• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/input/keyboard/
1/*
2 * drivers/i2c/chips/lm8323.c
3 *
4 * Copyright (C) 2007-2009 Nokia Corporation
5 *
6 * Written by Daniel Stone <daniel.stone@nokia.com>
7 *            Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
8 *
9 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation (version 2 of the License only).
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25#include <linux/module.h>
26#include <linux/i2c.h>
27#include <linux/interrupt.h>
28#include <linux/sched.h>
29#include <linux/mutex.h>
30#include <linux/delay.h>
31#include <linux/input.h>
32#include <linux/leds.h>
33#include <linux/i2c/lm8323.h>
34#include <linux/slab.h>
35
36/* Commands to send to the chip. */
37#define LM8323_CMD_READ_ID		0x80 /* Read chip ID. */
38#define LM8323_CMD_WRITE_CFG		0x81 /* Set configuration item. */
39#define LM8323_CMD_READ_INT		0x82 /* Get interrupt status. */
40#define LM8323_CMD_RESET		0x83 /* Reset, same as external one */
41#define LM8323_CMD_WRITE_PORT_SEL	0x85 /* Set GPIO in/out. */
42#define LM8323_CMD_WRITE_PORT_STATE	0x86 /* Set GPIO pullup. */
43#define LM8323_CMD_READ_PORT_SEL	0x87 /* Get GPIO in/out. */
44#define LM8323_CMD_READ_PORT_STATE	0x88 /* Get GPIO pullup. */
45#define LM8323_CMD_READ_FIFO		0x89 /* Read byte from FIFO. */
46#define LM8323_CMD_RPT_READ_FIFO	0x8a /* Read FIFO (no increment). */
47#define LM8323_CMD_SET_ACTIVE		0x8b /* Set active time. */
48#define LM8323_CMD_READ_ERR		0x8c /* Get error status. */
49#define LM8323_CMD_READ_ROTATOR		0x8e /* Read rotator status. */
50#define LM8323_CMD_SET_DEBOUNCE		0x8f /* Set debouncing time. */
51#define LM8323_CMD_SET_KEY_SIZE		0x90 /* Set keypad size. */
52#define LM8323_CMD_READ_KEY_SIZE	0x91 /* Get keypad size. */
53#define LM8323_CMD_READ_CFG		0x92 /* Get configuration item. */
54#define LM8323_CMD_WRITE_CLOCK		0x93 /* Set clock config. */
55#define LM8323_CMD_READ_CLOCK		0x94 /* Get clock config. */
56#define LM8323_CMD_PWM_WRITE		0x95 /* Write PWM script. */
57#define LM8323_CMD_START_PWM		0x96 /* Start PWM engine. */
58#define LM8323_CMD_STOP_PWM		0x97 /* Stop PWM engine. */
59
60/* Interrupt status. */
61#define INT_KEYPAD			0x01 /* Key event. */
62#define INT_ROTATOR			0x02 /* Rotator event. */
63#define INT_ERROR			0x08 /* Error: use CMD_READ_ERR. */
64#define INT_NOINIT			0x10 /* Lost configuration. */
65#define INT_PWM1			0x20 /* PWM1 stopped. */
66#define INT_PWM2			0x40 /* PWM2 stopped. */
67#define INT_PWM3			0x80 /* PWM3 stopped. */
68
69/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
70#define ERR_BADPAR			0x01 /* Bad parameter. */
71#define ERR_CMDUNK			0x02 /* Unknown command. */
72#define ERR_KEYOVR			0x04 /* Too many keys pressed. */
73#define ERR_FIFOOVER			0x40 /* FIFO overflow. */
74
75/* Configuration keys (CMD_{WRITE,READ}_CFG). */
76#define CFG_MUX1SEL			0x01 /* Select MUX1_OUT input. */
77#define CFG_MUX1EN			0x02 /* Enable MUX1_OUT. */
78#define CFG_MUX2SEL			0x04 /* Select MUX2_OUT input. */
79#define CFG_MUX2EN			0x08 /* Enable MUX2_OUT. */
80#define CFG_PSIZE			0x20 /* Package size (must be 0). */
81#define CFG_ROTEN			0x40 /* Enable rotator. */
82
83/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
84#define CLK_RCPWM_INTERNAL		0x00
