• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/i2c/busses/
1/*
2 * Specific bus support for PMC-TWI compliant implementation on MSP71xx.
3 *
4 * Copyright 2005-2007 PMC-Sierra, Inc.
5 *
6 *  This program is free software; you can redistribute  it and/or modify it
7 *  under  the terms of  the GNU General  Public License as published by the
8 *  Free Software Foundation;  either version 2 of the  License, or (at your
9 *  option) any later version.
10 *
11 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
12 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
13 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
14 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
15 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
16 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
17 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
18 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
19 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
20 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
21 *
22 *  You should have received a copy of the  GNU General Public License along
23 *  with this program; if not, write  to the Free Software Foundation, Inc.,
24 *  675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/init.h>
30#include <linux/platform_device.h>
31#include <linux/i2c.h>
32#include <linux/interrupt.h>
33#include <linux/completion.h>
34#include <linux/mutex.h>
35#include <linux/delay.h>
36#include <linux/io.h>
37
38#define DRV_NAME	"pmcmsptwi"
39
40#define MSP_TWI_SF_CLK_REG_OFFSET	0x00
41#define MSP_TWI_HS_CLK_REG_OFFSET	0x04
42#define MSP_TWI_CFG_REG_OFFSET		0x08
43#define MSP_TWI_CMD_REG_OFFSET		0x0c
44#define MSP_TWI_ADD_REG_OFFSET		0x10
45#define MSP_TWI_DAT_0_REG_OFFSET	0x14
46#define MSP_TWI_DAT_1_REG_OFFSET	0x18
47#define MSP_TWI_INT_STS_REG_OFFSET	0x1c
48#define MSP_TWI_INT_MSK_REG_OFFSET	0x20
49#define MSP_TWI_BUSY_REG_OFFSET		0x24
50
51#define MSP_TWI_INT_STS_DONE			(1 << 0)
52#define MSP_TWI_INT_STS_LOST_ARBITRATION	(1 << 1)
53#define MSP_TWI_INT_STS_NO_RESPONSE		(1 << 2)
54#define MSP_TWI_INT_STS_DATA_COLLISION		(1 << 3)
55#define MSP_TWI_INT_STS_BUSY			(1 << 4)
56#define MSP_TWI_INT_STS_ALL			0x1f
57
58#define MSP_MAX_BYTES_PER_RW		8
59#define MSP_MAX_POLL			5
60#define MSP_POLL_DELAY			10
61#define MSP_IRQ_TIMEOUT			(MSP_MAX_POLL * MSP_POLL_DELAY)
62
63/* IO Operation macros */
64#define pmcmsptwi_readl		__raw_readl
65#define pmcmsptwi_writel	__raw_writel
66
67/* TWI command type */
68enum pmcmsptwi_cmd_type {
69	MSP_TWI_CMD_WRITE	= 0,	/* Write only */
70	MSP_TWI_CMD_READ	= 1,	/* Read only */
71	MSP_TWI_CMD_WRITE_READ	= 2,	/* Write then Read */
72};
73
74/* The possible results of the xferCmd */
75enum pmcmsptwi_xfer_result {
76	MSP_TWI_XFER_OK	= 0,
77	MSP_TWI_XFER_TIMEOUT,
78	MSP_TWI_XFER_BUSY,
79	MSP_TWI_XFER_DATA_COLLISION,
80	MSP_TWI_XFER_NO_RESPONSE,
81	MSP_TWI_XFER_LOST_ARBITRATION,
82};
83
84/* Corresponds to a PMCTWI clock configuration register */
85struct pmcmsptwi_clock {
86	u8 filter;	/* Bits 15:12,	default = 0x03 */
87	u16 clock;	/* Bits 9:0,	default = 0x001f */
88};
89
90struct pmcmsptwi_clockcfg {
91	struct pmcmsptwi_clock standard;  /* The standard/fast clock config */
92	struct pmcmsptwi_clock highspeed; /* The highspeed clock config */
93};
94
95/* Corresponds to the main TWI configuration register */
96struct pmcmsptwi_cfg {
97	u8 arbf;	/* Bits 15:12,	default=0x03 */
