• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/hwmon/
1/*
2    abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl>
3
4    This program is free software; you can redistribute it and/or modify
5    it under the terms of the GNU General Public License as published by
6    the Free Software Foundation; either version 2 of the License, or
7    (at your option) any later version.
8
9    This program is distributed in the hope that it will be useful,
10    but WITHOUT ANY WARRANTY; without even the implied warranty of
11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12    GNU General Public License for more details.
13
14    You should have received a copy of the GNU General Public License
15    along with this program; if not, write to the Free Software
16    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17*/
18/*
19    This driver supports the sensor part of the first and second revision of
20    the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
21    of lack of specs the CPU/RAM voltage & frequency control is not supported!
22*/
23#include <linux/module.h>
24#include <linux/sched.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/mutex.h>
29#include <linux/err.h>
30#include <linux/delay.h>
31#include <linux/platform_device.h>
32#include <linux/hwmon.h>
33#include <linux/hwmon-sysfs.h>
34#include <linux/dmi.h>
35#include <linux/io.h>
36
37/* Banks */
38#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
39#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
40#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
41#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
42/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
43#define ABIT_UGURU_MAX_BANK1_SENSORS		16
44/* Warning if you increase one of the 2 MAX defines below to 10 or higher you
45   should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */
46/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
47#define ABIT_UGURU_MAX_BANK2_SENSORS		6
48/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
49#define ABIT_UGURU_MAX_PWMS			5
50/* uGuru sensor bank 1 flags */			     /* Alarm if: */
51#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
52#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
53#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
54#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
55#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
56#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
57/* uGuru sensor bank 2 flags */			     /* Alarm if: */
58#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
59/* uGuru sensor bank common flags */
60#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
61#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
62/* uGuru fan PWM (speed control) flags */
63#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
64/* Values used for conversion */
65#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
66/* Bank1 sensor types */
67#define ABIT_UGURU_IN_SENSOR			0
68#define ABIT_UGURU_TEMP_SENSOR			1
69#define ABIT_UGURU_NC				2
70/* In many cases we need to wait for the uGuru to reach a certain status, most
71   of the time it will reach this status within 30 - 90 ISA reads, and thus we
72   can best busy wait. This define gives the total amount of reads to try. */
73#define ABIT_UGURU_WAIT_TIMEOUT			125
74/* However sometimes older versions of the uGuru seem to be distracted and they
75   do not respond for a long time. To handle this we sleep before each of the
76   last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. */
77#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
78/* Normally all expected status in abituguru_ready, are reported after the
79   first read, but sometimes not and we need to poll. */
80#define ABIT_UGURU_READY_TIMEOUT		5
81/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
82#define ABIT_UGURU_MAX_RETRIES			3
83#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
84/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
85#define ABIT_UGURU_MAX_TIMEOUTS			2
86/* utility macros */
87#define ABIT_UGURU_NAME				"abituguru"
88#define ABIT_UGURU_DEBUG(level, format, arg...)				\
89	if (level <= verbose)						\
90		printk(KERN_DEBUG ABIT_UGURU_NAME ": "	format , ## arg)
91/* Macros to help calculate the sysfs_names array length */
92/* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
93   in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */
94#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
95/* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
96   temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */
97#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
98/* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
99   fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */
100#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
101/* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
102   pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */
103#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
104/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
105#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
106	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
107	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
108	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
109
110/* All the macros below are named identical to the oguru and oguru2 programs
111   reverse engineered by Olle Sandberg, hence the names might not be 100%
112   logical. I could come up with better names, but I prefer keeping the names
113   identical so that this driver can be compared with his work more easily. */
114/* Two i/o-ports are used by uGuru */
115#define ABIT_UGURU_BASE				0x00E0
116/* Used to tell uGuru what to read and to read the actual data */
117#define ABIT_UGURU_CMD				0x00
118/* Mostly used to check if uGuru is busy */
119#define ABIT_UGURU_DATA				0x04
120#define ABIT_UGURU_REGION_LENGTH		5
121/* uGuru status' */
122#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
123#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
124#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
125#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
126
127/* Constants */
128/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
129static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
130/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
131   correspond to 300-3000 RPM */
132static const u8 abituguru_bank2_min_threshold = 5;
133static const u8 abituguru_bank2_max_threshold = 50;
134/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
135   are temperature trip points. */
136static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
137/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
138   special case the minium allowed pwm% setting for this is 30% (77) on
139   some MB's this special case is handled in the code! */
140static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
141static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
142
143
144/* Insmod parameters */
145static int force;
146module_param(force, bool, 0);
147MODULE_PARM_DESC(force, "Set to one to force detection.");
148static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
149	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
150module_param_array(bank1_types, int, NULL, 0);
151MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
152	"   -1 autodetect\n"
153	"    0 volt sensor\n"
154	"    1 temp sensor\n"
155	"    2 not connected");
156static int fan_sensors;
157module_param(fan_sensors, int, 0);
158MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
159	"(0 = autodetect)");
160static int pwms;
161module_param(pwms, int, 0);
162MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
163	"(0 = autodetect)");
164
165/* Default verbose is 2, since this driver is still in the testing phase */
166static int verbose = 2;
167module_param(verbose, int, 0644);
168MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
169	"   0 normal output\n"
170	"   1 + verbose error reporting\n"
171	"   2 + sensors type probing info\n"
172	"   3 + retryable error reporting");
173
174
175/* For the Abit uGuru, we need to keep some data in memory.