85#define CLK_RCPWM_EXTERNAL		0x03
86#define CLK_SLOWCLKEN			0x08 /* Enable 32.768kHz clock. */
87#define CLK_SLOWCLKOUT			0x40 /* Enable slow pulse output. */
88
89/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
90#define LM8323_I2C_ADDR00		(0x84 >> 1)	/* 1000 010x */
91#define LM8323_I2C_ADDR01		(0x86 >> 1)	/* 1000 011x */
92#define LM8323_I2C_ADDR10		(0x88 >> 1)	/* 1000 100x */
93#define LM8323_I2C_ADDR11		(0x8A >> 1)	/* 1000 101x */
94
95/* Key event fifo length */
96#define LM8323_FIFO_LEN			15
97
98/* Commands for PWM engine; feed in with PWM_WRITE. */
99/* Load ramp counter from duty cycle field (range 0 - 0xff). */
100#define PWM_SET(v)			(0x4000 | ((v) & 0xff))
101/* Go to start of script. */
102#define PWM_GOTOSTART			0x0000
103/*
104 * Stop engine (generates interrupt).  If reset is 1, clear the program
105 * counter, else leave it.
106 */
107#define PWM_END(reset)			(0xc000 | (!!(reset) << 11))
108/*
109 * Ramp.  If s is 1, divide clock by 512, else divide clock by 16.
110 * Take t clock scales (up to 63) per step, for n steps (up to 126).
111 * If u is set, ramp up, else ramp down.
112 */
113#define PWM_RAMP(s, t, n, u)		((!!(s) << 14) | ((t) & 0x3f) << 8 | \
114					 ((n) & 0x7f) | ((u) ? 0 : 0x80))
115/*
116 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
117 * If cnt is zero, execute until PWM_END is encountered.
118 */
119#define PWM_LOOP(cnt, pos)		(0xa000 | (((cnt) & 0x3f) << 7) | \
120					 ((pos) & 0x3f))
121/*
122 * Wait for trigger.  Argument is a mask of channels, shifted by the channel
123 * number, e.g. 0xa for channels 3 and 1.  Note that channels are numbered
124 * from 1, not 0.
125 */
126#define PWM_WAIT_TRIG(chans)		(0xe000 | (((chans) & 0x7) << 6))
127/* Send trigger.  Argument is same as PWM_WAIT_TRIG. */
128#define PWM_SEND_TRIG(chans)		(0xe000 | ((chans) & 0x7))
129
130struct lm8323_pwm {
131	int			id;
132	int			fade_time;
133	int			brightness;
134	int			desired_brightness;
135	bool			enabled;
136	bool			running;
137	/* pwm lock */
138	struct mutex		lock;
139	struct work_struct	work;
140	struct led_classdev	cdev;
141	struct lm8323_chip	*chip;
142};
143
144struct lm8323_chip {
145	/* device lock */
146	struct mutex		lock;
147	struct i2c_client	*client;
148	struct work_struct	work;
149	struct input_dev	*idev;
150	bool			kp_enabled;
151	bool			pm_suspend;
152	unsigned		keys_down;
153	char			phys[32];
154	unsigned short		keymap[LM8323_KEYMAP_SIZE];
155	int			size_x;
156	int			size_y;
157	int			debounce_time;
158	int			active_time;
159	struct lm8323_pwm	pwm[LM8323_NUM_PWMS];
160};
161
162#define client_to_lm8323(c)	container_of(c, struct lm8323_chip, client)
163#define dev_to_lm8323(d)	container_of(d, struct lm8323_chip, client->dev)
164#define work_to_lm8323(w)	container_of(w, struct lm8323_chip, work)
165#define cdev_to_pwm(c)		container_of(c, struct lm8323_pwm, cdev)
166#define work_to_pwm(w)		container_of(w, struct lm8323_pwm, work)
167
168#define LM8323_MAX_DATA 8
169
170/*
171 * To write, we just access the chip's address in write mode, and dump the
172 * command and data out on the bus.  The command byte and data are taken as
173 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
174 */
175static int lm8323_write(struct lm8323_chip *lm, int len, ...)
