• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/firewire/
1/*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 *     James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 *     Ben Collins <bcollins@debian.org>,
27 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31#include <linux/blkdev.h>
32#include <linux/bug.h>
33#include <linux/completion.h>
34#include <linux/delay.h>
35#include <linux/device.h>
36#include <linux/dma-mapping.h>
37#include <linux/firewire.h>
38#include <linux/firewire-constants.h>
39#include <linux/init.h>
40#include <linux/jiffies.h>
41#include <linux/kernel.h>
42#include <linux/kref.h>
43#include <linux/list.h>
44#include <linux/mod_devicetable.h>
45#include <linux/module.h>
46#include <linux/moduleparam.h>
47#include <linux/scatterlist.h>
48#include <linux/slab.h>
49#include <linux/spinlock.h>
50#include <linux/string.h>
51#include <linux/stringify.h>
52#include <linux/workqueue.h>
53
54#include <asm/byteorder.h>
55#include <asm/system.h>
56
57#include <scsi/scsi.h>
58#include <scsi/scsi_cmnd.h>
59#include <scsi/scsi_device.h>
60#include <scsi/scsi_host.h>
61
62/*
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
66 *
67 * Concurrent logins are useful together with cluster filesystems.
68 */
69static int sbp2_param_exclusive_login = 1;
70module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72		 "(default = Y, use N for concurrent initiators)");
73
74/*
75 * Flags for firmware oddities
76 *
77 * - 128kB max transfer
78 *   Limit transfer size. Necessary for some old bridges.
79 *
80 * - 36 byte inquiry
81 *   When scsi_mod probes the device, let the inquiry command look like that
82 *   from MS Windows.
83 *
84 * - skip mode page 8
85 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
86 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
87 *
88 * - fix capacity
89 *   Tell sd_mod to correct the last sector number reported by read_capacity.
90 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 *   Don't use this with devices which don't have this bug.
92 *
93 * - delay inquiry
94 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95 *
96 * - power condition
97 *   Set the power condition field in the START STOP UNIT commands sent by
98 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 *   Some disks need this to spin down or to resume properly.
100 *
101 * - override internal blacklist
102 *   Instead of adding to the built-in blacklist, use only the workarounds
103 *   specified in the module load parameter.
104 *   Useful if a blacklist entry interfered with a non-broken device.
105 */
106#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
107#define SBP2_WORKAROUND_INQUIRY_36	0x2
108#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
109#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
110#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
111#define SBP2_INQUIRY_DELAY		12
112#define SBP2_WORKAROUND_POWER_CONDITION	0x20
113#define SBP2_WORKAROUND_OVERRIDE	0x100
114
115static int sbp2_param_workarounds;
116module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
120	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123	", set power condition in start stop unit = "
124				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126	", or a combination)");
127
128/* I don't know why the SCSI stack doesn't define something like this... */
129typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
130
131static const char sbp2_driver_name[] = "sbp2";
132
133/*
134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
135 * and one struct scsi_device per sbp2_logical_unit.
136 */
137struct sbp2_logical_unit {
138	struct sbp2_target *tgt;
139	struct list_head link;
140	struct fw_address_handler address_handler;
141	struct list_head orb_list;
142
143	u64 command_block_agent_address;
144	u16 lun;
145	int login_id;
146
147	/*
148	 * The generation is updated once we've logged in or reconnected
149	 * to the logical unit.  Thus, I/O to the device will automatically
150	 * fail and get retried if it happens in a window where the device
151	 * is not ready, e.g. after a bus reset but before we reconnect.