176   The structure is dynamically allocated, at the same time when a new
177   abituguru device is allocated. */
178struct abituguru_data {
179	struct device *hwmon_dev;	/* hwmon registered device */
180	struct mutex update_lock;	/* protect access to data and uGuru */
181	unsigned long last_updated;	/* In jiffies */
182	unsigned short addr;		/* uguru base address */
183	char uguru_ready;		/* is the uguru in ready state? */
184	unsigned char update_timeouts;	/* number of update timeouts since last
185					   successful update */
186
187	/* The sysfs attr and their names are generated automatically, for bank1
188	   we cannot use a predefined array because we don't know beforehand
189	   of a sensor is a volt or a temp sensor, for bank2 and the pwms its
190	   easier todo things the same way.  For in sensors we have 9 (temp 7)
191	   sysfs entries per sensor, for bank2 and pwms 6. */
192	struct sensor_device_attribute_2 sysfs_attr[
193		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
194		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
195	/* Buffer to store the dynamically generated sysfs names */
196	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
197
198	/* Bank 1 data */
199	/* number of and addresses of [0] in, [1] temp sensors */
200	u8 bank1_sensors[2];
201	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
202	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
203	/* This array holds 3 entries per sensor for the bank 1 sensor settings
204	   (flags, min, max for voltage / flags, warn, shutdown for temp). */
205	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
206	/* Maximum value for each sensor used for scaling in mV/millidegrees
207	   Celsius. */
208	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
209
210	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
211	u8 bank2_sensors; /* actual number of bank2 sensors found */
212	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
213	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
214
215	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
216	u8 alarms[3];
217
218	/* Fan PWM (speed control) 5 bytes per PWM */
219	u8 pwms; /* actual number of pwms found */
220	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
221};
222
223/* wait till the uguru is in the specified state */
224static int abituguru_wait(struct abituguru_data *data, u8 state)
225{
226	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
227
228	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
229		timeout--;
230		if (timeout == 0)
231			return -EBUSY;
232		/* sleep a bit before our last few tries, see the comment on
233		   this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. */
234		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
235			msleep(0);
236	}
237	return 0;
238}
239
240/* Put the uguru in ready for input state */
241static int abituguru_ready(struct abituguru_data *data)
242{
243	int timeout = ABIT_UGURU_READY_TIMEOUT;
244
245	if (data->uguru_ready)
246		return 0;
247
248	/* Reset? / Prepare for next read/write cycle */
249	outb(0x00, data->addr + ABIT_UGURU_DATA);
250
251	/* Wait till the uguru is ready */
252	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
253		ABIT_UGURU_DEBUG(1,
254			"timeout exceeded waiting for ready state\n");
255		return -EIO;
256	}
257
258	/* Cmd port MUST be read now and should contain 0xAC */
259	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
260		timeout--;
261		if (timeout == 0) {
262			ABIT_UGURU_DEBUG(1,
263			   "CMD reg does not hold 0xAC after ready command\n");
264			return -EIO;
265		}
266		msleep(0);
267	}
268
269	/* After this the ABIT_UGURU_DATA port should contain
270	   ABIT_UGURU_STATUS_INPUT */
271	timeout = ABIT_UGURU_READY_TIMEOUT;
272	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
273		timeout--;
274		if (timeout == 0) {
275			ABIT_UGURU_DEBUG(1,
276				"state != more input after ready command\n");
277			return -EIO;
278		}
279		msleep(0);
280	}
281
282	data->uguru_ready = 1;
283	return 0;
284}
285
286/* Send the bank and then sensor address to the uGuru for the next read/write
287   cycle. This function gets called as the first part of a read/write by
288   abituguru_read and abituguru_write. This function should never be
289   called by any other function. */
290static int abituguru_send_address(struct abituguru_data *data,
291	u8 bank_addr, u8 sensor_addr, int retries)
292{
293	/* assume the caller does error handling itself if it has not requested
294	   any retries, and thus be quiet. */
295	int report_errors = retries;
296
297	for (;;) {
298		/* Make sure the uguru is ready and then send the bank address,
299		   after this the uguru is no longer "ready". */
300		if (abituguru_ready(data) != 0)
301			return -EIO;
302		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
303		data->uguru_ready = 0;
304
305		/* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
306		   and send the sensor addr */
307		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
308			if (retries) {
309				ABIT_UGURU_DEBUG(3, "timeout exceeded "
310					"waiting for more input state, %d "
311					"tries remaining\n", retries);
312				set_current_state(TASK_UNINTERRUPTIBLE);
313				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
314				retries--;
315				continue;
316			}
317			if (report_errors)
318				ABIT_UGURU_DEBUG(1, "timeout exceeded "
319					"waiting for more input state "
320					"(bank: %d)\n", (int)bank_addr);
321			return -EBUSY;
322		}
323		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
324		return 0;
325	}
326}
327
328/* Read count bytes from sensor sensor_addr in bank bank_addr and store the
329   result in buf, retry the send address part of the read retries times. */
330static int abituguru_read(struct abituguru_data *data,
331	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
332{
333	int i;
334
335	/* Send the address */
336	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
337	if (i)
338		return i;
339
340	/* And read the data */
341	for (i = 0; i < count; i++) {
342		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
343			ABIT_UGURU_DEBUG(retries ? 1 : 3,
344				"timeout exceeded waiting for "
345				"read state (bank: %d, sensor: %d)\n",
346				(int)bank_addr, (int)sensor_addr);
347			break;
348		}
349		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
350	}
351
352	/* Last put the chip back in ready state */
353	abituguru_ready(data);
354
355	return i;
356}
357
358/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
359   address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
360static int abituguru_write(struct abituguru_data *data,
361	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
362{
363	/* We use the ready timeout as we have to wait for 0xAC just like the
364	   ready function */
365	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
366
367	/* Send the address */
368	i = abituguru_send_address(data, bank_addr, sensor_addr,
369		ABIT_UGURU_MAX_RETRIES);
370	if (i)
371		return i;
372
373	/* And write the data */
374	for (i = 0; i < count; i++) {
375		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
376			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
377				"write state (bank: %d, sensor: %d)\n",
378				(int)bank_addr, (int)sensor_addr);
379			break;
380		}
381		outb(buf[i], data->addr + ABIT_UGURU_CMD);
382	}
383
384	/* Now we need to wait till the chip is ready to be read again,
385	   so that we can read 0xAC as confirmation that our write has
386	   succeeded. */
387	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
388		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
389			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
390			(int)sensor_addr);
391		return -EIO;
392	}
393
394	/* Cmd port MUST be read now and should contain 0xAC */
395	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
396		timeout--;
397		if (timeout == 0) {
398			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
399				"write (bank: %d, sensor: %d)\n",
400				(int)bank_addr, (int)sensor_addr);
401			return -EIO;
402		}
403		msleep(0);
404	}
405
406	/* Last put the chip back in ready state */
407	abituguru_ready(data);
408
409	return i;
410}
411
412/* Detect sensor type. Temp and Volt sensors are enabled with
413   different masks and will ignore enable masks not meant for them.