98	u8 nak;		/* Bits 11:8,	default=0x03 */
99	u8 add10;	/* Bit 7,	default=0x00 */
100	u8 mst_code;	/* Bits 6:4,	default=0x00 */
101	u8 arb;		/* Bit 1,	default=0x01 */
102	u8 highspeed;	/* Bit 0,	default=0x00 */
103};
104
105/* A single pmctwi command to issue */
106struct pmcmsptwi_cmd {
107	u16 addr;	/* The slave address (7 or 10 bits) */
108	enum pmcmsptwi_cmd_type type;	/* The command type */
109	u8 write_len;	/* Number of bytes in the write buffer */
110	u8 read_len;	/* Number of bytes in the read buffer */
111	u8 *write_data;	/* Buffer of characters to send */
112	u8 *read_data;	/* Buffer to fill with incoming data */
113};
114
115/* The private data */
116struct pmcmsptwi_data {
117	void __iomem *iobase;			/* iomapped base for IO */
118	int irq;				/* IRQ to use (0 disables) */
119	struct completion wait;			/* Completion for xfer */
120	struct mutex lock;			/* Used for threadsafeness */
121	enum pmcmsptwi_xfer_result last_result;	/* result of last xfer */
122};
123
124/* The default settings */
125static const struct pmcmsptwi_clockcfg pmcmsptwi_defclockcfg = {
126	.standard = {
127		.filter	= 0x3,
128		.clock	= 0x1f,
129	},
130	.highspeed = {
131		.filter	= 0x3,
132		.clock	= 0x1f,
133	},
134};
135
136static const struct pmcmsptwi_cfg pmcmsptwi_defcfg = {
137	.arbf		= 0x03,
138	.nak		= 0x03,
139	.add10		= 0x00,
140	.mst_code	= 0x00,
141	.arb		= 0x01,
142	.highspeed	= 0x00,
143};
144
145static struct pmcmsptwi_data pmcmsptwi_data;
146
147static struct i2c_adapter pmcmsptwi_adapter;
148
149/* inline helper functions */
150static inline u32 pmcmsptwi_clock_to_reg(
151			const struct pmcmsptwi_clock *clock)
152{
153	return ((clock->filter & 0xf) << 12) | (clock->clock & 0x03ff);
154}
155
156static inline void pmcmsptwi_reg_to_clock(
157			u32 reg, struct pmcmsptwi_clock *clock)
158{
159	clock->filter = (reg >> 12) & 0xf;
160	clock->clock = reg & 0x03ff;
161}
162
163static inline u32 pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg *cfg)
164{
165	return ((cfg->arbf & 0xf) << 12) |
166		((cfg->nak & 0xf) << 8) |
167		((cfg->add10 & 0x1) << 7) |
168		((cfg->mst_code & 0x7) << 4) |
169		((cfg->arb & 0x1) << 1) |
170		(cfg->highspeed & 0x1);
171}
172
173static inline void pmcmsptwi_reg_to_cfg(u32 reg, struct pmcmsptwi_cfg *cfg)
174{
175	cfg->arbf = (reg >> 12) & 0xf;
176	cfg->nak = (reg >> 8) & 0xf;
177	cfg->add10 = (reg >> 7) & 0x1;
178	cfg->mst_code = (reg >> 4) & 0x7;
179	cfg->arb = (reg >> 1) & 0x1;
180	cfg->highspeed = reg & 0x1;
181}
182
183/*
184 * Sets the current clock configuration
185 */
186static void pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg *cfg,
187					struct pmcmsptwi_data *data)
188{
189	mutex_lock(&data->lock);
190	pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->standard),
191				data->iobase + MSP_TWI_SF_CLK_REG_OFFSET);
192	pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->highspeed),
193				data->iobase + MSP_TWI_HS_CLK_REG_OFFSET);
194	mutex_unlock(&data->lock);
195}
196
197/*
198 * Gets the current TWI bus configuration
199 */
200static void pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg *cfg,
201					struct pmcmsptwi_data *data)
202{
203	mutex_lock(&data->lock);
204	pmcmsptwi_reg_to_cfg(pmcmsptwi_readl(
205				data->iobase + MSP_TWI_CFG_REG_OFFSET), cfg);
206	mutex_unlock(&data->lock);
207}
208
209/*
210 * Sets the current TWI bus configuration
