• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/md/
1/*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/completion.h>
10#include <linux/err.h>
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/bio.h>
15#include <linux/blkdev.h>
16#include <linux/mempool.h>
17#include <linux/slab.h>
18#include <linux/crypto.h>
19#include <linux/workqueue.h>
20#include <linux/backing-dev.h>
21#include <asm/atomic.h>
22#include <linux/scatterlist.h>
23#include <asm/page.h>
24#include <asm/unaligned.h>
25
26#include <linux/device-mapper.h>
27
28#define DM_MSG_PREFIX "crypt"
29#define MESG_STR(x) x, sizeof(x)
30
31/*
32 * context holding the current state of a multi-part conversion
33 */
34struct convert_context {
35	struct completion restart;
36	struct bio *bio_in;
37	struct bio *bio_out;
38	unsigned int offset_in;
39	unsigned int offset_out;
40	unsigned int idx_in;
41	unsigned int idx_out;
42	sector_t sector;
43	atomic_t pending;
44};
45
46/*
47 * per bio private data
48 */
49struct dm_crypt_io {
50	struct dm_target *target;
51	struct bio *base_bio;
52	struct work_struct work;
53
54	struct convert_context ctx;
55
56	atomic_t pending;
57	int error;
58	sector_t sector;
59	struct dm_crypt_io *base_io;
60};
61
62struct dm_crypt_request {
63	struct convert_context *ctx;
64	struct scatterlist sg_in;
65	struct scatterlist sg_out;
66};
67
68struct crypt_config;
69
70struct crypt_iv_operations {
71	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
72		   const char *opts);
73	void (*dtr)(struct crypt_config *cc);
74	int (*init)(struct crypt_config *cc);
75	int (*wipe)(struct crypt_config *cc);
76	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
77};
78
79struct iv_essiv_private {
80	struct crypto_cipher *tfm;
81	struct crypto_hash *hash_tfm;
82	u8 *salt;
83};
84
85struct iv_benbi_private {
86	int shift;
87};
88
89/*
90 * Crypt: maps a linear range of a block device
91 * and encrypts / decrypts at the same time.
92 */
93enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
94struct crypt_config {
95	struct dm_dev *dev;
96	sector_t start;
97
98	/*
99	 * pool for per bio private data, crypto requests and
100	 * encryption requeusts/buffer pages
101	 */
102	mempool_t *io_pool;
103	mempool_t *req_pool;
104	mempool_t *page_pool;
105	struct bio_set *bs;
106
107	struct workqueue_struct *io_queue;
108	struct workqueue_struct *crypt_queue;
109
110	char *cipher;
111	char *cipher_mode;
112
113	struct crypt_iv_operations *iv_gen_ops;
114	union {
115		struct iv_essiv_private essiv;
116		struct iv_benbi_private benbi;
117	} iv_gen_private;
118	sector_t iv_offset;
119	unsigned int iv_size;
120
121	/*
122	 * Layout of each crypto request:
123	 *
124	 *   struct ablkcipher_request
125	 *      context
126	 *      padding
127	 *   struct dm_crypt_request
128	 *      padding
129	 *   IV
130	 *
131	 * The padding is added so that dm_crypt_request and the IV are
132	 * correctly aligned.
133	 */
134	unsigned int dmreq_start;
135	struct ablkcipher_request *req;
136
137	struct crypto_ablkcipher *tfm;
138	unsigned long flags;
139	unsigned int key_size;
140	u8 key[0];
141};
142
143#define MIN_IOS        16
144#define MIN_POOL_PAGES 32
145#define MIN_BIO_PAGES  8
146
147static struct kmem_cache *_crypt_io_pool;
148
149static void clone_init(struct dm_crypt_io *, struct bio *);
150static void kcryptd_queue_crypt(struct dm_crypt_io *io);
151
152/*
153 * Different IV generation algorithms:
154 *
155 * plain: the initial vector is the 32-bit little-endian version of the sector
156 *        number, padded with zeros if necessary.
157 *
158 * plain64: the initial vector is the 64-bit little-endian version of the sector
159 *        number, padded with zeros if necessary.
160 *
161 * essiv: "encrypted sector|salt initial vector", the sector number is
162 *        encrypted with the bulk cipher using a salt as key. The salt
163 *        should be derived from the bulk cipher's key via hashing.
164 *
165 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
166 *        (needed for LRW-32-AES and possible other narrow block modes)
167 *
168 * null: the initial vector is always zero.  Provides compatibility with
169 *       obsolete loop_fish2 devices.  Do not use for new devices.
