret = af9013_update_ber_unc(fe);
1163	if (ret)
1164		goto error;
1165
1166error:
1167	return ret;
1168}
1169
1170static int af9013_get_tune_settings(struct dvb_frontend *fe,
1171	struct dvb_frontend_tune_settings *fesettings)
1172{
1173	fesettings->min_delay_ms = 800;
1174	fesettings->step_size = 0;
1175	fesettings->max_drift = 0;
1176
1177	return 0;
1178}
1179
1180static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
1181{
1182	struct af9013_state *state = fe->demodulator_priv;
1183	int ret = 0;
1184	u8 tmp;
1185	*status = 0;
1186
1187	/* MPEG2 lock */
1188	ret = af9013_read_reg_bits(state, 0xd507, 6, 1, &tmp);
1189	if (ret)
1190		goto error;
1191	if (tmp)
1192		*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
1193			FE_HAS_SYNC | FE_HAS_LOCK;
1194
1195	if (!*status) {
1196		/* TPS lock */
1197		ret = af9013_read_reg_bits(state, 0xd330, 3, 1, &tmp);
1198		if (ret)
1199			goto error;
1200		if (tmp)
1201			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
1202				FE_HAS_VITERBI;
1203	}
1204
1205	if (!*status) {
1206		/* CFO lock */
1207		ret = af9013_read_reg_bits(state, 0xd333, 7, 1, &tmp);
1208		if (ret)
1209			goto error;
1210		if (tmp)
1211			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
1212	}
1213
1214	if (!*status) {
1215		/* SFOE lock */
1216		ret = af9013_read_reg_bits(state, 0xd334, 6, 1, &tmp);
1217		if (ret)
1218			goto error;
1219		if (tmp)
1220			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
1221	}
1222
1223	if (!*status) {
1224		/* AGC lock */
1225		ret = af9013_read_reg_bits(state, 0xd1a0, 6, 1, &tmp);
1226		if (ret)
1227			goto error;
1228		if (tmp)
1229			*status |= FE_HAS_SIGNAL;
1230	}
1231
1232	ret = af9013_update_statistics(fe);
1233
1234error:
1235	return ret;
1236}
1237
1238
1239static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1240{
1241	struct af9013_state *state = fe->demodulator_priv;
1242	int ret;
1243	ret = af9013_update_statistics(fe);
1244	*ber = state->ber;
1245	return ret;
1246}
1247
1248static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1249{
1250	struct af9013_state *state = fe->demodulator_priv;
1251	int ret;
1252	ret = af9013_update_statistics(fe);
1253	*strength = state->signal_strength;
1254	return ret;
1255}
1256
1257static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1258{
1259	struct af9013_state *state = fe->demodulator_priv;
1260	int ret;
1261	ret = af9013_update_statistics(fe);
1262	*snr = state->snr;
1263	return ret;
1264}
1265
1266static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1267{
1268	struct af9013_state *state = fe->demodulator_priv;
1269	int ret;
1270	ret = af9013_update_statistics(fe);
1271	*ucblocks = state->ucblocks;
1272	return ret;
1273}
1274
1275static int af9013_sleep(struct dvb_frontend *fe)
1276{
1277	struct af9013_state *state = fe->demodulator_priv;
1278	int ret;
1279	deb_info("%s\n", __func__);
1280
1281	ret = af9013_lock_led(state, 0);
1282	if (ret)
1283		goto error;
1284
1285	ret = af9013_power_ctrl(state, 0);
1286error:
1287	return ret;
1288}
1289
1290static int af9013_init(struct dvb_frontend *fe)
1291{
1292	struct af9013_state *state = fe->demodulator_priv;
1293	int ret, i, len;
1294	u8 tmp0, tmp1;
1295	struct regdesc *init;
1296	deb_info("%s\n", __func__);
1297
1298	/* reset OFDM */
1299	ret = af9013_reset(state, 0);
1300	if (ret)
1301		goto error;
1302
1303	/* power on */
1304	ret = af9013_power_ctrl(state, 1);
1305	if (ret)
1306		goto error;
1307
1308	/* enable ADC */
1309	ret = af9013_write_reg(state, 0xd73a, 0xa4);
1310	if (ret)
1311		goto error;
1312
1313	/* write API version to firmware */
1314	for (i = 0; i < sizeof(state->config.api_version); i++) {