414   This enables us to test what kind of sensor we're dealing with.
415   By setting the alarm thresholds so that we will always get an
416   alarm for sensor type X and then enabling the sensor as sensor type
417   X, if we then get an alarm it is a sensor of type X. */
418static int __devinit
419abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
420				   u8 sensor_addr)
421{
422	u8 val, test_flag, buf[3];
423	int i, ret = -ENODEV; /* error is the most common used retval :| */
424
425	/* If overriden by the user return the user selected type */
426	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
427			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
428		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
429			"%d because of \"bank1_types\" module param\n",
430			bank1_types[sensor_addr], (int)sensor_addr);
431		return bank1_types[sensor_addr];
432	}
433
434	/* First read the sensor and the current settings */
435	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
436			1, ABIT_UGURU_MAX_RETRIES) != 1)
437		return -ENODEV;
438
439	/* Test val is sane / usable for sensor type detection. */
440	if ((val < 10u) || (val > 250u)) {
441		printk(KERN_WARNING ABIT_UGURU_NAME
442			": bank1-sensor: %d reading (%d) too close to limits, "
443			"unable to determine sensor type, skipping sensor\n",
444			(int)sensor_addr, (int)val);
445		/* assume no sensor is there for sensors for which we can't
446		   determine the sensor type because their reading is too close
447		   to their limits, this usually means no sensor is there. */
448		return ABIT_UGURU_NC;
449	}
450
451	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
452	/* Volt sensor test, enable volt low alarm, set min value ridicously
453	   high, or vica versa if the reading is very high. If its a volt
454	   sensor this should always give us an alarm. */
455	if (val <= 240u) {
456		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
457		buf[1] = 245;
458		buf[2] = 250;
459		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
460	} else {
461		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
462		buf[1] = 5;
463		buf[2] = 10;
464		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
465	}
466
467	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
468			buf, 3) != 3)
469		goto abituguru_detect_bank1_sensor_type_exit;
470	/* Now we need 20 ms to give the uguru time to read the sensors
471	   and raise a voltage alarm */
472	set_current_state(TASK_UNINTERRUPTIBLE);
473	schedule_timeout(HZ/50);
474	/* Check for alarm and check the alarm is a volt low alarm. */
475	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
476			ABIT_UGURU_MAX_RETRIES) != 3)
477		goto abituguru_detect_bank1_sensor_type_exit;
478	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
479		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
480				sensor_addr, buf, 3,
481				ABIT_UGURU_MAX_RETRIES) != 3)
482			goto abituguru_detect_bank1_sensor_type_exit;
483		if (buf[0] & test_flag) {
484			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
485			ret = ABIT_UGURU_IN_SENSOR;
486			goto abituguru_detect_bank1_sensor_type_exit;
487		} else
488			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
489				"sensor test, but volt range flag not set\n");
490	} else
491		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
492			"test\n");
493
494	/* Temp sensor test, enable sensor as a temp sensor, set beep value
495	   ridicously low (but not too low, otherwise uguru ignores it).
496	   If its a temp sensor this should always give us an alarm. */
497	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
498	buf[1] = 5;
499	buf[2] = 10;
500	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
501			buf, 3) != 3)
502		goto abituguru_detect_bank1_sensor_type_exit;
503	/* Now we need 50 ms to give the uguru time to read the sensors
504	   and raise a temp alarm */
505	set_current_state(TASK_UNINTERRUPTIBLE);
506	schedule_timeout(HZ/20);
507	/* Check for alarm and check the alarm is a temp high alarm. */
508	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
509			ABIT_UGURU_MAX_RETRIES) != 3)
510		goto abituguru_detect_bank1_sensor_type_exit;
511	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
512		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
513				sensor_addr, buf, 3,
514				ABIT_UGURU_MAX_RETRIES) != 3)
515			goto abituguru_detect_bank1_sensor_type_exit;
516		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
517			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
518			ret = ABIT_UGURU_TEMP_SENSOR;
519			goto abituguru_detect_bank1_sensor_type_exit;
520		} else
521			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
522				"sensor test, but temp high flag not set\n");
523	} else
524		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
525			"test\n");
526
527	ret = ABIT_UGURU_NC;
528abituguru_detect_bank1_sensor_type_exit:
529	/* Restore original settings, failing here is really BAD, it has been
530	   reported that some BIOS-es hang when entering the uGuru menu with
531	   invalid settings present in the uGuru, so we try this 3 times. */
532	for (i = 0; i < 3; i++)
533		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
534				sensor_addr, data->bank1_settings[sensor_addr],
535				3) == 3)
536			break;
537	if (i == 3) {
538		printk(KERN_ERR ABIT_UGURU_NAME
539			": Fatal error could not restore original settings. "
540			"This should never happen please report this to the "
541			"abituguru maintainer (see MAINTAINERS)\n");
542		return -ENODEV;
543	}
544	return ret;
545}
546
547/* These functions try to find out how many sensors there are in bank2 and how
548   many pwms there are. The purpose of this is to make sure that we don't give
549   the user the possibility to change settings for non-existent sensors / pwm.
550   The uGuru will happily read / write whatever memory happens to be after the
551   memory storing the PWM settings when reading/writing to a PWM which is not
552   there. Notice even if we detect a PWM which doesn't exist we normally won't
553   write to it, unless the user tries to change the settings.