170 *
171 * plumb: unimplemented, see:
172 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
173 */
174
175static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
176{
177	memset(iv, 0, cc->iv_size);
178	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
179
180	return 0;
181}
182
183static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
184				sector_t sector)
185{
186	memset(iv, 0, cc->iv_size);
187	*(u64 *)iv = cpu_to_le64(sector);
188
189	return 0;
190}
191
192/* Initialise ESSIV - compute salt but no local memory allocations */
193static int crypt_iv_essiv_init(struct crypt_config *cc)
194{
195	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
196	struct hash_desc desc;
197	struct scatterlist sg;
198	int err;
199
200	sg_init_one(&sg, cc->key, cc->key_size);
201	desc.tfm = essiv->hash_tfm;
202	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
203
204	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
205	if (err)
206		return err;
207
208	return crypto_cipher_setkey(essiv->tfm, essiv->salt,
209				    crypto_hash_digestsize(essiv->hash_tfm));
210}
211
212/* Wipe salt and reset key derived from volume key */
213static int crypt_iv_essiv_wipe(struct crypt_config *cc)
214{
215	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
216	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
217
218	memset(essiv->salt, 0, salt_size);
219
220	return crypto_cipher_setkey(essiv->tfm, essiv->salt, salt_size);
221}
222
223static void crypt_iv_essiv_dtr(struct crypt_config *cc)
224{
225	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
226
227	crypto_free_cipher(essiv->tfm);
228	essiv->tfm = NULL;
229
230	crypto_free_hash(essiv->hash_tfm);
231	essiv->hash_tfm = NULL;
232
233	kzfree(essiv->salt);
234	essiv->salt = NULL;
235}
236
237static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
238			      const char *opts)
239{
240	struct crypto_cipher *essiv_tfm = NULL;
241	struct crypto_hash *hash_tfm = NULL;
242	u8 *salt = NULL;
243	int err;
244
245	if (!opts) {
246		ti->error = "Digest algorithm missing for ESSIV mode";
247		return -EINVAL;
248	}
249
250	/* Allocate hash algorithm */
251	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
252	if (IS_ERR(hash_tfm)) {
253		ti->error = "Error initializing ESSIV hash";
254		err = PTR_ERR(hash_tfm);
255		goto bad;
256	}
257
258	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
259	if (!salt) {
260		ti->error = "Error kmallocing salt storage in ESSIV";
261		err = -ENOMEM;
262		goto bad;
263	}
264
265	/* Allocate essiv_tfm */
266	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
267	if (IS_ERR(essiv_tfm)) {
268		ti->error = "Error allocating crypto tfm for ESSIV";
269		err = PTR_ERR(essiv_tfm);
270		goto bad;
271	}
272	if (crypto_cipher_blocksize(essiv_tfm) !=
273	    crypto_ablkcipher_ivsize(cc->tfm)) {
274		ti->error = "Block size of ESSIV cipher does "
275			    "not match IV size of block cipher";
276		err = -EINVAL;
277		goto bad;
278	}
279
280	cc->iv_gen_private.essiv.salt = salt;
281	cc->iv_gen_private.essiv.tfm = essiv_tfm;
282	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
283
284	return 0;
285
286bad:
287	if (essiv_tfm && !IS_ERR(essiv_tfm))
288		crypto_free_cipher(essiv_tfm);
289	if (hash_tfm && !IS_ERR(hash_tfm))
290		crypto_free_hash(hash_tfm);
291	kfree(salt);
292	return err;
293}
294
295static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
296{
297	memset(iv, 0, cc->iv_size);
298	*(u64 *)iv = cpu_to_le64(sector);
299	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv.tfm, iv, iv);
300	return 0;
301}
302
303static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
304			      const char *opts)
305{
306	unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
307	int log = ilog2(bs);
308
309	/* we need to calculate how far we must shift the sector count
310	 * to get the cipher block count, we use this shift in _gen */
311
312	if (1 << log != bs) {
313		ti->error = "cypher blocksize is not a power of 2";
314		return -EINVAL;
315	}
316
317	if (log > 9) {
318		ti->error = "cypher blocksize is > 512";
319		return -EINVAL;
320	}
321
322	cc->iv_gen_private.benbi.shift = 9 - log;
323
324	return 0;
325}
326
327static void crypt_iv_benbi_dtr(struct crypt_config *cc)
328{
329}
330
331static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
332{
333	__be64 val;
334
335	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
336
337	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi.shift) + 1);
338	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
339
340	return 0;
341}
342
343static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
344{
345	memset(iv, 0, cc->iv_size);
346
347	return 0;
348}
349
350static struct crypt_iv_operations crypt_iv_plain_ops = {
351	.generator = crypt_iv_plain_gen
352};
353