211 */
212static void pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg *cfg,
213					struct pmcmsptwi_data *data)
214{
215	mutex_lock(&data->lock);
216	pmcmsptwi_writel(pmcmsptwi_cfg_to_reg(cfg),
217				data->iobase + MSP_TWI_CFG_REG_OFFSET);
218	mutex_unlock(&data->lock);
219}
220
221/*
222 * Parses the 'int_sts' register and returns a well-defined error code
223 */
224static enum pmcmsptwi_xfer_result pmcmsptwi_get_result(u32 reg)
225{
226	if (reg & MSP_TWI_INT_STS_LOST_ARBITRATION) {
227		dev_dbg(&pmcmsptwi_adapter.dev,
228			"Result: Lost arbitration\n");
229		return MSP_TWI_XFER_LOST_ARBITRATION;
230	} else if (reg & MSP_TWI_INT_STS_NO_RESPONSE) {
231		dev_dbg(&pmcmsptwi_adapter.dev,
232			"Result: No response\n");
233		return MSP_TWI_XFER_NO_RESPONSE;
234	} else if (reg & MSP_TWI_INT_STS_DATA_COLLISION) {
235		dev_dbg(&pmcmsptwi_adapter.dev,
236			"Result: Data collision\n");
237		return MSP_TWI_XFER_DATA_COLLISION;
238	} else if (reg & MSP_TWI_INT_STS_BUSY) {
239		dev_dbg(&pmcmsptwi_adapter.dev,
240			"Result: Bus busy\n");
241		return MSP_TWI_XFER_BUSY;
242	}
243
244	dev_dbg(&pmcmsptwi_adapter.dev, "Result: Operation succeeded\n");
245	return MSP_TWI_XFER_OK;
246}
247
248/*
249 * In interrupt mode, handle the interrupt.
250 * NOTE: Assumes data->lock is held.
251 */
252static irqreturn_t pmcmsptwi_interrupt(int irq, void *ptr)
253{
254	struct pmcmsptwi_data *data = ptr;
255
256	u32 reason = pmcmsptwi_readl(data->iobase +
257					MSP_TWI_INT_STS_REG_OFFSET);
258	pmcmsptwi_writel(reason, data->iobase + MSP_TWI_INT_STS_REG_OFFSET);
259
260	dev_dbg(&pmcmsptwi_adapter.dev, "Got interrupt 0x%08x\n", reason);
261	if (!(reason & MSP_TWI_INT_STS_DONE))
262		return IRQ_NONE;
263
264	data->last_result = pmcmsptwi_get_result(reason);
265	complete(&data->wait);
266
267	return IRQ_HANDLED;
268}
269
270/*
271 * Probe for and register the device and return 0 if there is one.
272 */
273static int __devinit pmcmsptwi_probe(struct platform_device *pldev)
274{
275	struct resource *res;
276	int rc = -ENODEV;
277
278	/* get the static platform resources */
279	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
280	if (!res) {
281		dev_err(&pldev->dev, "IOMEM resource not found\n");
282		goto ret_err;
283	}
284
285	/* reserve the memory region */
286	if (!request_mem_region(res->start, resource_size(res),
287				pldev->name)) {
288		dev_err(&pldev->dev,
289			"Unable to get memory/io address region 0x%08x\n",
290			res->start);
291		rc = -EBUSY;
292		goto ret_err;
293	}
294
295	/* remap the memory */
296	pmcmsptwi_data.iobase = ioremap_nocache(res->start,
297						resource_size(res));
298	if (!pmcmsptwi_data.iobase) {
299		dev_err(&pldev->dev,
300			"Unable to ioremap address 0x%08x\n", res->start);
301		rc = -EIO;
302		goto ret_unreserve;
303	}
304
305	/* request the irq */
306	pmcmsptwi_data.irq = platform_get_irq(pldev, 0);
307	if (pmcmsptwi_data.irq) {
308		rc = request_irq(pmcmsptwi_data.irq, &pmcmsptwi_interrupt,
309			IRQF_SHARED | IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
310			pldev->name, &pmcmsptwi_data);
311		if (rc == 0) {
312			/*
313			 * Enable 'DONE' interrupt only.
314			 *
315			 * If you enable all interrupts, you will get one on
316			 * error and another when the operation completes.
317			 * This way you only have to handle one interrupt,
318			 * but you can still check all result flags.