176{
177	int ret, i;
178	va_list ap;
179	u8 data[LM8323_MAX_DATA];
180
181	va_start(ap, len);
182
183	if (unlikely(len > LM8323_MAX_DATA)) {
184		dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
185		va_end(ap);
186		return 0;
187	}
188
189	for (i = 0; i < len; i++)
190		data[i] = va_arg(ap, int);
191
192	va_end(ap);
193
194	/*
195	 * If the host is asleep while we send the data, we can get a NACK
196	 * back while it wakes up, so try again, once.
197	 */
198	ret = i2c_master_send(lm->client, data, len);
199	if (unlikely(ret == -EREMOTEIO))
200		ret = i2c_master_send(lm->client, data, len);
201	if (unlikely(ret != len))
202		dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
203			len, ret);
204
205	return ret;
206}
207
208/*
209 * To read, we first send the command byte to the chip and end the transaction,
210 * then access the chip in read mode, at which point it will send the data.
211 */
212static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
213{
214	int ret;
215
216	/*
217	 * If the host is asleep while we send the byte, we can get a NACK
218	 * back while it wakes up, so try again, once.
219	 */
220	ret = i2c_master_send(lm->client, &cmd, 1);
221	if (unlikely(ret == -EREMOTEIO))
222		ret = i2c_master_send(lm->client, &cmd, 1);
223	if (unlikely(ret != 1)) {
224		dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
225			cmd);
226		return 0;
227	}
228
229	ret = i2c_master_recv(lm->client, buf, len);
230	if (unlikely(ret != len))
231		dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
232			len, ret);
233
234	return ret;
235}
236
237/*
238 * Set the chip active time (idle time before it enters halt).
239 */
240static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
241{
242	lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
243}
244
245/*
246 * The signals are AT-style: the low 7 bits are the keycode, and the top
247 * bit indicates the state (1 for down, 0 for up).
248 */
249static inline u8 lm8323_whichkey(u8 event)
250{
251	return event & 0x7f;
252}
253
254static inline int lm8323_ispress(u8 event)
255{
256	return (event & 0x80) ? 1 : 0;
257}
258
259static void process_keys(struct lm8323_chip *lm)
260{
261	u8 event;
262	u8 key_fifo[LM8323_FIFO_LEN + 1];
263	int old_keys_down = lm->keys_down;
264	int ret;
265	int i = 0;
266
267	/*
268	 * Read all key events from the FIFO at once. Next READ_FIFO clears the
269	 * FIFO even if we didn't read all events previously.
270	 */
271	ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
272
273	if (ret < 0) {
274		dev_err(&lm->client->dev, "Failed reading fifo \n");
275		return;
276	}
277	key_fifo[ret] = 0;
278
279	while ((event = key_fifo[i++])) {
280		u8 key = lm8323_whichkey(event);
281		int isdown = lm8323_ispress(event);
282		unsigned short keycode = lm->keymap[key];
283
284		dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
285			 key, isdown ? "down" : "up");
286
287		if (lm->kp_enabled) {
288			input_event(lm->idev, EV_MSC, MSC_SCAN, key);
289			input_report_key(lm->idev, keycode, isdown);
290			input_sync(lm->idev);
291		}
292
293		if (isdown)
294			lm->keys_down++;
295		else
296			lm->keys_down--;
297	}
298
299	/*
300	 * Errata: We need to ensure that the chip never enters halt mode
301	 * during a keypress, so set active time to 0.  When it's released,
302	 * we can enter halt again, so set the active time back to normal.