152	 */
153	int generation;
154	int retries;
155	struct delayed_work work;
156	bool has_sdev;
157	bool blocked;
158};
159
160/*
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
163 */
164struct sbp2_target {
165	struct kref kref;
166	struct fw_unit *unit;
167	const char *bus_id;
168	struct list_head lu_list;
169
170	u64 management_agent_address;
171	u64 guid;
172	int directory_id;
173	int node_id;
174	int address_high;
175	unsigned int workarounds;
176	unsigned int mgt_orb_timeout;
177	unsigned int max_payload;
178
179	int dont_block;	/* counter for each logical unit */
180	int blocked;	/* ditto */
181};
182
183static struct fw_device *target_device(struct sbp2_target *tgt)
184{
185	return fw_parent_device(tgt->unit);
186}
187
188/* Impossible login_id, to detect logout attempt before successful login */
189#define INVALID_LOGIN_ID 0x10000
190
191#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
192#define SBP2_ORB_NULL			0x80000000
193#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
194#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
195
196/*
197 * There is no transport protocol limit to the CDB length,  but we implement
198 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
199 */
200#define SBP2_MAX_CDB_SIZE		16
201
202/*
203 * The default maximum s/g segment size of a FireWire controller is
204 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
205 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
206 */
207#define SBP2_MAX_SEG_SIZE		0xfffc
208
209/* Unit directory keys */
210#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
211#define SBP2_CSR_FIRMWARE_REVISION	0x3c
212#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
213#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
214
215/* Management orb opcodes */
216#define SBP2_LOGIN_REQUEST		0x0
217#define SBP2_QUERY_LOGINS_REQUEST	0x1
218#define SBP2_RECONNECT_REQUEST		0x3
219#define SBP2_SET_PASSWORD_REQUEST	0x4
220#define SBP2_LOGOUT_REQUEST		0x7
221#define SBP2_ABORT_TASK_REQUEST		0xb
222#define SBP2_ABORT_TASK_SET		0xc
223#define SBP2_LOGICAL_UNIT_RESET		0xe
224#define SBP2_TARGET_RESET_REQUEST	0xf
225
226/* Offsets for command block agent registers */
227#define SBP2_AGENT_STATE		0x00
228#define SBP2_AGENT_RESET		0x04
229#define SBP2_ORB_POINTER		0x08
230#define SBP2_DOORBELL			0x10
231#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
232
233/* Status write response codes */
234#define SBP2_STATUS_REQUEST_COMPLETE	0x0
235#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
236#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
237#define SBP2_STATUS_VENDOR_DEPENDENT	0x3
238
239#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
240#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
241#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
242#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
243#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
244#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
245#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
246#define STATUS_GET_DATA(v)		((v).data)
247
248struct sbp2_status {
249	u32 status;
250	u32 orb_low;
251	u8 data[24];
252};
253
254struct sbp2_pointer {
255	__be32 high;
256	__be32 low;
257};
258
259struct sbp2_orb {
260	struct fw_transaction t;
261	struct kref kref;
262	dma_addr_t request_bus;
263	int rcode;
264	struct sbp2_pointer pointer;
265	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
266	struct list_head link;
267};
268
269#define MANAGEMENT_ORB_LUN(v)			((v))
270#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
271#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
272#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
273#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
274#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
275
276#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
277#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
278
279struct sbp2_management_orb {
280	struct sbp2_orb base;
281	struct {
282		struct sbp2_pointer password;
283		struct sbp2_pointer response;
284		__be32 misc;
285		__be32 length;
286		struct sbp2_pointer status_fifo;
287	} request;
288	__be32 response[4];
289	dma_addr_t response_bus;
290	struct completion done;
291	struct sbp2_status status;
292};
293
294struct sbp2_login_response {
295	__be32 misc;
296	struct sbp2_pointer command_block_agent;
297	__be32 reconnect_hold;
298};
299#define COMMAND_ORB_DATA_SIZE(v)	((v))
300#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
301#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
302#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
303#define COMMAND_ORB_SPEED(v)		((v) << 24)
304#define COMMAND_ORB_DIRECTION		((1) << 27)
305#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
306#define COMMAND_ORB_NOTIFY		((1) << 31)
307
308struct sbp2_command_orb {
309	struct sbp2_orb base;
310	struct {
311		struct sbp2_pointer next;
312		struct sbp2_pointer data_descriptor;
313		__be32 misc;
314		u8 command_block[SBP2_MAX_CDB_SIZE];
315	} request;
316	struct scsi_cmnd *cmd;
317	scsi_done_fn_t done;
318	struct sbp2_logical_unit *lu;
319
320	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
321	dma_addr_t page_table_bus;
322};
323
324#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
325#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
326
327/*
328 * List of devices with known bugs.
329 *
330 * The firmware_revision field, masked with 0xffff00, is the best
331 * indicator for the type of bridge chip of a device.  It yields a few
332 * false positives but this did not break correctly behaving devices
333 * so far.