1315		ret = af9013_write_reg(state, 0x9bf2 + i,
1316			state->config.api_version[i]);
1317		if (ret)
1318			goto error;
1319	}
1320
1321	/* program ADC control */
1322	ret = af9013_set_adc_ctrl(state);
1323	if (ret)
1324		goto error;
1325
1326	/* set I2C master clock */
1327	ret = af9013_write_reg(state, 0xd416, 0x14);
1328	if (ret)
1329		goto error;
1330
1331	/* set 16 embx */
1332	ret = af9013_write_reg_bits(state, 0xd700, 1, 1, 1);
1333	if (ret)
1334		goto error;
1335
1336	/* set no trigger */
1337	ret = af9013_write_reg_bits(state, 0xd700, 2, 1, 0);
1338	if (ret)
1339		goto error;
1340
1341	/* set read-update bit for constellation */
1342	ret = af9013_write_reg_bits(state, 0xd371, 1, 1, 1);
1343	if (ret)
1344		goto error;
1345
1346	/* enable FEC monitor */
1347	ret = af9013_write_reg_bits(state, 0xd392, 1, 1, 1);
1348	if (ret)
1349		goto error;
1350
1351	/* load OFSM settings */
1352	deb_info("%s: load ofsm settings\n", __func__);
1353	len = ARRAY_SIZE(ofsm_init);
1354	init = ofsm_init;
1355	for (i = 0; i < len; i++) {
1356		ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
1357			init[i].len, init[i].val);
1358		if (ret)
1359			goto error;
1360	}
1361
1362	/* load tuner specific settings */
1363	deb_info("%s: load tuner specific settings\n", __func__);
1364	switch (state->config.tuner) {
1365	case AF9013_TUNER_MXL5003D:
1366		len = ARRAY_SIZE(tuner_init_mxl5003d);
1367		init = tuner_init_mxl5003d;
1368		break;
1369	case AF9013_TUNER_MXL5005D:
1370	case AF9013_TUNER_MXL5005R:
1371		len = ARRAY_SIZE(tuner_init_mxl5005);
1372		init = tuner_init_mxl5005;
1373		break;
1374	case AF9013_TUNER_ENV77H11D5:
1375		len = ARRAY_SIZE(tuner_init_env77h11d5);
1376		init = tuner_init_env77h11d5;
1377		break;
1378	case AF9013_TUNER_MT2060:
1379		len = ARRAY_SIZE(tuner_init_mt2060);
1380		init = tuner_init_mt2060;
1381		break;
1382	case AF9013_TUNER_MC44S803:
1383		len = ARRAY_SIZE(tuner_init_mc44s803);
1384		init = tuner_init_mc44s803;
1385		break;
1386	case AF9013_TUNER_QT1010:
1387	case AF9013_TUNER_QT1010A:
1388		len = ARRAY_SIZE(tuner_init_qt1010);
1389		init = tuner_init_qt1010;
1390		break;
1391	case AF9013_TUNER_MT2060_2:
1392		len = ARRAY_SIZE(tuner_init_mt2060_2);
1393		init = tuner_init_mt2060_2;
1394		break;
1395	case AF9013_TUNER_TDA18271:
1396		len = ARRAY_SIZE(tuner_init_tda18271);
1397		init = tuner_init_tda18271;
1398		break;
1399	case AF9013_TUNER_UNKNOWN:
1400	default:
1401		len = ARRAY_SIZE(tuner_init_unknown);
1402		init = tuner_init_unknown;
1403		break;
1404	}
1405
1406	for (i = 0; i < len; i++) {
1407		ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
1408			init[i].len, init[i].val);
1409		if (ret)
1410			goto error;
1411	}
1412
1413	/* set TS mode */
1414	deb_info("%s: setting ts mode\n", __func__);
1415	tmp0 = 0; /* parallel mode */
1416	tmp1 = 0; /* serial mode */
1417	switch (state->config.output_mode) {
1418	case AF9013_OUTPUT_MODE_PARALLEL:
1419		tmp0 = 1;
1420		break;
1421	case AF9013_OUTPUT_MODE_SERIAL:
1422		tmp1 = 1;
1423		break;
1424	case AF9013_OUTPUT_MODE_USB:
1425		/* usb mode for AF9015 */
1426	default:
1427		break;
1428	}
1429	ret = af9013_write_reg_bits(state, 0xd500, 1, 1, tmp0); /* parallel */
1430	if (ret)
1431		goto error;
1432	ret = af9013_write_reg_bits(state, 0xd500, 2, 1, tmp1); /* serial */
1433	if (ret)
1434		goto error;
1435
1436	/* enable lock led */
1437	ret = af9013_lock_led(state, 1);
1438	if (ret)
1439		goto error;
1440
1441error:
1442	return ret;
1443}
1444
1445static struct dvb_frontend_ops af9013_ops;
1446
1447static int af9013_download_firmware(struct af9013_state *state)
1448{