354static struct crypt_iv_operations crypt_iv_plain64_ops = {
355	.generator = crypt_iv_plain64_gen
356};
357
358static struct crypt_iv_operations crypt_iv_essiv_ops = {
359	.ctr       = crypt_iv_essiv_ctr,
360	.dtr       = crypt_iv_essiv_dtr,
361	.init      = crypt_iv_essiv_init,
362	.wipe      = crypt_iv_essiv_wipe,
363	.generator = crypt_iv_essiv_gen
364};
365
366static struct crypt_iv_operations crypt_iv_benbi_ops = {
367	.ctr	   = crypt_iv_benbi_ctr,
368	.dtr	   = crypt_iv_benbi_dtr,
369	.generator = crypt_iv_benbi_gen
370};
371
372static struct crypt_iv_operations crypt_iv_null_ops = {
373	.generator = crypt_iv_null_gen
374};
375
376static void crypt_convert_init(struct crypt_config *cc,
377			       struct convert_context *ctx,
378			       struct bio *bio_out, struct bio *bio_in,
379			       sector_t sector)
380{
381	ctx->bio_in = bio_in;
382	ctx->bio_out = bio_out;
383	ctx->offset_in = 0;
384	ctx->offset_out = 0;
385	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
386	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
387	ctx->sector = sector + cc->iv_offset;
388	init_completion(&ctx->restart);
389}
390
391static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
392					     struct ablkcipher_request *req)
393{
394	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
395}
396
397static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
398					       struct dm_crypt_request *dmreq)
399{
400	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
401}
402
403static int crypt_convert_block(struct crypt_config *cc,
404			       struct convert_context *ctx,
405			       struct ablkcipher_request *req)
406{
407	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
408	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
409	struct dm_crypt_request *dmreq;
410	u8 *iv;
411	int r = 0;
412
413	dmreq = dmreq_of_req(cc, req);
414	iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
415			 crypto_ablkcipher_alignmask(cc->tfm) + 1);
416
417	dmreq->ctx = ctx;
418	sg_init_table(&dmreq->sg_in, 1);
419	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
420		    bv_in->bv_offset + ctx->offset_in);
421
422	sg_init_table(&dmreq->sg_out, 1);
423	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
424		    bv_out->bv_offset + ctx->offset_out);
425
426	ctx->offset_in += 1 << SECTOR_SHIFT;
427	if (ctx->offset_in >= bv_in->bv_len) {
428		ctx->offset_in = 0;
429		ctx->idx_in++;
430	}
431
432	ctx->offset_out += 1 << SECTOR_SHIFT;
433	if (ctx->offset_out >= bv_out->bv_len) {
434		ctx->offset_out = 0;
435		ctx->idx_out++;
436	}
437
438	if (cc->iv_gen_ops) {
439		r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
440		if (r < 0)
441			return r;
442	}
443
444	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
445				     1 << SECTOR_SHIFT, iv);
446
447	if (bio_data_dir(ctx->bio_in) == WRITE)
448		r = crypto_ablkcipher_encrypt(req);
449	else
450		r = crypto_ablkcipher_decrypt(req);
451
452	return r;
453}
454
455static void kcryptd_async_done(struct crypto_async_request *async_req,
456			       int error);
457static void crypt_alloc_req(struct crypt_config *cc,
458			    struct convert_context *ctx)
459{
460	if (!cc->req)
461		cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
462	ablkcipher_request_set_tfm(cc->req, cc->tfm);
463	ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
464					CRYPTO_TFM_REQ_MAY_SLEEP,
465					kcryptd_async_done,
466					dmreq_of_req(cc, cc->req));
467}
468
469/*
470 * Encrypt / decrypt data from one bio to another one (can be the same one)
471 */
472static int crypt_convert(struct crypt_config *cc,
473			 struct convert_context *ctx)
474{
475	int r;
476
477	atomic_set(&ctx->pending, 1);
478
479	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
480	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
481
482		crypt_alloc_req(cc, ctx);
483
484		atomic_inc(&ctx->pending);
485
486		r = crypt_convert_block(cc, ctx, cc->req);
487
488		switch (r) {
489		/* async */
490		case -EBUSY:
491			wait_for_completion(&ctx->restart);
492			INIT_COMPLETION(ctx->restart);
493			/* fall through*/
494		case -EINPROGRESS:
495			cc->req = NULL;
496			ctx->sector++;
497			continue;
498
499		/* sync */
500		case 0:
501			atomic_dec(&ctx->pending);
502			ctx->sector++;
503			cond_resched();
504			continue;
505
506		/* error */
507		default:
508			atomic_dec(&ctx->pending);
509			return r;
510		}
511	}
512
513	return 0;
514}
515
516static void dm_crypt_bio_destructor(struct bio *bio)
517{
518	struct dm_crypt_io *io = bio->bi_private;
519	struct crypt_config *cc = io->target->private;
520
521	bio_free(bio, cc->bs);
522}
523
524/*
525 * Generate a new unfragmented bio with the given size
526 * This should never violate the device limitations
527 * May return a smaller bio when running out of pages, indicated by
528 * *out_of_pages set to 1.