319			 */
320			pmcmsptwi_writel(MSP_TWI_INT_STS_DONE,
321					pmcmsptwi_data.iobase +
322					MSP_TWI_INT_MSK_REG_OFFSET);
323		} else {
324			dev_warn(&pldev->dev,
325				"Could not assign TWI IRQ handler "
326				"to irq %d (continuing with poll)\n",
327				pmcmsptwi_data.irq);
328			pmcmsptwi_data.irq = 0;
329		}
330	}
331
332	init_completion(&pmcmsptwi_data.wait);
333	mutex_init(&pmcmsptwi_data.lock);
334
335	pmcmsptwi_set_clock_config(&pmcmsptwi_defclockcfg, &pmcmsptwi_data);
336	pmcmsptwi_set_twi_config(&pmcmsptwi_defcfg, &pmcmsptwi_data);
337
338	printk(KERN_INFO DRV_NAME ": Registering MSP71xx I2C adapter\n");
339
340	pmcmsptwi_adapter.dev.parent = &pldev->dev;
341	platform_set_drvdata(pldev, &pmcmsptwi_adapter);
342	i2c_set_adapdata(&pmcmsptwi_adapter, &pmcmsptwi_data);
343
344	rc = i2c_add_adapter(&pmcmsptwi_adapter);
345	if (rc) {
346		dev_err(&pldev->dev, "Unable to register I2C adapter\n");
347		goto ret_unmap;
348	}
349
350	return 0;
351
352ret_unmap:
353	platform_set_drvdata(pldev, NULL);
354	if (pmcmsptwi_data.irq) {
355		pmcmsptwi_writel(0,
356			pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
357		free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
358	}
359
360	iounmap(pmcmsptwi_data.iobase);
361
362ret_unreserve:
363	release_mem_region(res->start, resource_size(res));
364
365ret_err:
366	return rc;
367}
368
369/*
370 * Release the device and return 0 if there is one.
371 */
372static int __devexit pmcmsptwi_remove(struct platform_device *pldev)
373{
374	struct resource *res;
375
376	i2c_del_adapter(&pmcmsptwi_adapter);
377
378	platform_set_drvdata(pldev, NULL);
379	if (pmcmsptwi_data.irq) {
380		pmcmsptwi_writel(0,
381			pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
382		free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
383	}
384
385	iounmap(pmcmsptwi_data.iobase);
386
387	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
388	release_mem_region(res->start, resource_size(res));
389
390	return 0;
391}
392
393/*
394 * Polls the 'busy' register until the command is complete.
395 * NOTE: Assumes data->lock is held.
396 */
397static void pmcmsptwi_poll_complete(struct pmcmsptwi_data *data)
398{
399	int i;
400
401	for (i = 0; i < MSP_MAX_POLL; i++) {
402		u32 val = pmcmsptwi_readl(data->iobase +
403						MSP_TWI_BUSY_REG_OFFSET);
404		if (val == 0) {
405			u32 reason = pmcmsptwi_readl(data->iobase +
406						MSP_TWI_INT_STS_REG_OFFSET);
407			pmcmsptwi_writel(reason, data->iobase +
408						MSP_TWI_INT_STS_REG_OFFSET);
409			data->last_result = pmcmsptwi_get_result(reason);
410			return;
411		}
412		udelay(MSP_POLL_DELAY);
413	}
414
415	dev_dbg(&pmcmsptwi_adapter.dev, "Result: Poll timeout\n");
416	data->last_result = MSP_TWI_XFER_TIMEOUT;
417}
418
419/*
420 * Do the transfer (low level):
421 *   May use interrupt-driven or polling, depending on if an IRQ is
422 *   presently registered.
423 * NOTE: Assumes data->lock is held.