1449	int i, len, packets, remainder, ret;
1450	const struct firmware *fw;
1451	u16 addr = 0x5100; /* firmware start address */
1452	u16 checksum = 0;
1453	u8 val;
1454	u8 fw_params[4];
1455	u8 *data;
1456	u8 *fw_file = AF9013_DEFAULT_FIRMWARE;
1457
1458	msleep(100);
1459	/* check whether firmware is already running */
1460	ret = af9013_read_reg(state, 0x98be, &val);
1461	if (ret)
1462		goto error;
1463	else
1464		deb_info("%s: firmware status:%02x\n", __func__, val);
1465
1466	if (val == 0x0c) /* fw is running, no need for download */
1467		goto exit;
1468
1469	info("found a '%s' in cold state, will try to load a firmware",
1470		af9013_ops.info.name);
1471
1472	/* request the firmware, this will block and timeout */
1473	ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
1474	if (ret) {
1475		err("did not find the firmware file. (%s) "
1476			"Please see linux/Documentation/dvb/ for more details" \
1477			" on firmware-problems. (%d)",
1478			fw_file, ret);
1479		goto error;
1480	}
1481
1482	info("downloading firmware from file '%s'", fw_file);
1483
1484	/* calc checksum */
1485	for (i = 0; i < fw->size; i++)
1486		checksum += fw->data[i];
1487
1488	fw_params[0] = checksum >> 8;
1489	fw_params[1] = checksum & 0xff;
1490	fw_params[2] = fw->size >> 8;
1491	fw_params[3] = fw->size & 0xff;
1492
1493	/* write fw checksum & size */
1494	ret = af9013_write_ofsm_regs(state, 0x50fc,
1495		fw_params, sizeof(fw_params));
1496	if (ret)
1497		goto error_release;
1498
1499	#define FW_PACKET_MAX_DATA  16
1500
1501	packets = fw->size / FW_PACKET_MAX_DATA;
1502	remainder = fw->size % FW_PACKET_MAX_DATA;
1503	len = FW_PACKET_MAX_DATA;
1504	for (i = 0; i <= packets; i++) {
1505		if (i == packets)  /* set size of the last packet */
1506			len = remainder;
1507
1508		data = (u8 *)(fw->data + i * FW_PACKET_MAX_DATA);
1509		ret = af9013_write_ofsm_regs(state, addr, data, len);
1510		addr += FW_PACKET_MAX_DATA;
1511
1512		if (ret) {
1513			err("firmware download failed at %d with %d", i, ret);
1514			goto error_release;
1515		}
1516	}
1517
1518	/* request boot firmware */
1519	ret = af9013_write_reg(state, 0xe205, 1);
1520	if (ret)
1521		goto error_release;
1522
1523	for (i = 0; i < 15; i++) {
1524		msleep(100);
1525
1526		/* check firmware status */
1527		ret = af9013_read_reg(state, 0x98be, &val);
1528		if (ret)
1529			goto error_release;
1530
1531		deb_info("%s: firmware status:%02x\n", __func__, val);
1532
1533		if (val == 0x0c || val == 0x04) /* success or fail */
1534			break;
1535	}
1536
1537	if (val == 0x04) {
1538		err("firmware did not run");
1539		ret = -1;
1540	} else if (val != 0x0c) {
1541		err("firmware boot timeout");
1542		ret = -1;
1543	}
1544
1545error_release:
1546	release_firmware(fw);
1547error:
1548exit:
1549	if (!ret)
1550		info("found a '%s' in warm state.", af9013_ops.info.name);
1551	return ret;
1552}
1553
1554static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1555{
1556	int ret;
1557	struct af9013_state *state = fe->demodulator_priv;
1558	deb_info("%s: enable:%d\n", __func__, enable);
1559
1560	if (state->config.output_mode == AF9013_OUTPUT_MODE_USB)
1561		ret = af9013_write_reg_bits(state, 0xd417, 3, 1, enable);
1562	else
1563		ret = af9013_write_reg_bits(state, 0xd607, 2, 1, enable);
1564
1565	return ret;
1566}
1567
1568static void af9013_release(struct dvb_frontend *fe)
1569{
1570	struct af9013_state *state = fe->demodulator_priv;
1571	kfree(state);
1572}
1573
1574static struct dvb_frontend_ops af9013_ops;
1575
1576struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1577	struct i2c_adapter *i2c)
1578{
1579	int ret;
1580	struct af9013_state *state = NULL;