529 */
530static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
531				      unsigned *out_of_pages)
532{
533	struct crypt_config *cc = io->target->private;
534	struct bio *clone;
535	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
536	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
537	unsigned i, len;
538	struct page *page;
539
540	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
541	if (!clone)
542		return NULL;
543
544	clone_init(io, clone);
545	*out_of_pages = 0;
546
547	for (i = 0; i < nr_iovecs; i++) {
548		page = mempool_alloc(cc->page_pool, gfp_mask);
549		if (!page) {
550			*out_of_pages = 1;
551			break;
552		}
553
554		/*
555		 * if additional pages cannot be allocated without waiting,
556		 * return a partially allocated bio, the caller will then try
557		 * to allocate additional bios while submitting this partial bio
558		 */
559		if (i == (MIN_BIO_PAGES - 1))
560			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
561
562		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
563
564		if (!bio_add_page(clone, page, len, 0)) {
565			mempool_free(page, cc->page_pool);
566			break;
567		}
568
569		size -= len;
570	}
571
572	if (!clone->bi_size) {
573		bio_put(clone);
574		return NULL;
575	}
576
577	return clone;
578}
579
580static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
581{
582	unsigned int i;
583	struct bio_vec *bv;
584
585	for (i = 0; i < clone->bi_vcnt; i++) {
586		bv = bio_iovec_idx(clone, i);
587		BUG_ON(!bv->bv_page);
588		mempool_free(bv->bv_page, cc->page_pool);
589		bv->bv_page = NULL;
590	}
591}
592
593static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
594					  struct bio *bio, sector_t sector)
595{
596	struct crypt_config *cc = ti->private;
597	struct dm_crypt_io *io;
598
599	io = mempool_alloc(cc->io_pool, GFP_NOIO);
600	io->target = ti;
601	io->base_bio = bio;
602	io->sector = sector;
603	io->error = 0;
604	io->base_io = NULL;
605	atomic_set(&io->pending, 0);
606
607	return io;
608}
609
610static void crypt_inc_pending(struct dm_crypt_io *io)
611{
612	atomic_inc(&io->pending);
613}
614
615/*
616 * One of the bios was finished. Check for completion of
617 * the whole request and correctly clean up the buffer.
618 * If base_io is set, wait for the last fragment to complete.
619 */
620static void crypt_dec_pending(struct dm_crypt_io *io)
621{
622	struct crypt_config *cc = io->target->private;
623	struct bio *base_bio = io->base_bio;
624	struct dm_crypt_io *base_io = io->base_io;
625	int error = io->error;
626
627	if (!atomic_dec_and_test(&io->pending))
628		return;
629
630	mempool_free(io, cc->io_pool);
631
632	if (likely(!base_io))
633		bio_endio(base_bio, error);
634	else {
635		if (error && !base_io->error)
636			base_io->error = error;
637		crypt_dec_pending(base_io);
638	}
639}
640
641/*
642 * kcryptd/kcryptd_io:
643 *
644 * Needed because it would be very unwise to do decryption in an
645 * interrupt context.
646 *
647 * kcryptd performs the actual encryption or decryption.
648 *
649 * kcryptd_io performs the IO submission.
650 *
651 * They must be separated as otherwise the final stages could be
652 * starved by new requests which can block in the first stages due
653 * to memory allocation.
654 */
655static void crypt_endio(struct bio *clone, int error)
656{
657	struct dm_crypt_io *io = clone->bi_private;
658	struct crypt_config *cc = io->target->private;
659	unsigned rw = bio_data_dir(clone);
660
661	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
662		error = -EIO;
663
664	/*
665	 * free the processed pages
666	 */
667	if (rw == WRITE)
668		crypt_free_buffer_pages(cc, clone);
669
670	bio_put(clone);
671
672	if (rw == READ && !error) {
673		kcryptd_queue_crypt(io);
674		return;
675	}
676
677	if (unlikely(error))
678		io->error = error;
679
680	crypt_dec_pending(io);
681}
682
683static void clone_init(struct dm_crypt_io *io, struct bio *clone)
684{
685	struct crypt_config *cc = io->target->private;
686
687	clone->bi_private = io;
688	clone->bi_end_io  = crypt_endio;
689	clone->bi_bdev    = cc->dev->bdev;
690	clone->bi_rw      = io->base_bio->bi_rw;
691	clone->bi_destructor = dm_crypt_bio_destructor;
692}
693
694static void kcryptd_io_read(struct dm_crypt_io *io)
695{
696	struct crypt_config *cc = io->target->private;
697	struct bio *base_bio = io->base_bio;
698	struct bio *clone;
699
700	crypt_inc_pending(io);
701
702	/*
703	 * The block layer might modify the bvec array, so always
704	 * copy the required bvecs because we need the original
705	 * one in order to decrypt the whole bio data *afterwards*.
706	 */
707	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
708	if (unlikely(!clone)) {
709		io->error = -ENOMEM;
710		crypt_dec_pending(io);
711		return;
712	}
713
714	clone_init(io, clone);
715	clone->bi_idx = 0;
716	clone->bi_vcnt = bio_segments(base_bio);
717	clone->bi_size = base_bio->bi_size;
718	clone->bi_sector = cc->start + io->sector;
719	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
720	       sizeof(struct bio_vec) * clone->bi_vcnt);
721
722	generic_make_request(clone);
723}
724
725static void kcryptd_io_write(struct dm_crypt_io *io)
726{
727	struct bio *clone = io->ctx.bio_out;
728	generic_make_request(clone);
729}
730
731static void kcryptd_io(struct work_struct *work)
732{
733	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
734
735	if (bio_data_dir(io->base_bio) == READ)
736		kcryptd_io_read(io);
737	else
738		kcryptd_io_write(io);
739}
740
741static void kcryptd_queue_io(struct dm_crypt_io *io)
742{
743	struct crypt_config *cc = io->target->private;
744
745	INIT_WORK(&io->work, kcryptd_io);
746	queue_work(cc->io_queue, &io->work);
747}
748
749static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
750					  int error, int async)
751{
752	struct bio *clone = io->ctx.bio_out;
753	struct crypt_config *cc = io->target->private;
754
755	if (unlikely(error < 0)) {
756		crypt_free_buffer_pages(cc, clone);
757		bio_put(clone);
758		io->error = -EIO;
759		crypt_dec_pending(io);
760		return;
761	}
762
763	/* crypt_convert should have filled the clone bio */
764	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
765
766	clone->bi_sector = cc->start + io->sector;
767
768	if (async)
769		kcryptd_queue_io(io);
770	else
771		generic_make_request(clone);
772}
773
774static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
775{
776	struct crypt_config *cc = io->target->private;
777	struct bio *clone;
778	struct dm_crypt_io *new_io;
779	int crypt_finished;
780	unsigned out_of_pages = 0;
781	unsigned remaining = io->base_bio->bi_size;
782	sector_t sector = io->sector;
783	int r;
784
785	/*
786	 * Prevent io from disappearing until this function completes.