554
555   Although the uGuru allows reading (settings) from non existing bank2
556   sensors, my version of the uGuru does seem to stop writing to them, the
557   write function above aborts in this case with:
558   "CMD reg does not hold 0xAC after write"
559
560   Notice these 2 tests are non destructive iow read-only tests, otherwise
561   they would defeat their purpose. Although for the bank2_sensors detection a
562   read/write test would be feasible because of the reaction above, I've
563   however opted to stay on the safe side. */
564static void __devinit
565abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
566{
567	int i;
568
569	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
570		data->bank2_sensors = fan_sensors;
571		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
572			"\"fan_sensors\" module param\n",
573			(int)data->bank2_sensors);
574		return;
575	}
576
577	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
578	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
579		/* 0x89 are the known used bits:
580		   -0x80 enable shutdown
581		   -0x08 enable beep
582		   -0x01 enable alarm
583		   All other bits should be 0, but on some motherboards
584		   0x40 (bit 6) is also high for some of the fans?? */
585		if (data->bank2_settings[i][0] & ~0xC9) {
586			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
587				"to be a fan sensor: settings[0] = %02X\n",
588				i, (unsigned int)data->bank2_settings[i][0]);
589			break;
590		}
591
592		/* check if the threshold is within the allowed range */
593		if (data->bank2_settings[i][1] <
594				abituguru_bank2_min_threshold) {
595			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
596				"to be a fan sensor: the threshold (%d) is "
597				"below the minimum (%d)\n", i,
598				(int)data->bank2_settings[i][1],
599				(int)abituguru_bank2_min_threshold);
600			break;
601		}
602		if (data->bank2_settings[i][1] >
603				abituguru_bank2_max_threshold) {
604			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
605				"to be a fan sensor: the threshold (%d) is "
606				"above the maximum (%d)\n", i,
607				(int)data->bank2_settings[i][1],
608				(int)abituguru_bank2_max_threshold);
609			break;
610		}
611	}
612
613	data->bank2_sensors = i;
614	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
615		(int)data->bank2_sensors);
616}
617
618static void __devinit
619abituguru_detect_no_pwms(struct abituguru_data *data)
620{
621	int i, j;
622
623	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
624		data->pwms = pwms;
625		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
626			"\"pwms\" module param\n", (int)data->pwms);
627		return;
628	}
629
630	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
631	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
632		/* 0x80 is the enable bit and the low
633		   nibble is which temp sensor to use,
634		   the other bits should be 0 */
635		if (data->pwm_settings[i][0] & ~0x8F) {
636			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
637				"to be a pwm channel: settings[0] = %02X\n",
638				i, (unsigned int)data->pwm_settings[i][0]);
639			break;
640		}
641
642		/* the low nibble must correspond to one of the temp sensors
643		   we've found */
644		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
645				j++) {
646			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
647					(data->pwm_settings[i][0] & 0x0F))
648				break;
649		}
650		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
651			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
652				"to be a pwm channel: %d is not a valid temp "
653				"sensor address\n", i,
654				data->pwm_settings[i][0] & 0x0F);
655			break;
656		}
657
658		/* check if all other settings are within the allowed range */
659		for (j = 1; j < 5; j++) {
660			u8 min;
661			/* special case pwm1 min pwm% */
662			if ((i == 0) && ((j == 1) || (j == 2)))
663				min = 77;
664			else
665				min = abituguru_pwm_min[j];
666			if (data->pwm_settings[i][j] < min) {
667				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
668					"not seem to be a pwm channel: "
669					"setting %d (%d) is below the minimum "
670					"value (%d)\n", i, j,
671					(int)data->pwm_settings[i][j],
672					(int)min);
673				goto abituguru_detect_no_pwms_exit;
674			}
675			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
676				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
677					"not seem to be a pwm channel: "
678					"setting %d (%d) is above the maximum "
679					"value (%d)\n", i, j,
680					(int)data->pwm_settings[i][j],
681					(int)abituguru_pwm_max[j]);
682				goto abituguru_detect_no_pwms_exit;
683			}
684		}
685
686		/* check that min temp < max temp and min pwm < max pwm */
687		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
688			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
689				"to be a pwm channel: min pwm (%d) >= "
690				"max pwm (%d)\n", i,
691				(int)data->pwm_settings[i][1],
692				(int)data->pwm_settings[i][2]);
693			break;
694		}
695		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
696			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
697				"to be a pwm channel: min temp (%d) >= "
698				"max temp (%d)\n", i,
699				(int)data->pwm_settings[i][3],
700				(int)data->pwm_settings[i][4]);
701			break;
702		}
703	}
704
705abituguru_detect_no_pwms_exit:
706	data->pwms = i;
707	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
708}
709
710/* Following are the sysfs callback functions. These functions expect:
711   sensor_device_attribute_2->index:   sensor address/offset in the bank
712   sensor_device_attribute_2->nr:      register offset, bitmask or NA. */
713static struct abituguru_data *abituguru_update_device(struct device *dev);
714
715static ssize_t show_bank1_value(struct device *dev,
716	struct device_attribute *devattr, char *buf)
717{
718	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
719	struct abituguru_data *data = abituguru_update_device(dev);
720	if (!data)
721		return -EIO;
722	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
723		data->bank1_max_value[attr->index] + 128) / 255);
724}
725
726static ssize_t show_bank1_setting(struct device *dev,
727	struct device_attribute *devattr, char *buf)
728{
729	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
730	struct abituguru_data *data = dev_get_drvdata(dev);
731	return sprintf(buf, "%d\n",
732		(data->bank1_settings[attr->index][attr->nr] *
733		data->bank1_max_value[attr->index] + 128) / 255);
734}
735
736static ssize_t show_bank2_value(struct device *dev,
737	struct device_attribute *devattr, char *buf)
738{
739	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
740	struct abituguru_data *data = abituguru_update_device(dev);
741	if (!data)
742		return -EIO;
743	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
744		ABIT_UGURU_FAN_MAX + 128) / 255);
745}
746
747static ssize_t show_bank2_setting(struct device *dev,
748	struct device_attribute *devattr, char *buf)
749{
750	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
751	struct abituguru_data *data = dev_get_drvdata(dev);
752	return sprintf(buf, "%d\n",
753		(data->bank2_settings[attr->index][attr->nr] *
754		ABIT_UGURU_FAN_MAX + 128) / 255);
755}
756
757static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
758	*devattr, const char *buf, size_t count)
759{
760	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