303	 */
304	if (!old_keys_down && lm->keys_down)
305		lm8323_set_active_time(lm, 0);
306	if (old_keys_down && !lm->keys_down)
307		lm8323_set_active_time(lm, lm->active_time);
308}
309
310static void lm8323_process_error(struct lm8323_chip *lm)
311{
312	u8 error;
313
314	if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
315		if (error & ERR_FIFOOVER)
316			dev_vdbg(&lm->client->dev, "fifo overflow!\n");
317		if (error & ERR_KEYOVR)
318			dev_vdbg(&lm->client->dev,
319					"more than two keys pressed\n");
320		if (error & ERR_CMDUNK)
321			dev_vdbg(&lm->client->dev,
322					"unknown command submitted\n");
323		if (error & ERR_BADPAR)
324			dev_vdbg(&lm->client->dev, "bad command parameter\n");
325	}
326}
327
328static void lm8323_reset(struct lm8323_chip *lm)
329{
330	/* The docs say we must pass 0xAA as the data byte. */
331	lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
332}
333
334static int lm8323_configure(struct lm8323_chip *lm)
335{
336	int keysize = (lm->size_x << 4) | lm->size_y;
337	int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
338	int debounce = lm->debounce_time >> 2;
339	int active = lm->active_time >> 2;
340
341	/*
342	 * Active time must be greater than the debounce time: if it's
343	 * a close-run thing, give ourselves a 12ms buffer.
344	 */
345	if (debounce >= active)
346		active = debounce + 3;
347
348	lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
349	lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
350	lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
351	lm8323_set_active_time(lm, lm->active_time);
352	lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
353	lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
354	lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
355
356	/*
357	 * Not much we can do about errors at this point, so just hope
358	 * for the best.
359	 */
360
361	return 0;
362}
363
364static void pwm_done(struct lm8323_pwm *pwm)
365{
366	mutex_lock(&pwm->lock);
367	pwm->running = false;
368	if (pwm->desired_brightness != pwm->brightness)
369		schedule_work(&pwm->work);
370	mutex_unlock(&pwm->lock);
371}
372
373/*
374 * Bottom half: handle the interrupt by posting key events, or dealing with
375 * errors appropriately.
376 */
377static void lm8323_work(struct work_struct *work)
378{
379	struct lm8323_chip *lm = work_to_lm8323(work);
380	u8 ints;
381	int i;
382
383	mutex_lock(&lm->lock);
384
385	while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
386		if (likely(ints & INT_KEYPAD))
387			process_keys(lm);
388		if (ints & INT_ROTATOR) {
389			/* We don't currently support the rotator. */
390			dev_vdbg(&lm->client->dev, "rotator fired\n");
391		}
392		if (ints & INT_ERROR) {
393			dev_vdbg(&lm->client->dev, "error!\n");
394			lm8323_process_error(lm);
395		}
396		if (ints & INT_NOINIT) {
397			dev_err(&lm->client->dev, "chip lost config; "
398						  "reinitialising\n");
399			lm8323_configure(lm);
400		}
401		for (i = 0; i < LM8323_NUM_PWMS; i++) {
402			if (ints & (1 << (INT_PWM1 + i))) {
403				dev_vdbg(&lm->client->dev,
404					 "pwm%d engine completed\n", i);
405				pwm_done(&lm->pwm[i]);
406			}
407		}
408	}
409
410	mutex_unlock(&lm->lock);
411}
412
413/*
414 * We cannot use I2C in interrupt context, so we just schedule work.
415 */
416static irqreturn_t lm8323_irq(int irq, void *data)
417{
418	struct lm8323_chip *lm = data;
419
420	schedule_work(&lm->work);
421
422	return IRQ_HANDLED;
423}
424
425/*
426 * Read the chip ID.
427 */
428static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
429{
430	int bytes;
431
432	bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
433	if (unlikely(bytes != 2))
434		return -EIO;
435
436	return 0;
437}
438
439static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
440{
441	lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
442		     (cmd & 0xff00) >> 8, cmd & 0x00ff);
443}
444
445/*
446 * Write a script into a given PWM engine, concluding with PWM_END.
447 * If 'kill' is nonzero, the engine will be shut down at the end
448 * of the script, producing a zero output. Otherwise the engine
449 * will be kept running at the final PWM level indefinitely.