787	 */
788	crypt_inc_pending(io);
789	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
790
791	/*
792	 * The allocated buffers can be smaller than the whole bio,
793	 * so repeat the whole process until all the data can be handled.
794	 */
795	while (remaining) {
796		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
797		if (unlikely(!clone)) {
798			io->error = -ENOMEM;
799			break;
800		}
801
802		io->ctx.bio_out = clone;
803		io->ctx.idx_out = 0;
804
805		remaining -= clone->bi_size;
806		sector += bio_sectors(clone);
807
808		crypt_inc_pending(io);
809		r = crypt_convert(cc, &io->ctx);
810		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
811
812		/* Encryption was already finished, submit io now */
813		if (crypt_finished) {
814			kcryptd_crypt_write_io_submit(io, r, 0);
815
816			/*
817			 * If there was an error, do not try next fragments.
818			 * For async, error is processed in async handler.
819			 */
820			if (unlikely(r < 0))
821				break;
822
823			io->sector = sector;
824		}
825
826		/*
827		 * Out of memory -> run queues
828		 * But don't wait if split was due to the io size restriction
829		 */
830		if (unlikely(out_of_pages))
831			congestion_wait(BLK_RW_ASYNC, HZ/100);
832
833		/*
834		 * With async crypto it is unsafe to share the crypto context
835		 * between fragments, so switch to a new dm_crypt_io structure.
836		 */
837		if (unlikely(!crypt_finished && remaining)) {
838			new_io = crypt_io_alloc(io->target, io->base_bio,
839						sector);
840			crypt_inc_pending(new_io);
841			crypt_convert_init(cc, &new_io->ctx, NULL,
842					   io->base_bio, sector);
843			new_io->ctx.idx_in = io->ctx.idx_in;
844			new_io->ctx.offset_in = io->ctx.offset_in;
845
846			/*
847			 * Fragments after the first use the base_io
848			 * pending count.
849			 */
850			if (!io->base_io)
851				new_io->base_io = io;
852			else {
853				new_io->base_io = io->base_io;
854				crypt_inc_pending(io->base_io);
855				crypt_dec_pending(io);
856			}
857
858			io = new_io;
859		}
860	}
861
862	crypt_dec_pending(io);
863}
864
865static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
866{
867	if (unlikely(error < 0))
868		io->error = -EIO;
869
870	crypt_dec_pending(io);
871}
872
873static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
874{
875	struct crypt_config *cc = io->target->private;
876	int r = 0;
877
878	crypt_inc_pending(io);
879
880	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
881			   io->sector);
882
883	r = crypt_convert(cc, &io->ctx);
884
885	if (atomic_dec_and_test(&io->ctx.pending))
886		kcryptd_crypt_read_done(io, r);
887
888	crypt_dec_pending(io);
889}
890
891static void kcryptd_async_done(struct crypto_async_request *async_req,
892			       int error)
893{
894	struct dm_crypt_request *dmreq = async_req->data;
895	struct convert_context *ctx = dmreq->ctx;
896	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
897	struct crypt_config *cc = io->target->private;
898
899	if (error == -EINPROGRESS) {
900		complete(&ctx->restart);
901		return;
902	}
903
904	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
905
906	if (!atomic_dec_and_test(&ctx->pending))
907		return;
908
909	if (bio_data_dir(io->base_bio) == READ)
910		kcryptd_crypt_read_done(io, error);
911	else
912		kcryptd_crypt_write_io_submit(io, error, 1);
913}
914
915static void kcryptd_crypt(struct work_struct *work)
916{
917	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
918
919	if (bio_data_dir(io->base_bio) == READ)
920		kcryptd_crypt_read_convert(io);
921	else
922		kcryptd_crypt_write_convert(io);
923}
924
925static void kcryptd_queue_crypt(struct dm_crypt_io *io)
926{
927	struct crypt_config *cc = io->target->private;
928
929	INIT_WORK(&io->work, kcryptd_crypt);
930	queue_work(cc->crypt_queue, &io->work);
931}
932
933/*
934 * Decode key from its hex representation
935 */
936static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
937{
938	char buffer[3];
939	char *endp;
940	unsigned int i;
941
942	buffer[2] = '\0';
943
944	for (i = 0; i < size; i++) {
945		buffer[0] = *hex++;
946		buffer[1] = *hex++;
947
948		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
949
950		if (endp != &buffer[2])
951			return -EINVAL;
952	}
953
954	if (*hex != '\0')
955		return -EINVAL;
956
957	return 0;
958}
959
960/*
961 * Encode key into its hex representation
962 */
963static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
964{