334 */
335static const struct {
336	u32 firmware_revision;
337	u32 model;
338	unsigned int workarounds;
339} sbp2_workarounds_table[] = {
340	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
341		.firmware_revision	= 0x002800,
342		.model			= 0x001010,
343		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
344					  SBP2_WORKAROUND_MODE_SENSE_8 |
345					  SBP2_WORKAROUND_POWER_CONDITION,
346	},
347	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
348		.firmware_revision	= 0x002800,
349		.model			= 0x000000,
350		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
351	},
352	/* Initio bridges, actually only needed for some older ones */ {
353		.firmware_revision	= 0x000200,
354		.model			= SBP2_ROM_VALUE_WILDCARD,
355		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
356	},
357	/* PL-3507 bridge with Prolific firmware */ {
358		.firmware_revision	= 0x012800,
359		.model			= SBP2_ROM_VALUE_WILDCARD,
360		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
361	},
362	/* Symbios bridge */ {
363		.firmware_revision	= 0xa0b800,
364		.model			= SBP2_ROM_VALUE_WILDCARD,
365		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
366	},
367	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
368		.firmware_revision	= 0x002600,
369		.model			= SBP2_ROM_VALUE_WILDCARD,
370		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
371	},
372	{
373		.firmware_revision	= 0x0a2700,
374		.model			= 0x000000,
375		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
376					  SBP2_WORKAROUND_FIX_CAPACITY,
377	},
378	/* iPod 4th generation */ {
379		.firmware_revision	= 0x0a2700,
380		.model			= 0x000021,
381		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
382	},
383	/* iPod mini */ {
384		.firmware_revision	= 0x0a2700,
385		.model			= 0x000022,
386		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
387	},
388	/* iPod mini */ {
389		.firmware_revision	= 0x0a2700,
390		.model			= 0x000023,
391		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
392	},
393	/* iPod Photo */ {
394		.firmware_revision	= 0x0a2700,
395		.model			= 0x00007e,
396		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
397	}
398};
399
400static void free_orb(struct kref *kref)
401{
402	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
403
404	kfree(orb);
405}
406
407static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
408			      int tcode, int destination, int source,
409			      int generation, unsigned long long offset,
410			      void *payload, size_t length, void *callback_data)
411{
412	struct sbp2_logical_unit *lu = callback_data;
413	struct sbp2_orb *orb;
414	struct sbp2_status status;
415	unsigned long flags;
416
417	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
418	    length < 8 || length > sizeof(status)) {
419		fw_send_response(card, request, RCODE_TYPE_ERROR);
420		return;
421	}
422
423	status.status  = be32_to_cpup(payload);
424	status.orb_low = be32_to_cpup(payload + 4);
425	memset(status.data, 0, sizeof(status.data));
426	if (length > 8)
427		memcpy(status.data, payload + 8, length - 8);
428
429	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
430		fw_notify("non-orb related status write, not handled\n");
431		fw_send_response(card, request, RCODE_COMPLETE);
432		return;
433	}
434
435	/* Lookup the orb corresponding to this status write. */
436	spin_lock_irqsave(&card->lock, flags);
437	list_for_each_entry(orb, &lu->orb_list, link) {
438		if (STATUS_GET_ORB_HIGH(status) == 0 &&
439		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
440			orb->rcode = RCODE_COMPLETE;
441			list_del(&orb->link);
442			break;
443		}
444	}
445	spin_unlock_irqrestore(&card->lock, flags);
446
447	if (&orb->link != &lu->orb_list) {
448		orb->callback(orb, &status);
449		kref_put(&orb->kref, free_orb); /* orb callback reference */
450	} else {
451		fw_error("status write for unknown orb\n");
452	}
453
454	fw_send_response(card, request, RCODE_COMPLETE);
455}
456
457static void complete_transaction(struct fw_card *card, int rcode,
458				 void *payload, size_t length, void *data)
459{
460	struct sbp2_orb *orb = data;
461	unsigned long flags;
462
463	/*
464	 * This is a little tricky.  We can get the status write for
465	 * the orb before we get this callback.  The status write
466	 * handler above will assume the orb pointer transaction was
467	 * successful and set the rcode to RCODE_COMPLETE for the orb.
468	 * So this callback only sets the rcode if it hasn't already
469	 * been set and only does the cleanup if the transaction
470	 * failed and we didn't already get a status write.