424 */
425static enum pmcmsptwi_xfer_result pmcmsptwi_do_xfer(
426			u32 reg, struct pmcmsptwi_data *data)
427{
428	dev_dbg(&pmcmsptwi_adapter.dev, "Writing cmd reg 0x%08x\n", reg);
429	pmcmsptwi_writel(reg, data->iobase + MSP_TWI_CMD_REG_OFFSET);
430	if (data->irq) {
431		unsigned long timeleft = wait_for_completion_timeout(
432						&data->wait, MSP_IRQ_TIMEOUT);
433		if (timeleft == 0) {
434			dev_dbg(&pmcmsptwi_adapter.dev,
435				"Result: IRQ timeout\n");
436			complete(&data->wait);
437			data->last_result = MSP_TWI_XFER_TIMEOUT;
438		}
439	} else
440		pmcmsptwi_poll_complete(data);
441
442	return data->last_result;
443}
444
445/*
446 * Helper routine, converts 'pmctwi_cmd' struct to register format
447 */
448static inline u32 pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd *cmd)
449{
450	return ((cmd->type & 0x3) << 8) |
451		(((cmd->write_len - 1) & 0x7) << 4) |
452		((cmd->read_len - 1) & 0x7);
453}
454
455/*
456 * Do the transfer (high level)
457 */
458static enum pmcmsptwi_xfer_result pmcmsptwi_xfer_cmd(
459			struct pmcmsptwi_cmd *cmd,
460			struct pmcmsptwi_data *data)
461{
462	enum pmcmsptwi_xfer_result retval;
463
464	if ((cmd->type == MSP_TWI_CMD_WRITE && cmd->write_len == 0) ||
465	    (cmd->type == MSP_TWI_CMD_READ && cmd->read_len == 0) ||
466	    (cmd->type == MSP_TWI_CMD_WRITE_READ &&
467	    (cmd->read_len == 0 || cmd->write_len == 0))) {
468		dev_err(&pmcmsptwi_adapter.dev,
469			"%s: Cannot transfer less than 1 byte\n",
470			__func__);
471		return -EINVAL;
472	}
473
474	if (cmd->read_len > MSP_MAX_BYTES_PER_RW ||
475	    cmd->write_len > MSP_MAX_BYTES_PER_RW) {
476		dev_err(&pmcmsptwi_adapter.dev,
477			"%s: Cannot transfer more than %d bytes\n",
478			__func__, MSP_MAX_BYTES_PER_RW);
479		return -EINVAL;
480	}
481
482	mutex_lock(&data->lock);
483	dev_dbg(&pmcmsptwi_adapter.dev,
484		"Setting address to 0x%04x\n", cmd->addr);
485	pmcmsptwi_writel(cmd->addr, data->iobase + MSP_TWI_ADD_REG_OFFSET);
486
487	if (cmd->type == MSP_TWI_CMD_WRITE ||
488	    cmd->type == MSP_TWI_CMD_WRITE_READ) {
489		u64 tmp = be64_to_cpup((__be64 *)cmd->write_data);
490		tmp >>= (MSP_MAX_BYTES_PER_RW - cmd->write_len) * 8;
491		dev_dbg(&pmcmsptwi_adapter.dev, "Writing 0x%016llx\n", tmp);
492		pmcmsptwi_writel(tmp & 0x00000000ffffffffLL,
493				data->iobase + MSP_TWI_DAT_0_REG_OFFSET);
494		if (cmd->write_len > 4)
495			pmcmsptwi_writel(tmp >> 32,
496				data->iobase + MSP_TWI_DAT_1_REG_OFFSET);
497	}
498
499	retval = pmcmsptwi_do_xfer(pmcmsptwi_cmd_to_reg(cmd), data);
500	if (retval != MSP_TWI_XFER_OK)
501		goto xfer_err;
502
503	if (cmd->type == MSP_TWI_CMD_READ ||
504	    cmd->type == MSP_TWI_CMD_WRITE_READ) {
505		int i;
506		u64 rmsk = ~(0xffffffffffffffffLL << (cmd->read_len * 8));
507		u64 tmp = (u64)pmcmsptwi_readl(data->iobase +
508					MSP_TWI_DAT_0_REG_OFFSET);
509		if (cmd->read_len > 4)
510			tmp |= (u64)pmcmsptwi_readl(data->iobase +
511					MSP_TWI_DAT_1_REG_OFFSET) << 32;
512		tmp &= rmsk;
513		dev_dbg(&pmcmsptwi_adapter.dev, "Read 0x%016llx\n", tmp);
514
515		for (i = 0; i < cmd->read_len; i++)
516			cmd->read_data[i] = tmp >> i;
517	}
518
519xfer_err:
520	mutex_unlock(&data->lock);
521
522	return retval;
523}
524
525/* -- Algorithm functions -- */
526
527/*
528 * Sends an i2c command out on the adapter
529 */
530static int pmcmsptwi_master_xfer(struct i2c_adapter *adap,
531				struct i2c_msg *msg, int num)