965	unsigned int i;
966
967	for (i = 0; i < size; i++) {
968		sprintf(hex, "%02x", *key);
969		hex += 2;
970		key++;
971	}
972}
973
974static int crypt_set_key(struct crypt_config *cc, char *key)
975{
976	unsigned key_size = strlen(key) >> 1;
977
978	if (cc->key_size && cc->key_size != key_size)
979		return -EINVAL;
980
981	cc->key_size = key_size; /* initial settings */
982
983	if ((!key_size && strcmp(key, "-")) ||
984	   (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
985		return -EINVAL;
986
987	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
988
989	return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
990}
991
992static int crypt_wipe_key(struct crypt_config *cc)
993{
994	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
995	memset(&cc->key, 0, cc->key_size * sizeof(u8));
996	return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
997}
998
999static void crypt_dtr(struct dm_target *ti)
1000{
1001	struct crypt_config *cc = ti->private;
1002
1003	ti->private = NULL;
1004
1005	if (!cc)
1006		return;
1007
1008	if (cc->io_queue)
1009		destroy_workqueue(cc->io_queue);
1010	if (cc->crypt_queue)
1011		destroy_workqueue(cc->crypt_queue);
1012
1013	if (cc->bs)
1014		bioset_free(cc->bs);
1015
1016	if (cc->page_pool)
1017		mempool_destroy(cc->page_pool);
1018	if (cc->req_pool)
1019		mempool_destroy(cc->req_pool);
1020	if (cc->io_pool)
1021		mempool_destroy(cc->io_pool);
1022
1023	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1024		cc->iv_gen_ops->dtr(cc);
1025
1026	if (cc->tfm && !IS_ERR(cc->tfm))
1027		crypto_free_ablkcipher(cc->tfm);
1028
1029	if (cc->dev)
1030		dm_put_device(ti, cc->dev);
1031
1032	kzfree(cc->cipher);
1033	kzfree(cc->cipher_mode);
1034
1035	/* Must zero key material before freeing */
1036	kzfree(cc);
1037}
1038
1039static int crypt_ctr_cipher(struct dm_target *ti,
1040			    char *cipher_in, char *key)
1041{
1042	struct crypt_config *cc = ti->private;
1043	char *tmp, *cipher, *chainmode, *ivmode, *ivopts;
1044	char *cipher_api = NULL;
1045	int ret = -EINVAL;
1046
1047	/* Convert to crypto api definition? */
1048	if (strchr(cipher_in, '(')) {
1049		ti->error = "Bad cipher specification";
1050		return -EINVAL;
1051	}
1052
1053	/*
1054	 * Legacy dm-crypt cipher specification
1055	 * cipher-mode-iv:ivopts
1056	 */
1057	tmp = cipher_in;
1058	cipher = strsep(&tmp, "-");
1059
1060	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1061	if (!cc->cipher)
1062		goto bad_mem;
1063
1064	if (tmp) {
1065		cc->cipher_mode = kstrdup(tmp, GFP_KERNEL);
1066		if (!cc->cipher_mode)
1067			goto bad_mem;
1068	}
1069
1070	chainmode = strsep(&tmp, "-");
1071	ivopts = strsep(&tmp, "-");
1072	ivmode = strsep(&ivopts, ":");
1073
1074	if (tmp)
1075		DMWARN("Ignoring unexpected additional cipher options");
1076
1077	/* Compatibility mode for old dm-crypt mappings */
1078	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1079		kfree(cc->cipher_mode);
1080		cc->cipher_mode = kstrdup("cbc-plain", GFP_KERNEL);
1081		chainmode = "cbc";
1082		ivmode = "plain";
1083	}
1084
1085	if (strcmp(chainmode, "ecb") && !ivmode) {
1086		ti->error = "IV mechanism required";
1087		return -EINVAL;
1088	}
1089
1090	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1091	if (!cipher_api)
1092		goto bad_mem;
1093
1094	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1095		       "%s(%s)", chainmode, cipher);
1096	if (ret < 0) {
1097		kfree(cipher_api);
1098		goto bad_mem;
1099	}
1100
1101	/* Allocate cipher */
1102	cc->tfm = crypto_alloc_ablkcipher(cipher_api, 0, 0);
1103	if (IS_ERR(cc->tfm)) {
1104		ret = PTR_ERR(cc->tfm);
1105		ti->error = "Error allocating crypto tfm";
1106		goto bad;
1107	}
1108
1109	/* Initialize and set key */
1110	ret = crypt_set_key(cc, key);
1111	if (ret < 0) {
1112		ti->error = "Error decoding and setting key";
1113		goto bad;
1114	}
1115
1116	/* Initialize IV */
1117	cc->iv_size = crypto_ablkcipher_ivsize(cc->tfm);
1118	if (cc->iv_size)
1119		/* at least a 64 bit sector number should fit in our buffer */
1120		cc->iv_size = max(cc->iv_size,
1121				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1122	else if (ivmode) {
1123		DMWARN("Selected cipher does not support IVs");
1124		ivmode = NULL;
1125	}
1126
1127	/* Choose ivmode, see comments at iv code. */
1128	if (ivmode == NULL)
1129		cc->iv_gen_ops = NULL;
1130	else if (strcmp(ivmode, "plain") == 0)
1131		cc->iv_gen_ops = &crypt_iv_plain_ops;