1581	u8 buf[4], i;
1582
1583	/* allocate memory for the internal state */
1584	state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1585	if (state == NULL)
1586		goto error;
1587
1588	/* setup the state */
1589	state->i2c = i2c;
1590	memcpy(&state->config, config, sizeof(struct af9013_config));
1591
1592	/* chip version */
1593	ret = af9013_read_reg_bits(state, 0xd733, 4, 4, &buf[2]);
1594	if (ret)
1595		goto error;
1596
1597	/* ROM version */
1598	for (i = 0; i < 2; i++) {
1599		ret = af9013_read_reg(state, 0x116b + i, &buf[i]);
1600		if (ret)
1601			goto error;
1602	}
1603	deb_info("%s: chip version:%d ROM version:%d.%d\n", __func__,
1604		buf[2], buf[0], buf[1]);
1605
1606	/* download firmware */
1607	if (state->config.output_mode != AF9013_OUTPUT_MODE_USB) {
1608		ret = af9013_download_firmware(state);
1609		if (ret)
1610			goto error;
1611	}
1612
1613	/* firmware version */
1614	for (i = 0; i < 4; i++) {
1615		ret = af9013_read_reg(state, 0x5103 + i, &buf[i]);
1616		if (ret)
1617			goto error;
1618	}
1619	info("firmware version:%d.%d.%d.%d", buf[0], buf[1], buf[2], buf[3]);
1620
1621	/* settings for mp2if */
1622	if (state->config.output_mode == AF9013_OUTPUT_MODE_USB) {
1623		/* AF9015 split PSB to 1.5k + 0.5k */
1624		ret = af9013_write_reg_bits(state, 0xd50b, 2, 1, 1);
1625	} else {
1626		/* AF9013 change the output bit to data7 */
1627		ret = af9013_write_reg_bits(state, 0xd500, 3, 1, 1);
1628		if (ret)
1629			goto error;
1630		/* AF9013 set mpeg to full speed */
1631		ret = af9013_write_reg_bits(state, 0xd502, 4, 1, 1);
1632	}
1633	if (ret)
1634		goto error;
1635	ret = af9013_write_reg_bits(state, 0xd520, 4, 1, 1);
1636	if (ret)
1637		goto error;
1638
1639	/* set GPIOs */
1640	for (i = 0; i < sizeof(state->config.gpio); i++) {
1641		ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1642		if (ret)
1643			goto error;
1644	}
1645
1646	/* create dvb_frontend */
1647	memcpy(&state->frontend.ops, &af9013_ops,
1648		sizeof(struct dvb_frontend_ops));
1649	state->frontend.demodulator_priv = state;
1650
1651	return &state->frontend;
1652error:
1653	kfree(state);
1654	return NULL;
1655}
1656EXPORT_SYMBOL(af9013_attach);
1657
1658static struct dvb_frontend_ops af9013_ops = {
1659	.info = {
1660		.name = "Afatech AF9013 DVB-T",
1661		.type = FE_OFDM,
1662		.frequency_min = 174000000,
1663		.frequency_max = 862000000,
1664		.frequency_stepsize = 250000,
1665		.frequency_tolerance = 0,
1666		.caps =
1667			FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1668			FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1669			FE_CAN_QPSK | FE_CAN_QAM_16 |
1670			FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1671			FE_CAN_TRANSMISSION_MODE_AUTO |
1672			FE_CAN_GUARD_INTERVAL_AUTO |
1673			FE_CAN_HIERARCHY_AUTO |
1674			FE_CAN_RECOVER |
1675			FE_CAN_MUTE_TS
1676	},
1677
1678	.release = af9013_release,
1679	.init = af9013_init,
1680	.sleep = af9013_sleep,
1681	.i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1682
1683	.set_frontend = af9013_set_frontend,
1684	.get_frontend = af9013_get_frontend,
1685
1686	.get_tune_settings = af9013_get_tune_settings,
1687
1688	.read_status = af9013_read_status,
1689	.read_ber = af9013_read_ber,
1690	.read_signal_strength = af9013_read_signal_strength,
1691	.read_snr = af9013_read_snr,
1692	.read_ucblocks = af9013_read_ucblocks,
1693};
1694
1695module_param_named(debug, af9013_debug, int, 0644);
1696MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1697
1698MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1699MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1700MODULE_LICENSE("GPL");
1701