471	 *
472	 * Here we treat RCODE_CANCELLED like RCODE_COMPLETE because some
473	 * OXUF936QSE firmwares occasionally respond after Split_Timeout and
474	 * complete the ORB just fine.  Note, we also get RCODE_CANCELLED
475	 * from sbp2_cancel_orbs() if fw_cancel_transaction() == 0.
476	 */
477	spin_lock_irqsave(&card->lock, flags);
478
479	if (orb->rcode == -1)
480		orb->rcode = rcode;
481
482	if (orb->rcode != RCODE_COMPLETE && orb->rcode != RCODE_CANCELLED) {
483		list_del(&orb->link);
484		spin_unlock_irqrestore(&card->lock, flags);
485
486		orb->callback(orb, NULL);
487		kref_put(&orb->kref, free_orb); /* orb callback reference */
488	} else {
489		spin_unlock_irqrestore(&card->lock, flags);
490	}
491
492	kref_put(&orb->kref, free_orb); /* transaction callback reference */
493}
494
495static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
496			  int node_id, int generation, u64 offset)
497{
498	struct fw_device *device = target_device(lu->tgt);
499	unsigned long flags;
500
501	orb->pointer.high = 0;
502	orb->pointer.low = cpu_to_be32(orb->request_bus);
503
504	spin_lock_irqsave(&device->card->lock, flags);
505	list_add_tail(&orb->link, &lu->orb_list);
506	spin_unlock_irqrestore(&device->card->lock, flags);
507
508	kref_get(&orb->kref); /* transaction callback reference */
509	kref_get(&orb->kref); /* orb callback reference */
510
511	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
512			node_id, generation, device->max_speed, offset,
513			&orb->pointer, 8, complete_transaction, orb);
514}
515
516static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
517{
518	struct fw_device *device = target_device(lu->tgt);
519	struct sbp2_orb *orb, *next;
520	struct list_head list;
521	unsigned long flags;
522	int retval = -ENOENT;
523
524	INIT_LIST_HEAD(&list);
525	spin_lock_irqsave(&device->card->lock, flags);
526	list_splice_init(&lu->orb_list, &list);
527	spin_unlock_irqrestore(&device->card->lock, flags);
528
529	list_for_each_entry_safe(orb, next, &list, link) {
530		retval = 0;
531		fw_cancel_transaction(device->card, &orb->t);
532
533		orb->rcode = RCODE_CANCELLED;
534		orb->callback(orb, NULL);
535		kref_put(&orb->kref, free_orb); /* orb callback reference */
536	}
537
538	return retval;
539}
540
541static void complete_management_orb(struct sbp2_orb *base_orb,
542				    struct sbp2_status *status)
543{
544	struct sbp2_management_orb *orb =
545		container_of(base_orb, struct sbp2_management_orb, base);
546
547	if (status)
548		memcpy(&orb->status, status, sizeof(*status));
549	complete(&orb->done);
550}
551
552static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
553				    int generation, int function,
554				    int lun_or_login_id, void *response)
555{
556	struct fw_device *device = target_device(lu->tgt);
557	struct sbp2_management_orb *orb;
558	unsigned int timeout;
559	int retval = -ENOMEM;
560
561	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
562		return 0;
563
564	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
565	if (orb == NULL)
566		return -ENOMEM;
567
568	kref_init(&orb->base.kref);
569	orb->response_bus =
570		dma_map_single(device->card->device, &orb->response,
571			       sizeof(orb->response), DMA_FROM_DEVICE);
572	if (dma_mapping_error(device->card->device, orb->response_bus))
573		goto fail_mapping_response;
574
575	orb->request.response.high = 0;
576	orb->request.response.low  = cpu_to_be32(orb->response_bus);
577
578	orb->request.misc = cpu_to_be32(
579		MANAGEMENT_ORB_NOTIFY |
580		MANAGEMENT_ORB_FUNCTION(function) |
581		MANAGEMENT_ORB_LUN(lun_or_login_id));
582	orb->request.length = cpu_to_be32(
583		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
584
585	orb->request.status_fifo.high =
586		cpu_to_be32(lu->address_handler.offset >> 32);
587	orb->request.status_fifo.low  =
588		cpu_to_be32(lu->address_handler.offset);
589
590	if (function == SBP2_LOGIN_REQUEST) {
591		/* Ask for 2^2 == 4 seconds reconnect grace period */
592		orb->request.misc |= cpu_to_be32(
593			MANAGEMENT_ORB_RECONNECT(2) |
594			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
595		timeout = lu->tgt->mgt_orb_timeout;
596	} else {
597		timeout = SBP2_ORB_TIMEOUT;
598	}
599
600	init_completion(&orb->done);