1132	else if (strcmp(ivmode, "plain64") == 0)
1133		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1134	else if (strcmp(ivmode, "essiv") == 0)
1135		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1136	else if (strcmp(ivmode, "benbi") == 0)
1137		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1138	else if (strcmp(ivmode, "null") == 0)
1139		cc->iv_gen_ops = &crypt_iv_null_ops;
1140	else {
1141		ret = -EINVAL;
1142		ti->error = "Invalid IV mode";
1143		goto bad;
1144	}
1145
1146	/* Allocate IV */
1147	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1148		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1149		if (ret < 0) {
1150			ti->error = "Error creating IV";
1151			goto bad;
1152		}
1153	}
1154
1155	/* Initialize IV (set keys for ESSIV etc) */
1156	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1157		ret = cc->iv_gen_ops->init(cc);
1158		if (ret < 0) {
1159			ti->error = "Error initialising IV";
1160			goto bad;
1161		}
1162	}
1163
1164	ret = 0;
1165bad:
1166	kfree(cipher_api);
1167	return ret;
1168
1169bad_mem:
1170	ti->error = "Cannot allocate cipher strings";
1171	return -ENOMEM;
1172}
1173
1174/*
1175 * Construct an encryption mapping:
1176 * <cipher> <key> <iv_offset> <dev_path> <start>
1177 */
1178static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1179{
1180	struct crypt_config *cc;
1181	unsigned int key_size;
1182	unsigned long long tmpll;
1183	int ret;
1184
1185	if (argc != 5) {
1186		ti->error = "Not enough arguments";
1187		return -EINVAL;
1188	}
1189
1190	key_size = strlen(argv[1]) >> 1;
1191
1192	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1193	if (!cc) {
1194		ti->error = "Cannot allocate encryption context";
1195		return -ENOMEM;
1196	}
1197
1198	ti->private = cc;
1199	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1200	if (ret < 0)
1201		goto bad;
1202
1203	ret = -ENOMEM;
1204	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1205	if (!cc->io_pool) {
1206		ti->error = "Cannot allocate crypt io mempool";
1207		goto bad;
1208	}
1209
1210	cc->dmreq_start = sizeof(struct ablkcipher_request);
1211	cc->dmreq_start += crypto_ablkcipher_reqsize(cc->tfm);
1212	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1213	cc->dmreq_start += crypto_ablkcipher_alignmask(cc->tfm) &
1214			   ~(crypto_tfm_ctx_alignment() - 1);
1215
1216	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1217			sizeof(struct dm_crypt_request) + cc->iv_size);
1218	if (!cc->req_pool) {
1219		ti->error = "Cannot allocate crypt request mempool";
1220		goto bad;
1221	}
1222	cc->req = NULL;
1223
1224	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1225	if (!cc->page_pool) {
1226		ti->error = "Cannot allocate page mempool";
1227		goto bad;
1228	}
1229
1230	cc->bs = bioset_create(MIN_IOS, 0);
1231	if (!cc->bs) {
1232		ti->error = "Cannot allocate crypt bioset";
1233		goto bad;
1234	}
1235
1236	ret = -EINVAL;
1237	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1238		ti->error = "Invalid iv_offset sector";
1239		goto bad;
1240	}
1241	cc->iv_offset = tmpll;
1242
1243	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1244		ti->error = "Device lookup failed";
1245		goto bad;
1246	}
1247
1248	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1249		ti->error = "Invalid device sector";
1250		goto bad;
1251	}
1252	cc->start = tmpll;
1253
1254	ret = -ENOMEM;
1255	cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1256	if (!cc->io_queue) {
1257		ti->error = "Couldn't create kcryptd io queue";
1258		goto bad;
1259	}
1260
1261	cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1262	if (!cc->crypt_queue) {
1263		ti->error = "Couldn't create kcryptd queue";
1264		goto bad;
1265	}
1266
1267	ti->num_flush_requests = 1;
1268	return 0;
1269
1270bad:
1271	crypt_dtr(ti);
1272	return ret;
1273}
1274
1275static int crypt_map(struct dm_target *ti, struct bio *bio,
1276		     union map_info *map_context)
1277{
1278	struct dm_crypt_io *io;
1279	struct crypt_config *cc;
1280
1281	if (unlikely(bio_empty_barrier(bio))) {
1282		cc = ti->private;
1283		bio->bi_bdev = cc->dev->bdev;
1284		return DM_MAPIO_REMAPPED;
1285	}
1286
1287	io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1288
1289	if (bio_data_dir(io->base_bio) == READ)
1290		kcryptd_queue_io(io);
1291	else
1292		kcryptd_queue_crypt(io);
1293
1294	return DM_MAPIO_SUBMITTED;
1295}
1296
1297static int crypt_status(struct dm_target *ti, status_type_t type,