761	struct abituguru_data *data = dev_get_drvdata(dev);
762	u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
763		data->bank1_max_value[attr->index]/2) /
764		data->bank1_max_value[attr->index];
765	ssize_t ret = count;
766
767	mutex_lock(&data->update_lock);
768	if (data->bank1_settings[attr->index][attr->nr] != val) {
769		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
770		data->bank1_settings[attr->index][attr->nr] = val;
771		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
772				attr->index, data->bank1_settings[attr->index],
773				3) <= attr->nr) {
774			data->bank1_settings[attr->index][attr->nr] = orig_val;
775			ret = -EIO;
776		}
777	}
778	mutex_unlock(&data->update_lock);
779	return ret;
780}
781
782static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
783	*devattr, const char *buf, size_t count)
784{
785	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
786	struct abituguru_data *data = dev_get_drvdata(dev);
787	u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
788		ABIT_UGURU_FAN_MAX;
789	ssize_t ret = count;
790
791	/* this check can be done before taking the lock */
792	if ((val < abituguru_bank2_min_threshold) ||
793			(val > abituguru_bank2_max_threshold))
794		return -EINVAL;
795
796	mutex_lock(&data->update_lock);
797	if (data->bank2_settings[attr->index][attr->nr] != val) {
798		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
799		data->bank2_settings[attr->index][attr->nr] = val;
800		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
801				attr->index, data->bank2_settings[attr->index],
802				2) <= attr->nr) {
803			data->bank2_settings[attr->index][attr->nr] = orig_val;
804			ret = -EIO;
805		}
806	}
807	mutex_unlock(&data->update_lock);
808	return ret;
809}
810
811static ssize_t show_bank1_alarm(struct device *dev,
812	struct device_attribute *devattr, char *buf)
813{
814	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
815	struct abituguru_data *data = abituguru_update_device(dev);
816	if (!data)
817		return -EIO;
818	/* See if the alarm bit for this sensor is set, and if the
819	   alarm matches the type of alarm we're looking for (for volt
820	   it can be either low or high). The type is stored in a few
821	   readonly bits in the settings part of the relevant sensor.
822	   The bitmask of the type is passed to us in attr->nr. */
823	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
824			(data->bank1_settings[attr->index][0] & attr->nr))
825		return sprintf(buf, "1\n");
826	else
827		return sprintf(buf, "0\n");
828}
829
830static ssize_t show_bank2_alarm(struct device *dev,
831	struct device_attribute *devattr, char *buf)
832{
833	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
834	struct abituguru_data *data = abituguru_update_device(dev);
835	if (!data)
836		return -EIO;
837	if (data->alarms[2] & (0x01 << attr->index))
838		return sprintf(buf, "1\n");
839	else
840		return sprintf(buf, "0\n");
841}
842
843static ssize_t show_bank1_mask(struct device *dev,
844	struct device_attribute *devattr, char *buf)
845{
846	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
847	struct abituguru_data *data = dev_get_drvdata(dev);
848	if (data->bank1_settings[attr->index][0] & attr->nr)
849		return sprintf(buf, "1\n");
850	else
851		return sprintf(buf, "0\n");
852}
853
854static ssize_t show_bank2_mask(struct device *dev,
855	struct device_attribute *devattr, char *buf)
856{
857	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
858	struct abituguru_data *data = dev_get_drvdata(dev);
859	if (data->bank2_settings[attr->index][0] & attr->nr)
860		return sprintf(buf, "1\n");
861	else
862		return sprintf(buf, "0\n");
863}
864
865static ssize_t store_bank1_mask(struct device *dev,
866	struct device_attribute *devattr, const char *buf, size_t count)
867{
868	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
869	struct abituguru_data *data = dev_get_drvdata(dev);
870	int mask = simple_strtoul(buf, NULL, 10);
871	ssize_t ret = count;
872	u8 orig_val;
873
874	mutex_lock(&data->update_lock);
875	orig_val = data->bank1_settings[attr->index][0];
876
877	if (mask)
878		data->bank1_settings[attr->index][0] |= attr->nr;
879	else
880		data->bank1_settings[attr->index][0] &= ~attr->nr;
881
882	if ((data->bank1_settings[attr->index][0] != orig_val) &&
883			(abituguru_write(data,
884			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
885			data->bank1_settings[attr->index], 3) < 1)) {
886		data->bank1_settings[attr->index][0] = orig_val;
887		ret = -EIO;
888	}
889	mutex_unlock(&data->update_lock);
890	return ret;
891}
892
893static ssize_t store_bank2_mask(struct device *dev,
894	struct device_attribute *devattr, const char *buf, size_t count)
895{
896	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
897	struct abituguru_data *data = dev_get_drvdata(dev);
898	int mask = simple_strtoul(buf, NULL, 10);
899	ssize_t ret = count;
900	u8 orig_val;
901
902	mutex_lock(&data->update_lock);
903	orig_val = data->bank2_settings[attr->index][0];
904
905	if (mask)
906		data->bank2_settings[attr->index][0] |= attr->nr;
907	else
908		data->bank2_settings[attr->index][0] &= ~attr->nr;
909
910	if ((data->bank2_settings[attr->index][0] != orig_val) &&
911			(abituguru_write(data,
912			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
913			data->bank2_settings[attr->index], 2) < 1)) {
914		data->bank2_settings[attr->index][0] = orig_val;
915		ret = -EIO;
916	}
917	mutex_unlock(&data->update_lock);
918	return ret;
919}
920
921/* Fan PWM (speed control) */
922static ssize_t show_pwm_setting(struct device *dev,
923	struct device_attribute *devattr, char *buf)
924{
925	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
926	struct abituguru_data *data = dev_get_drvdata(dev);
927	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
928		abituguru_pwm_settings_multiplier[attr->nr]);
929}
930
931static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
932	*devattr, const char *buf, size_t count)
933{
934	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
935	struct abituguru_data *data = dev_get_drvdata(dev);
936	u8 min, val = (simple_strtoul(buf, NULL, 10) +
937		abituguru_pwm_settings_multiplier[attr->nr]/2) /
938		abituguru_pwm_settings_multiplier[attr->nr];
939	ssize_t ret = count;
940
941	/* special case pwm1 min pwm% */
942	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
943		min = 77;
944	else
945		min = abituguru_pwm_min[attr->nr];
946
947	/* this check can be done before taking the lock */
948	if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
949		return -EINVAL;
950
951	mutex_lock(&data->update_lock);
952	/* this check needs to be done after taking the lock */
953	if ((attr->nr & 1) &&
954			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
955		ret = -EINVAL;
956	else if (!(attr->nr & 1) &&
957			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
958		ret = -EINVAL;
959	else if (data->pwm_settings[attr->index][attr->nr] != val) {
960		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
961		data->pwm_settings[attr->index][attr->nr] = val;
962		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
963				attr->index, data->pwm_settings[attr->index],
964				5) <= attr->nr) {
965			data->pwm_settings[attr->index][attr->nr] =
966				orig_val;
967			ret = -EIO;
968		}
969	}
970	mutex_unlock(&data->update_lock);
971	return ret;
972}
973