532{
533	struct pmcmsptwi_data *data = i2c_get_adapdata(adap);
534	struct pmcmsptwi_cmd cmd;
535	struct pmcmsptwi_cfg oldcfg, newcfg;
536	int ret;
537
538	if (num > 2) {
539		dev_dbg(&adap->dev, "%d messages unsupported\n", num);
540		return -EINVAL;
541	} else if (num == 2) {
542		/* Check for a dual write-then-read command */
543		struct i2c_msg *nextmsg = msg + 1;
544		if (!(msg->flags & I2C_M_RD) &&
545		    (nextmsg->flags & I2C_M_RD) &&
546		    msg->addr == nextmsg->addr) {
547			cmd.type = MSP_TWI_CMD_WRITE_READ;
548			cmd.write_len = msg->len;
549			cmd.write_data = msg->buf;
550			cmd.read_len = nextmsg->len;
551			cmd.read_data = nextmsg->buf;
552		} else {
553			dev_dbg(&adap->dev,
554				"Non write-read dual messages unsupported\n");
555			return -EINVAL;
556		}
557	} else if (msg->flags & I2C_M_RD) {
558		cmd.type = MSP_TWI_CMD_READ;
559		cmd.read_len = msg->len;
560		cmd.read_data = msg->buf;
561		cmd.write_len = 0;
562		cmd.write_data = NULL;
563	} else {
564		cmd.type = MSP_TWI_CMD_WRITE;
565		cmd.read_len = 0;
566		cmd.read_data = NULL;
567		cmd.write_len = msg->len;
568		cmd.write_data = msg->buf;
569	}
570
571	if (msg->len == 0) {
572		dev_err(&adap->dev, "Zero-byte messages unsupported\n");
573		return -EINVAL;
574	}
575
576	cmd.addr = msg->addr;
577
578	if (msg->flags & I2C_M_TEN) {
579		pmcmsptwi_get_twi_config(&newcfg, data);
580		memcpy(&oldcfg, &newcfg, sizeof(oldcfg));
581
582		/* Set the special 10-bit address flag */
583		newcfg.add10 = 1;
584
585		pmcmsptwi_set_twi_config(&newcfg, data);
586	}
587
588	/* Execute the command */
589	ret = pmcmsptwi_xfer_cmd(&cmd, data);
590
591	if (msg->flags & I2C_M_TEN)
592		pmcmsptwi_set_twi_config(&oldcfg, data);
593
594	dev_dbg(&adap->dev, "I2C %s of %d bytes %s\n",
595		(msg->flags & I2C_M_RD) ? "read" : "write", msg->len,
596		(ret == MSP_TWI_XFER_OK) ? "succeeded" : "failed");
597
598	if (ret != MSP_TWI_XFER_OK) {
599		/*
600		 * TODO: We could potentially loop and retry in the case
601		 * of MSP_TWI_XFER_TIMEOUT.
602		 */
603		return -1;
604	}
605
606	return 0;
607}
608
609static u32 pmcmsptwi_i2c_func(struct i2c_adapter *adapter)
610{
611	return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
612		I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
613		I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL;
614}
615
616/* -- Initialization -- */
617
618static struct i2c_algorithm pmcmsptwi_algo = {
619	.master_xfer	= pmcmsptwi_master_xfer,
620	.functionality	= pmcmsptwi_i2c_func,
621};
622
623static struct i2c_adapter pmcmsptwi_adapter = {
624	.owner		= THIS_MODULE,
625	.class		= I2C_CLASS_HWMON | I2C_CLASS_SPD,
626	.algo		= &pmcmsptwi_algo,
627	.name		= DRV_NAME,
628};
629
630/* work with hotplug and coldplug */
631MODULE_ALIAS("platform:" DRV_NAME);
632
633static struct platform_driver pmcmsptwi_driver = {
634	.probe  = pmcmsptwi_probe,
635	.remove	= __devexit_p(pmcmsptwi_remove),
636	.driver = {
637		.name	= DRV_NAME,
638		.owner	= THIS_MODULE,
639	},
640};
641
642static int __init pmcmsptwi_init(void)
643{
644	return platform_driver_register(&pmcmsptwi_driver);
645}
646
647static void __exit pmcmsptwi_exit(void)
648{
649	platform_driver_unregister(&pmcmsptwi_driver);
650}
651
652MODULE_DESCRIPTION("PMC MSP TWI/SMBus/I2C driver");
653MODULE_LICENSE("GPL");
654
655module_init(pmcmsptwi_init);
656module_exit(pmcmsptwi_exit);
657