450 */
451static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
452			     int len, const u16 *cmds)
453{
454	int i;
455
456	for (i = 0; i < len; i++)
457		lm8323_write_pwm_one(pwm, i, cmds[i]);
458
459	lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
460	lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
461	pwm->running = true;
462}
463
464static void lm8323_pwm_work(struct work_struct *work)
465{
466	struct lm8323_pwm *pwm = work_to_pwm(work);
467	int div512, perstep, steps, hz, up, kill;
468	u16 pwm_cmds[3];
469	int num_cmds = 0;
470
471	mutex_lock(&pwm->lock);
472
473	/*
474	 * Do nothing if we're already at the requested level,
475	 * or previous setting is not yet complete. In the latter
476	 * case we will be called again when the previous PWM script
477	 * finishes.
478	 */
479	if (pwm->running || pwm->desired_brightness == pwm->brightness)
480		goto out;
481
482	kill = (pwm->desired_brightness == 0);
483	up = (pwm->desired_brightness > pwm->brightness);
484	steps = abs(pwm->desired_brightness - pwm->brightness);
485
486	/*
487	 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
488	 * 32768Hz), and number of ticks per step.
489	 */
490	if ((pwm->fade_time / steps) > (32768 / 512)) {
491		div512 = 1;
492		hz = 32768 / 512;
493	} else {
494		div512 = 0;
495		hz = 32768 / 16;
496	}
497
498	perstep = (hz * pwm->fade_time) / (steps * 1000);
499
500	if (perstep == 0)
501		perstep = 1;
502	else if (perstep > 63)
503		perstep = 63;
504
505	while (steps) {
506		int s;
507
508		s = min(126, steps);
509		pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
510		steps -= s;
511	}
512
513	lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
514	pwm->brightness = pwm->desired_brightness;
515
516 out:
517	mutex_unlock(&pwm->lock);
518}
519
520static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
521				      enum led_brightness brightness)
522{
523	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
524	struct lm8323_chip *lm = pwm->chip;
525
526	mutex_lock(&pwm->lock);
527	pwm->desired_brightness = brightness;
528	mutex_unlock(&pwm->lock);
529
530	if (in_interrupt()) {
531		schedule_work(&pwm->work);
532	} else {
533		/*
534		 * Schedule PWM work as usual unless we are going into suspend
535		 */
536		mutex_lock(&lm->lock);
537		if (likely(!lm->pm_suspend))
538			schedule_work(&pwm->work);
539		else
540			lm8323_pwm_work(&pwm->work);
541		mutex_unlock(&lm->lock);
542	}
543}
544
545static ssize_t lm8323_pwm_show_time(struct device *dev,
546		struct device_attribute *attr, char *buf)
547{
548	struct led_classdev *led_cdev = dev_get_drvdata(dev);
549	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
550
551	return sprintf(buf, "%d\n", pwm->fade_time);
552}
553
554static ssize_t lm8323_pwm_store_time(struct device *dev,
555		struct device_attribute *attr, const char *buf, size_t len)
556{
557	struct led_classdev *led_cdev = dev_get_drvdata(dev);
558	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
559	int ret;
560	unsigned long time;
561
562	ret = strict_strtoul(buf, 10, &time);
563	/* Numbers only, please. */
564	if (ret)
565		return -EINVAL;
566
567	pwm->fade_time = time;
568
569	return strlen(buf);
570}
571static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
572
573static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
574		    const char *name)
575{
576	struct lm8323_pwm *pwm;
577
578	BUG_ON(id > 3);
579
580	pwm = &lm->pwm[id - 1];
581
582	pwm->id = id;
583	pwm->fade_time = 0;
584	pwm->brightness = 0;
585	pwm->desired_brightness = 0;
586	pwm->running = false;
587	pwm->enabled = false;
588	INIT_WORK(&pwm->work, lm8323_pwm_work);
589	mutex_init(&pwm->lock);