974static ssize_t show_pwm_sensor(struct device *dev,
975	struct device_attribute *devattr, char *buf)
976{
977	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
978	struct abituguru_data *data = dev_get_drvdata(dev);
979	int i;
980	/* We need to walk to the temp sensor addresses to find what
981	   the userspace id of the configured temp sensor is. */
982	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
983		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
984				(data->pwm_settings[attr->index][0] & 0x0F))
985			return sprintf(buf, "%d\n", i+1);
986
987	return -ENXIO;
988}
989
990static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
991	*devattr, const char *buf, size_t count)
992{
993	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
994	struct abituguru_data *data = dev_get_drvdata(dev);
995	unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
996	ssize_t ret = count;
997
998	mutex_lock(&data->update_lock);
999	if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
1000		u8 orig_val = data->pwm_settings[attr->index][0];
1001		u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1002		data->pwm_settings[attr->index][0] &= 0xF0;
1003		data->pwm_settings[attr->index][0] |= address;
1004		if (data->pwm_settings[attr->index][0] != orig_val) {
1005			if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1006					attr->index,
1007					data->pwm_settings[attr->index],
1008					5) < 1) {
1009				data->pwm_settings[attr->index][0] = orig_val;
1010				ret = -EIO;
1011			}
1012		}
1013	}
1014	else
1015		ret = -EINVAL;
1016	mutex_unlock(&data->update_lock);
1017	return ret;
1018}
1019
1020static ssize_t show_pwm_enable(struct device *dev,
1021	struct device_attribute *devattr, char *buf)
1022{
1023	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024	struct abituguru_data *data = dev_get_drvdata(dev);
1025	int res = 0;
1026	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1027		res = 2;
1028	return sprintf(buf, "%d\n", res);
1029}
1030
1031static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1032	*devattr, const char *buf, size_t count)
1033{
1034	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1035	struct abituguru_data *data = dev_get_drvdata(dev);
1036	u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
1037	ssize_t ret = count;
1038
1039	mutex_lock(&data->update_lock);
1040	orig_val = data->pwm_settings[attr->index][0];
1041	switch (user_val) {
1042		case 0:
1043			data->pwm_settings[attr->index][0] &=
1044				~ABIT_UGURU_FAN_PWM_ENABLE;
1045			break;
1046		case 2:
1047			data->pwm_settings[attr->index][0] |=
1048				ABIT_UGURU_FAN_PWM_ENABLE;
1049			break;
1050		default:
1051			ret = -EINVAL;
1052	}
1053	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1054			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1055			attr->index, data->pwm_settings[attr->index],
1056			5) < 1)) {
1057		data->pwm_settings[attr->index][0] = orig_val;
1058		ret = -EIO;
1059	}
1060	mutex_unlock(&data->update_lock);
1061	return ret;
1062}
1063
1064static ssize_t show_name(struct device *dev,
1065	struct device_attribute *devattr, char *buf)
1066{
1067	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1068}
1069
1070/* Sysfs attr templates, the real entries are generated automatically. */
1071static const
1072struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1073	{
1074	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1075	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1076		store_bank1_setting, 1, 0),
1077	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1078		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1079	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1080		store_bank1_setting, 2, 0),
1081	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1082		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1083	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1084		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1085	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1086		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1087	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1088		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1089	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1090		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1091	}, {
1092	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1093	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1094		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1095	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1096		store_bank1_setting, 1, 0),
1097	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1098		store_bank1_setting, 2, 0),
1099	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1100		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1101	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1102		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1103	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1104		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1105	}
1106};
1107
1108static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1109	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1110	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1111	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1112		store_bank2_setting, 1, 0),
1113	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1114		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1115	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1116		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1117	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1118		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1119};
1120
1121static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1122	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1123		store_pwm_enable, 0, 0),
1124	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1125		store_pwm_sensor, 0, 0),
1126	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1127		store_pwm_setting, 1, 0),
1128	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1129		store_pwm_setting, 2, 0),
1130	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1131		store_pwm_setting, 3, 0),
1132	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1133		store_pwm_setting, 4, 0),
1134};
1135
1136static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1137	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1138};
1139
1140static int __devinit abituguru_probe(struct platform_device *pdev)
1141{
1142	struct abituguru_data *data;
1143	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1144	char *sysfs_filename;
1145
1146	/* El weirdo probe order, to keep the sysfs order identical to the
1147	   BIOS and window-appliction listing order. */
1148	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1149		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1150		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1151
1152	if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
1153		return -ENOMEM;
1154
1155	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1156	mutex_init(&data->update_lock);
1157	platform_set_drvdata(pdev, data);
1158
1159	/* See if the uGuru is ready */
1160	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1161		data->uguru_ready = 1;
1162
1163	/* Completely read the uGuru this has 2 purposes:
1164	   - testread / see if one really is there.