1298			char *result, unsigned int maxlen)
1299{
1300	struct crypt_config *cc = ti->private;
1301	unsigned int sz = 0;
1302
1303	switch (type) {
1304	case STATUSTYPE_INFO:
1305		result[0] = '\0';
1306		break;
1307
1308	case STATUSTYPE_TABLE:
1309		if (cc->cipher_mode)
1310			DMEMIT("%s-%s ", cc->cipher, cc->cipher_mode);
1311		else
1312			DMEMIT("%s ", cc->cipher);
1313
1314		if (cc->key_size > 0) {
1315			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1316				return -ENOMEM;
1317
1318			crypt_encode_key(result + sz, cc->key, cc->key_size);
1319			sz += cc->key_size << 1;
1320		} else {
1321			if (sz >= maxlen)
1322				return -ENOMEM;
1323			result[sz++] = '-';
1324		}
1325
1326		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1327				cc->dev->name, (unsigned long long)cc->start);
1328		break;
1329	}
1330	return 0;
1331}
1332
1333static void crypt_postsuspend(struct dm_target *ti)
1334{
1335	struct crypt_config *cc = ti->private;
1336
1337	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1338}
1339
1340static int crypt_preresume(struct dm_target *ti)
1341{
1342	struct crypt_config *cc = ti->private;
1343
1344	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1345		DMERR("aborting resume - crypt key is not set.");
1346		return -EAGAIN;
1347	}
1348
1349	return 0;
1350}
1351
1352static void crypt_resume(struct dm_target *ti)
1353{
1354	struct crypt_config *cc = ti->private;
1355
1356	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1357}
1358
1359/* Message interface
1360 *	key set <key>
1361 *	key wipe
1362 */
1363static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1364{
1365	struct crypt_config *cc = ti->private;
1366	int ret = -EINVAL;
1367
1368	if (argc < 2)
1369		goto error;
1370
1371	if (!strnicmp(argv[0], MESG_STR("key"))) {
1372		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1373			DMWARN("not suspended during key manipulation.");
1374			return -EINVAL;
1375		}
1376		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) {
1377			ret = crypt_set_key(cc, argv[2]);
1378			if (ret)
1379				return ret;
1380			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1381				ret = cc->iv_gen_ops->init(cc);
1382			return ret;
1383		}
1384		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) {
1385			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1386				ret = cc->iv_gen_ops->wipe(cc);
1387				if (ret)
1388					return ret;
1389			}
1390			return crypt_wipe_key(cc);
1391		}
1392	}
1393
1394error:
1395	DMWARN("unrecognised message received.");
1396	return -EINVAL;
1397}
1398
1399static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1400		       struct bio_vec *biovec, int max_size)
1401{
1402	struct crypt_config *cc = ti->private;
1403	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1404
1405	if (!q->merge_bvec_fn)
1406		return max_size;
1407
1408	bvm->bi_bdev = cc->dev->bdev;
1409	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1410
1411	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1412}
1413
1414static int crypt_iterate_devices(struct dm_target *ti,
1415				 iterate_devices_callout_fn fn, void *data)
1416{
1417	struct crypt_config *cc = ti->private;
1418
1419	return fn(ti, cc->dev, cc->start, ti->len, data);
1420}
1421
1422static struct target_type crypt_target = {
1423	.name   = "crypt",
1424	.version = {1, 7, 0},
1425	.module = THIS_MODULE,
1426	.ctr    = crypt_ctr,
1427	.dtr    = crypt_dtr,
1428	.map    = crypt_map,
1429	.status = crypt_status,
1430	.postsuspend = crypt_postsuspend,
1431	.preresume = crypt_preresume,
1432	.resume = crypt_resume,
1433	.message = crypt_message,
1434	.merge  = crypt_merge,
1435	.iterate_devices = crypt_iterate_devices,
1436};
1437
1438static int __init dm_crypt_init(void)
1439{
1440	int r;
1441
1442	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1443	if (!_crypt_io_pool)
1444		return -ENOMEM;
1445
1446	r = dm_register_target(&crypt_target);
1447	if (r < 0) {
1448		DMERR("register failed %d", r);
1449		kmem_cache_destroy(_crypt_io_pool);
1450	}
1451
1452	return r;
1453}
1454
1455static void __exit dm_crypt_exit(void)
1456{
1457	dm_unregister_target(&crypt_target);
1458	kmem_cache_destroy(_crypt_io_pool);
1459}
1460
1461module_init(dm_crypt_init);
1462module_exit(dm_crypt_exit);
1463
1464MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1465MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1466MODULE_LICENSE("GPL");
1467