601	orb->base.callback = complete_management_orb;
602
603	orb->base.request_bus =
604		dma_map_single(device->card->device, &orb->request,
605			       sizeof(orb->request), DMA_TO_DEVICE);
606	if (dma_mapping_error(device->card->device, orb->base.request_bus))
607		goto fail_mapping_request;
608
609	sbp2_send_orb(&orb->base, lu, node_id, generation,
610		      lu->tgt->management_agent_address);
611
612	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
613
614	retval = -EIO;
615	if (sbp2_cancel_orbs(lu) == 0) {
616		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
617			 lu->tgt->bus_id, orb->base.rcode);
618		goto out;
619	}
620
621	if (orb->base.rcode != RCODE_COMPLETE) {
622		fw_error("%s: management write failed, rcode 0x%02x\n",
623			 lu->tgt->bus_id, orb->base.rcode);
624		goto out;
625	}
626
627	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
628	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
629		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
630			 STATUS_GET_RESPONSE(orb->status),
631			 STATUS_GET_SBP_STATUS(orb->status));
632		goto out;
633	}
634
635	retval = 0;
636 out:
637	dma_unmap_single(device->card->device, orb->base.request_bus,
638			 sizeof(orb->request), DMA_TO_DEVICE);
639 fail_mapping_request:
640	dma_unmap_single(device->card->device, orb->response_bus,
641			 sizeof(orb->response), DMA_FROM_DEVICE);
642 fail_mapping_response:
643	if (response)
644		memcpy(response, orb->response, sizeof(orb->response));
645	kref_put(&orb->base.kref, free_orb);
646
647	return retval;
648}
649
650static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
651{
652	struct fw_device *device = target_device(lu->tgt);
653	__be32 d = 0;
654
655	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
656			   lu->tgt->node_id, lu->generation, device->max_speed,
657			   lu->command_block_agent_address + SBP2_AGENT_RESET,
658			   &d, 4);
659}
660
661static void complete_agent_reset_write_no_wait(struct fw_card *card,
662		int rcode, void *payload, size_t length, void *data)
663{
664	kfree(data);
665}
666
667static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
668{
669	struct fw_device *device = target_device(lu->tgt);
670	struct fw_transaction *t;
671	static __be32 d;
672
673	t = kmalloc(sizeof(*t), GFP_ATOMIC);
674	if (t == NULL)
675		return;
676
677	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
678			lu->tgt->node_id, lu->generation, device->max_speed,
679			lu->command_block_agent_address + SBP2_AGENT_RESET,
680			&d, 4, complete_agent_reset_write_no_wait, t);
681}
682
683static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
684{
685	/*
686	 * We may access dont_block without taking card->lock here:
687	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
688	 * are currently serialized against each other.
689	 * And a wrong result in sbp2_conditionally_block()'s access of
690	 * dont_block is rather harmless, it simply misses its first chance.
691	 */
692	--lu->tgt->dont_block;
693}
694
695/*
696 * Blocks lu->tgt if all of the following conditions are met:
697 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
698 *     logical units have been finished (indicated by dont_block == 0).
699 *   - lu->generation is stale.
700 *
701 * Note, scsi_block_requests() must be called while holding card->lock,
702 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
703 * unblock the target.
704 */
705static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
706{
707	struct sbp2_target *tgt = lu->tgt;
708	struct fw_card *card = target_device(tgt)->card;
709	struct Scsi_Host *shost =
710		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
711	unsigned long flags;
712
713	spin_lock_irqsave(&card->lock, flags);
714	if (!tgt->dont_block && !lu->blocked &&
715	    lu->generation != card->generation) {
716		lu->blocked = true;
717		if (++tgt->blocked == 1)
718			scsi_block_requests(shost);
719	}
720	spin_unlock_irqrestore(&card->lock, flags);
721}
722
723/*
724 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
725 * Note, it is harmless to run scsi_unblock_requests() outside the
726 * card->lock protected section.  On the other hand, running it inside
727 * the section might clash with shost->host_lock.