1165	   - make an in memory copy of all the uguru settings for future use. */
1166	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1167			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1168		goto abituguru_probe_error;
1169
1170	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1171		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1172				&data->bank1_value[i], 1,
1173				ABIT_UGURU_MAX_RETRIES) != 1)
1174			goto abituguru_probe_error;
1175		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1176				data->bank1_settings[i], 3,
1177				ABIT_UGURU_MAX_RETRIES) != 3)
1178			goto abituguru_probe_error;
1179	}
1180	/* Note: We don't know how many bank2 sensors / pwms there really are,
1181	   but in order to "detect" this we need to read the maximum amount
1182	   anyways. If we read sensors/pwms not there we'll just read crap
1183	   this can't hurt. We need the detection because we don't want
1184	   unwanted writes, which will hurt! */
1185	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1186		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1187				&data->bank2_value[i], 1,
1188				ABIT_UGURU_MAX_RETRIES) != 1)
1189			goto abituguru_probe_error;
1190		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1191				data->bank2_settings[i], 2,
1192				ABIT_UGURU_MAX_RETRIES) != 2)
1193			goto abituguru_probe_error;
1194	}
1195	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1196		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1197				data->pwm_settings[i], 5,
1198				ABIT_UGURU_MAX_RETRIES) != 5)
1199			goto abituguru_probe_error;
1200	}
1201	data->last_updated = jiffies;
1202
1203	/* Detect sensor types and fill the sysfs attr for bank1 */
1204	sysfs_attr_i = 0;
1205	sysfs_filename = data->sysfs_names;
1206	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1207	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1208		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1209		if (res < 0)
1210			goto abituguru_probe_error;
1211		if (res == ABIT_UGURU_NC)
1212			continue;
1213
1214		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1215		for (j = 0; j < (res ? 7 : 9); j++) {
1216			used = snprintf(sysfs_filename, sysfs_names_free,
1217				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1218				attr.name, data->bank1_sensors[res] + res)
1219				+ 1;
1220			data->sysfs_attr[sysfs_attr_i] =
1221				abituguru_sysfs_bank1_templ[res][j];
1222			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1223				sysfs_filename;
1224			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1225			sysfs_filename += used;
1226			sysfs_names_free -= used;
1227			sysfs_attr_i++;
1228		}
1229		data->bank1_max_value[probe_order[i]] =
1230			abituguru_bank1_max_value[res];
1231		data->bank1_address[res][data->bank1_sensors[res]] =
1232			probe_order[i];
1233		data->bank1_sensors[res]++;
1234	}
1235	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1236	abituguru_detect_no_bank2_sensors(data);
1237	for (i = 0; i < data->bank2_sensors; i++) {
1238		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1239			used = snprintf(sysfs_filename, sysfs_names_free,
1240				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1241				i + 1) + 1;
1242			data->sysfs_attr[sysfs_attr_i] =
1243				abituguru_sysfs_fan_templ[j];
1244			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1245				sysfs_filename;
1246			data->sysfs_attr[sysfs_attr_i].index = i;
1247			sysfs_filename += used;
1248			sysfs_names_free -= used;
1249			sysfs_attr_i++;
1250		}
1251	}
1252	/* Detect number of sensors and fill the sysfs attr for pwms */
1253	abituguru_detect_no_pwms(data);
1254	for (i = 0; i < data->pwms; i++) {
1255		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1256			used = snprintf(sysfs_filename, sysfs_names_free,
1257				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1258				i + 1) + 1;
1259			data->sysfs_attr[sysfs_attr_i] =
1260				abituguru_sysfs_pwm_templ[j];
1261			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1262				sysfs_filename;
1263			data->sysfs_attr[sysfs_attr_i].index = i;
1264			sysfs_filename += used;
1265			sysfs_names_free -= used;
1266			sysfs_attr_i++;
1267		}
1268	}
1269	/* Fail safe check, this should never happen! */
1270	if (sysfs_names_free < 0) {
1271		printk(KERN_ERR ABIT_UGURU_NAME ": Fatal error ran out of "
1272		       "space for sysfs attr names. This should never "
1273		       "happen please report to the abituguru maintainer "
1274		       "(see MAINTAINERS)\n");
1275		res = -ENAMETOOLONG;
1276		goto abituguru_probe_error;
1277	}
1278	printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n");
1279
1280	/* Register sysfs hooks */
1281	for (i = 0; i < sysfs_attr_i; i++)
1282		if (device_create_file(&pdev->dev,
1283				&data->sysfs_attr[i].dev_attr))
1284			goto abituguru_probe_error;
1285	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1286		if (device_create_file(&pdev->dev,
1287				&abituguru_sysfs_attr[i].dev_attr))
1288			goto abituguru_probe_error;
1289
1290	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1291	if (!IS_ERR(data->hwmon_dev))
1292		return 0; /* success */
1293
1294	res = PTR_ERR(data->hwmon_dev);
1295abituguru_probe_error:
1296	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1297		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1298	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1299		device_remove_file(&pdev->dev,
1300			&abituguru_sysfs_attr[i].dev_attr);
1301	platform_set_drvdata(pdev, NULL);
1302	kfree(data);
1303	return res;
1304}
1305
1306static int __devexit abituguru_remove(struct platform_device *pdev)
1307{
1308	int i;
1309	struct abituguru_data *data = platform_get_drvdata(pdev);
1310
1311	hwmon_device_unregister(data->hwmon_dev);
1312	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1313		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1314	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1315		device_remove_file(&pdev->dev,
1316			&abituguru_sysfs_attr[i].dev_attr);
1317	platform_set_drvdata(pdev, NULL);
1318	kfree(data);
1319
1320	return 0;