590	pwm->chip = lm;
591
592	if (name) {
593		pwm->cdev.name = name;
594		pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
595		if (led_classdev_register(dev, &pwm->cdev) < 0) {
596			dev_err(dev, "couldn't register PWM %d\n", id);
597			return -1;
598		}
599		if (device_create_file(pwm->cdev.dev,
600					&dev_attr_time) < 0) {
601			dev_err(dev, "couldn't register time attribute\n");
602			led_classdev_unregister(&pwm->cdev);
603			return -1;
604		}
605		pwm->enabled = true;
606	}
607
608	return 0;
609}
610
611static struct i2c_driver lm8323_i2c_driver;
612
613static ssize_t lm8323_show_disable(struct device *dev,
614				   struct device_attribute *attr, char *buf)
615{
616	struct lm8323_chip *lm = dev_get_drvdata(dev);
617
618	return sprintf(buf, "%u\n", !lm->kp_enabled);
619}
620
621static ssize_t lm8323_set_disable(struct device *dev,
622				  struct device_attribute *attr,
623				  const char *buf, size_t count)
624{
625	struct lm8323_chip *lm = dev_get_drvdata(dev);
626	int ret;
627	unsigned long i;
628
629	ret = strict_strtoul(buf, 10, &i);
630
631	mutex_lock(&lm->lock);
632	lm->kp_enabled = !i;
633	mutex_unlock(&lm->lock);
634
635	return count;
636}
637static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
638
639static int __devinit lm8323_probe(struct i2c_client *client,
640				  const struct i2c_device_id *id)
641{
642	struct lm8323_platform_data *pdata = client->dev.platform_data;
643	struct input_dev *idev;
644	struct lm8323_chip *lm;
645	int pwm;
646	int i, err;
647	unsigned long tmo;
648	u8 data[2];
649
650	if (!pdata || !pdata->size_x || !pdata->size_y) {
651		dev_err(&client->dev, "missing platform_data\n");
652		return -EINVAL;
653	}
654
655	if (pdata->size_x > 8) {
656		dev_err(&client->dev, "invalid x size %d specified\n",
657			pdata->size_x);
658		return -EINVAL;
659	}
660
661	if (pdata->size_y > 12) {
662		dev_err(&client->dev, "invalid y size %d specified\n",
663			pdata->size_y);
664		return -EINVAL;
665	}
666
667	lm = kzalloc(sizeof *lm, GFP_KERNEL);
668	idev = input_allocate_device();
669	if (!lm || !idev) {
670		err = -ENOMEM;
671		goto fail1;
672	}
673
674	lm->client = client;
675	lm->idev = idev;
676	mutex_init(&lm->lock);
677	INIT_WORK(&lm->work, lm8323_work);
678
679	lm->size_x = pdata->size_x;
680	lm->size_y = pdata->size_y;
681	dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
682		 lm->size_x, lm->size_y);
683
684	lm->debounce_time = pdata->debounce_time;
685	lm->active_time = pdata->active_time;
686
687	lm8323_reset(lm);
688
689	/* Nothing's set up to service the IRQ yet, so just spin for max.
690	 * 100ms until we can configure. */
691	tmo = jiffies + msecs_to_jiffies(100);
692	while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
693		if (data[0] & INT_NOINIT)
694			break;
695
696		if (time_after(jiffies, tmo)) {
697			dev_err(&client->dev,
698				"timeout waiting for initialisation\n");
699			break;
700		}
701
702		msleep(1);
703	}
704
705	lm8323_configure(lm);
706
707	/* If a true probe check the device */
708	if (lm8323_read_id(lm, data) != 0) {
709		dev_err(&client->dev, "device not found\n");
710		err = -ENODEV;
711		goto fail1;
712	}
713
714	for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
715		err = init_pwm(lm, pwm + 1, &client->dev,
716			       pdata->pwm_names[pwm]);
717		if (err < 0)
718			goto fail2;
719	}
720
721	lm->kp_enabled = true;
722	err = device_create_file(&client->dev, &dev_attr_disable_kp);
723	if (err < 0)
724		goto fail2;
725
726	idev->name = pdata->name ? : "LM8323 keypad";
727	snprintf(lm->phys, sizeof(lm->phys),
728		 "%s/input-kp", dev_name(&client->dev));
729	idev->phys = lm->phys;