728 */
729static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
730{
731	struct sbp2_target *tgt = lu->tgt;
732	struct fw_card *card = target_device(tgt)->card;
733	struct Scsi_Host *shost =
734		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
735	unsigned long flags;
736	bool unblock = false;
737
738	spin_lock_irqsave(&card->lock, flags);
739	if (lu->blocked && lu->generation == card->generation) {
740		lu->blocked = false;
741		unblock = --tgt->blocked == 0;
742	}
743	spin_unlock_irqrestore(&card->lock, flags);
744
745	if (unblock)
746		scsi_unblock_requests(shost);
747}
748
749/*
750 * Prevents future blocking of tgt and unblocks it.
751 * Note, it is harmless to run scsi_unblock_requests() outside the
752 * card->lock protected section.  On the other hand, running it inside
753 * the section might clash with shost->host_lock.
754 */
755static void sbp2_unblock(struct sbp2_target *tgt)
756{
757	struct fw_card *card = target_device(tgt)->card;
758	struct Scsi_Host *shost =
759		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
760	unsigned long flags;
761
762	spin_lock_irqsave(&card->lock, flags);
763	++tgt->dont_block;
764	spin_unlock_irqrestore(&card->lock, flags);
765
766	scsi_unblock_requests(shost);
767}
768
769static int sbp2_lun2int(u16 lun)
770{
771	struct scsi_lun eight_bytes_lun;
772
773	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
774	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
775	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
776
777	return scsilun_to_int(&eight_bytes_lun);
778}
779
780static void sbp2_release_target(struct kref *kref)
781{
782	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
783	struct sbp2_logical_unit *lu, *next;
784	struct Scsi_Host *shost =
785		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
786	struct scsi_device *sdev;
787	struct fw_device *device = target_device(tgt);
788
789	/* prevent deadlocks */
790	sbp2_unblock(tgt);
791
792	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
793		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
794		if (sdev) {
795			scsi_remove_device(sdev);
796			scsi_device_put(sdev);
797		}
798		if (lu->login_id != INVALID_LOGIN_ID) {
799			int generation, node_id;
800			/*
801			 * tgt->node_id may be obsolete here if we failed
802			 * during initial login or after a bus reset where
803			 * the topology changed.
804			 */
805			generation = device->generation;
806			smp_rmb(); /* node_id vs. generation */
807			node_id    = device->node_id;
808			sbp2_send_management_orb(lu, node_id, generation,
809						 SBP2_LOGOUT_REQUEST,
810						 lu->login_id, NULL);
811		}
812		fw_core_remove_address_handler(&lu->address_handler);
813		list_del(&lu->link);
814		kfree(lu);
815	}
816	scsi_remove_host(shost);
817	fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
818
819	fw_unit_put(tgt->unit);
820	scsi_host_put(shost);
821	fw_device_put(device);
822}
823
824static void sbp2_target_get(struct sbp2_target *tgt)
825{
826	kref_get(&tgt->kref);
827}
828
829static void sbp2_target_put(struct sbp2_target *tgt)
830{
831	kref_put(&tgt->kref, sbp2_release_target);
832}
833
834static struct workqueue_struct *sbp2_wq;
835
836/*
837 * Always get the target's kref when scheduling work on one its units.
838 * Each workqueue job is responsible to call sbp2_target_put() upon return.
839 */
840static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
841{
842	sbp2_target_get(lu->tgt);
843	if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
844		sbp2_target_put(lu->tgt);
845}
846
847/*
848 * Write retransmit retry values into the BUSY_TIMEOUT register.
849 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
850 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
851 *   saner value after logging into the device.
852 * - The dual-phase retry protocol is optional to implement, and if not
853 *   supported, writes to the dual-phase portion of the register will be
854 *   ignored. We try to write the original 1394-1995 default here.
855 * - In the case of devices that are also SBP-3-compliant, all writes are
856 *   ignored, as the register is read-only, but contains single-phase retry of
857 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
858 *   write attempt is safe and yields more consistent behavior for all devices.
859 *
860 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
861 * and section 6.4 of the SBP-3 spec for further details.