1321}
1322
1323static struct abituguru_data *abituguru_update_device(struct device *dev)
1324{
1325	int i, err;
1326	struct abituguru_data *data = dev_get_drvdata(dev);
1327	/* fake a complete successful read if no update necessary. */
1328	char success = 1;
1329
1330	mutex_lock(&data->update_lock);
1331	if (time_after(jiffies, data->last_updated + HZ)) {
1332		success = 0;
1333		if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1334				data->alarms, 3, 0)) != 3)
1335			goto LEAVE_UPDATE;
1336		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1337			if ((err = abituguru_read(data,
1338					ABIT_UGURU_SENSOR_BANK1, i,
1339					&data->bank1_value[i], 1, 0)) != 1)
1340				goto LEAVE_UPDATE;
1341			if ((err = abituguru_read(data,
1342					ABIT_UGURU_SENSOR_BANK1 + 1, i,
1343					data->bank1_settings[i], 3, 0)) != 3)
1344				goto LEAVE_UPDATE;
1345		}
1346		for (i = 0; i < data->bank2_sensors; i++)
1347			if ((err = abituguru_read(data,
1348					ABIT_UGURU_SENSOR_BANK2, i,
1349					&data->bank2_value[i], 1, 0)) != 1)
1350				goto LEAVE_UPDATE;
1351		/* success! */
1352		success = 1;
1353		data->update_timeouts = 0;
1354LEAVE_UPDATE:
1355		/* handle timeout condition */
1356		if (!success && (err == -EBUSY || err >= 0)) {
1357			/* No overflow please */
1358			if (data->update_timeouts < 255u)
1359				data->update_timeouts++;
1360			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1361				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1362					"try again next update\n");
1363				/* Just a timeout, fake a successful read */
1364				success = 1;
1365			} else
1366				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1367					"times waiting for more input state\n",
1368					(int)data->update_timeouts);
1369		}
1370		/* On success set last_updated */
1371		if (success)
1372			data->last_updated = jiffies;
1373	}
1374	mutex_unlock(&data->update_lock);
1375
1376	if (success)
1377		return data;
1378	else
1379		return NULL;
1380}
1381
1382#ifdef CONFIG_PM
1383static int abituguru_suspend(struct platform_device *pdev, pm_message_t state)
1384{
1385	struct abituguru_data *data = platform_get_drvdata(pdev);
1386	/* make sure all communications with the uguru are done and no new
1387	   ones are started */
1388	mutex_lock(&data->update_lock);
1389	return 0;
1390}
1391
1392static int abituguru_resume(struct platform_device *pdev)
1393{
1394	struct abituguru_data *data = platform_get_drvdata(pdev);
1395	/* See if the uGuru is still ready */
1396	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1397		data->uguru_ready = 0;
1398	mutex_unlock(&data->update_lock);
1399	return 0;
1400}
1401#else
1402#define abituguru_suspend	NULL
1403#define abituguru_resume	NULL
1404#endif /* CONFIG_PM */
1405
1406static struct platform_driver abituguru_driver = {
1407	.driver = {
1408		.owner	= THIS_MODULE,
1409		.name	= ABIT_UGURU_NAME,
1410	},
1411	.probe		= abituguru_probe,
1412	.remove		= __devexit_p(abituguru_remove),
1413	.suspend	= abituguru_suspend,
1414	.resume		= abituguru_resume,
1415};
1416
1417static int __init abituguru_detect(void)
1418{
1419	/* See if there is an uguru there. After a reboot uGuru will hold 0x00
1420	   at DATA and 0xAC, when this driver has already been loaded once
1421	   DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1422	   scenario but some will hold 0x00.
1423	   Some uGuru's initally hold 0x09 at DATA and will only hold 0x08
1424	   after reading CMD first, so CMD must be read first! */
1425	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1426	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1427	if (((data_val == 0x00) || (data_val == 0x08)) &&
1428	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1429		return ABIT_UGURU_BASE;
1430
1431	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1432		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1433
1434	if (force) {
1435		printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is "
1436				"present because of \"force\" parameter\n");
1437		return ABIT_UGURU_BASE;
1438	}
1439
1440	/* No uGuru found */
1441	return -ENODEV;
1442}
1443
1444static struct platform_device *abituguru_pdev;
1445
1446static int __init abituguru_init(void)
1447{
1448	int address, err;
1449	struct resource res = { .flags = IORESOURCE_IO };
1450
1451#ifdef CONFIG_DMI
1452	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1453
1454	/* safety check, refuse to load on non Abit motherboards */
1455	if (!force && (!board_vendor ||
1456			strcmp(board_vendor, "http://www.abit.com.tw/")))
1457		return -ENODEV;
1458#endif
1459
1460	address = abituguru_detect();
1461	if (address < 0)
1462		return address;
1463
1464	err = platform_driver_register(&abituguru_driver);
1465	if (err)
1466		goto exit;
1467
1468	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1469	if (!abituguru_pdev) {
1470		printk(KERN_ERR ABIT_UGURU_NAME
1471			": Device allocation failed\n");
1472		err = -ENOMEM;
1473		goto exit_driver_unregister;
1474	}
1475
1476	res.start = address;
1477	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1478	res.name = ABIT_UGURU_NAME;
1479
1480	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1481	if (err) {
1482		printk(KERN_ERR ABIT_UGURU_NAME
1483			": Device resource addition failed (%d)\n", err);
1484		goto exit_device_put;
1485	}
1486
1487	err = platform_device_add(abituguru_pdev);
1488	if (err) {
1489		printk(KERN_ERR ABIT_UGURU_NAME
1490			": Device addition failed (%d)\n", err);
1491		goto exit_device_put;
1492	}
1493
1494	return 0;
1495
1496exit_device_put:
1497	platform_device_put(abituguru_pdev);
1498exit_driver_unregister:
1499	platform_driver_unregister(&abituguru_driver);
1500exit:
1501	return err;
1502}
1503
1504static void __exit abituguru_exit(void)
1505{
1506	platform_device_unregister(abituguru_pdev);
1507	platform_driver_unregister(&abituguru_driver);
1508}
1509
1510MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>");
1511MODULE_DESCRIPTION("Abit uGuru Sensor device");
1512MODULE_LICENSE("GPL");
1513
1514module_init(abituguru_init);
1515module_exit(abituguru_exit);
1516