730
731	idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
732	__set_bit(MSC_SCAN, idev->mscbit);
733	for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
734		__set_bit(pdata->keymap[i], idev->keybit);
735		lm->keymap[i] = pdata->keymap[i];
736	}
737	__clear_bit(KEY_RESERVED, idev->keybit);
738
739	if (pdata->repeat)
740		__set_bit(EV_REP, idev->evbit);
741
742	err = input_register_device(idev);
743	if (err) {
744		dev_dbg(&client->dev, "error registering input device\n");
745		goto fail3;
746	}
747
748	err = request_irq(client->irq, lm8323_irq,
749			  IRQF_TRIGGER_FALLING | IRQF_DISABLED,
750			  "lm8323", lm);
751	if (err) {
752		dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
753		goto fail4;
754	}
755
756	i2c_set_clientdata(client, lm);
757
758	device_init_wakeup(&client->dev, 1);
759	enable_irq_wake(client->irq);
760
761	return 0;
762
763fail4:
764	input_unregister_device(idev);
765	idev = NULL;
766fail3:
767	device_remove_file(&client->dev, &dev_attr_disable_kp);
768fail2:
769	while (--pwm >= 0)
770		if (lm->pwm[pwm].enabled)
771			led_classdev_unregister(&lm->pwm[pwm].cdev);
772fail1:
773	input_free_device(idev);
774	kfree(lm);
775	return err;
776}
777
778static int __devexit lm8323_remove(struct i2c_client *client)
779{
780	struct lm8323_chip *lm = i2c_get_clientdata(client);
781	int i;
782
783	disable_irq_wake(client->irq);
784	free_irq(client->irq, lm);
785	cancel_work_sync(&lm->work);
786
787	input_unregister_device(lm->idev);
788
789	device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
790
791	for (i = 0; i < 3; i++)
792		if (lm->pwm[i].enabled)
793			led_classdev_unregister(&lm->pwm[i].cdev);
794
795	kfree(lm);
796
797	return 0;
798}
799
800#ifdef CONFIG_PM
801/*
802 * We don't need to explicitly suspend the chip, as it already switches off
803 * when there's no activity.
804 */
805static int lm8323_suspend(struct i2c_client *client, pm_message_t mesg)
806{
807	struct lm8323_chip *lm = i2c_get_clientdata(client);
808	int i;
809
810	set_irq_wake(client->irq, 0);
811	disable_irq(client->irq);
812
813	mutex_lock(&lm->lock);
814	lm->pm_suspend = true;
815	mutex_unlock(&lm->lock);
816
817	for (i = 0; i < 3; i++)
818		if (lm->pwm[i].enabled)
819			led_classdev_suspend(&lm->pwm[i].cdev);
820
821	return 0;
822}
823
824static int lm8323_resume(struct i2c_client *client)
825{
826	struct lm8323_chip *lm = i2c_get_clientdata(client);
827	int i;
828
829	mutex_lock(&lm->lock);
830	lm->pm_suspend = false;
831	mutex_unlock(&lm->lock);
832
833	for (i = 0; i < 3; i++)
834		if (lm->pwm[i].enabled)
835			led_classdev_resume(&lm->pwm[i].cdev);
836
837	enable_irq(client->irq);
838	set_irq_wake(client->irq, 1);
839
840	return 0;
841}
842#else
843#define lm8323_suspend	NULL
844#define lm8323_resume	NULL
845#endif
846
847static const struct i2c_device_id lm8323_id[] = {
848	{ "lm8323", 0 },
849	{ }
850};
851
852static struct i2c_driver lm8323_i2c_driver = {
853	.driver = {
854		.name	= "lm8323",
855	},
856	.probe		= lm8323_probe,
857	.remove		= __devexit_p(lm8323_remove),
858	.suspend	= lm8323_suspend,
859	.resume		= lm8323_resume,
860	.id_table	= lm8323_id,
861};
862MODULE_DEVICE_TABLE(i2c, lm8323_id);
863
864static int __init lm8323_init(void)
865{
866	return i2c_add_driver(&lm8323_i2c_driver);
867}
868module_init(lm8323_init);
869
870static void __exit lm8323_exit(void)
871{
872	i2c_del_driver(&lm8323_i2c_driver);
873}
874module_exit(lm8323_exit);
875
876MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
877MODULE_AUTHOR("Daniel Stone");
878MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
879MODULE_DESCRIPTION("LM8323 keypad driver");
880MODULE_LICENSE("GPL");
881