862 */
863static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
864{
865	struct fw_device *device = target_device(lu->tgt);
866	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
867
868	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
869			   lu->tgt->node_id, lu->generation, device->max_speed,
870			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
871}
872
873static void sbp2_reconnect(struct work_struct *work);
874
875static void sbp2_login(struct work_struct *work)
876{
877	struct sbp2_logical_unit *lu =
878		container_of(work, struct sbp2_logical_unit, work.work);
879	struct sbp2_target *tgt = lu->tgt;
880	struct fw_device *device = target_device(tgt);
881	struct Scsi_Host *shost;
882	struct scsi_device *sdev;
883	struct sbp2_login_response response;
884	int generation, node_id, local_node_id;
885
886	if (fw_device_is_shutdown(device))
887		goto out;
888
889	generation    = device->generation;
890	smp_rmb();    /* node IDs must not be older than generation */
891	node_id       = device->node_id;
892	local_node_id = device->card->node_id;
893
894	/* If this is a re-login attempt, log out, or we might be rejected. */
895	if (lu->has_sdev)
896		sbp2_send_management_orb(lu, device->node_id, generation,
897				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
898
899	if (sbp2_send_management_orb(lu, node_id, generation,
900				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
901		if (lu->retries++ < 5) {
902			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
903		} else {
904			fw_error("%s: failed to login to LUN %04x\n",
905				 tgt->bus_id, lu->lun);
906			/* Let any waiting I/O fail from now on. */
907			sbp2_unblock(lu->tgt);
908		}
909		goto out;
910	}
911
912	tgt->node_id	  = node_id;
913	tgt->address_high = local_node_id << 16;
914	smp_wmb();	  /* node IDs must not be older than generation */
915	lu->generation	  = generation;
916
917	lu->command_block_agent_address =
918		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
919		      << 32) | be32_to_cpu(response.command_block_agent.low);
920	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
921
922	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
923		  tgt->bus_id, lu->lun, lu->retries);
924
925	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
926	sbp2_set_busy_timeout(lu);
927
928	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
929	sbp2_agent_reset(lu);
930
931	/* This was a re-login. */
932	if (lu->has_sdev) {
933		sbp2_cancel_orbs(lu);
934		sbp2_conditionally_unblock(lu);
935		goto out;
936	}
937
938	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
939		ssleep(SBP2_INQUIRY_DELAY);
940
941	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
942	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
943
944	/* Reported error during __scsi_add_device() */
945	if (IS_ERR(sdev))
946		goto out_logout_login;
947
948	/* Unreported error during __scsi_add_device() */
949	smp_rmb(); /* get current card generation */
950	if (generation != device->card->generation) {
951		scsi_remove_device(sdev);
952		scsi_device_put(sdev);
953		goto out_logout_login;
954	}
955
956	/* No error during __scsi_add_device() */
957	lu->has_sdev = true;
958	scsi_device_put(sdev);
959	sbp2_allow_block(lu);
960	goto out;
961
962 out_logout_login:
963	smp_rmb(); /* generation may have changed */
964	generation = device->generation;
965	smp_rmb(); /* node_id must not be older than generation */
966
967	sbp2_send_management_orb(lu, device->node_id, generation,
968				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
969	/*
970	 * If a bus reset happened, sbp2_update will have requeued
971	 * lu->work already.  Reset the work from reconnect to login.
972	 */
973	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
974 out:
975	sbp2_target_put(tgt);
976}
977
978static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
979{
980	struct sbp2_logical_unit *lu;
981
982	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
983	if (!lu)
984		return -ENOMEM;
985
986	lu->address_handler.length           = 0x100;
987	lu->address_handler.address_callback = sbp2_status_write;
988	lu->address_handler.callback_data    = lu;
989
990	if (fw_core_add_address_handler(&lu->address_handler,
991					&fw_high_memory_region) < 0) {
992		kfree(lu);
993		return -ENOMEM;
994	}
995
996	lu->tgt      = tgt;
997	lu->lun      = lun_entry & 0xffff;
998	lu->login_id = INVALID_LOGIN_ID;
999	lu->retries  = 0;
1000	lu->has_sdev = false;
1001	lu->blocked  = false;
1002	++tgt->dont_block;
1003	INIT_LIST_HEAD(&lu->orb_list);
1004	INIT_DELAYED_WORK(&lu->work, sbp2_login);
1005
1006	list_add_tail(&lu->link, &tgt->lu_list);
1007	return 0;
1008}
1009
1010static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1011				      const u32 *directory)
1012{
1013	struct fw_csr_iterator ci;
1014	int key, value;
1015
1016	fw_csr_iterator_init(&ci, directory);
1017	while (fw_csr_iterator_next(&ci, &key, &value))
1018		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1019		    sbp2_add_logical_unit(tgt, value) < 0)
1020			return -ENOMEM;
1021	return 0;
1022}
1023
1024static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1025			      u32 *model, u32 *firmware_revision)
1026{
1027	struct fw_csr_iterator ci;
1028	int key, value;
1029
1030	fw_csr_iterator_init(&ci, directory);
1031	while (fw_csr_iterator_next(&ci, &key, &value)) {
1032		switch (key) {
1033
1034		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1035			tgt->management_agent_address =
1036					CSR_REGISTER_BASE + 4 * value;
1037			break;
1038
1039		case CSR_DIRECTORY_ID:
1040			tgt->directory_id = value;
1041			break;
1042
1043		case CSR_MODEL:
1044			*model = value;
1045			break;
1046
1047		case SBP2_CSR_FIRMWARE_REVISION:
1048			*firmware_revision = value;
1049			break;
1050
1051		case SBP2_CSR_UNIT_CHARACTERISTICS:
1052			/* the timeout value is stored in 500ms units */
1053			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1054			break;
1055
1056		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1057			if (sbp2_add_logical_unit(tgt, value) < 0)
1058				return -ENOMEM;
1059			break;
1060
1061		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1062			/* Adjust for the increment in the iterator */
1063			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1064				return -ENOMEM;
1065			break;
1066		}
1067	}
1068	return 0;
1069}
1070
1071/*
1072 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1073 * provided in the config rom. Most devices do provide a value, which
1074 * we'll use for login management orbs, but with some sane limits.
1075 */
1076static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1077{
1078	unsigned int timeout = tgt->mgt_orb_timeout;
1079
1080	if (timeout > 40000)
1081		fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1082			  tgt->bus_id, timeout / 1000);
1083
1084	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1085}
1086
1087static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1088				  u32 firmware_revision)
1089{
1090	int i;
1091	unsigned int w = sbp2_param_workarounds;
1092
1093	if (w)
1094		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1095			  "if you need the workarounds parameter for %s\n",
1096			  tgt->bus_id);
1097
1098	if (w & SBP2_WORKAROUND_OVERRIDE)
1099		goto out;
1100
1101	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1102
1103		if (sbp2_workarounds_table[i].firmware_revision !=
1104		    (firmware_revision & 0xffffff00))
1105			continue;
1106
1107		if (sbp2_workarounds_table[i].model != model &&
1108		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1109			continue;
1110
1111		w |= sbp2_workarounds_table[i].workarounds;
1112		break;
1113	}
1114 out:
1115	if (w)
1116		fw_notify("Workarounds for %s: 0x%x "
1117			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1118			  tgt->bus_id, w, firmware_revision, model);
1119	tgt->workarounds = w;
1120}
1121
1122static struct scsi_host_template scsi_driver_template;
1123
1124static int sbp2_probe(struct device *dev)
1125{
1126	struct fw_unit *unit = fw_unit(dev);
1127	struct fw_device *device = fw_parent_device(unit);
1128	struct sbp2_target *tgt;
1129	struct sbp2_logical_unit *lu;
1130	struct Scsi_Host *shost;
1131	u32 model, firmware_revision;
1132
1133	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1134		BUG_ON(dma_set_max_seg_size(device->card->device,
1135					    SBP2_MAX_SEG_SIZE));
1136
1137	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1138	if (shost == NULL)
1139		return -ENOMEM;
1140
1141	tgt = (struct sbp2_target *)shost->hostdata;
1142	dev_set_drvdata(&unit->device, tgt);
1143	tgt->unit = unit;
1144	kref_init(&tgt->kref);
1145	INIT_LIST_HEAD(&tgt->lu_list);
1146	tgt->bus_id = dev_name(&unit->device);
1147	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1148
1149	if (fw_device_enable_phys_dma(device) < 0)
1150		goto fail_shost_put;
1151
1152	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1153
1154	if (scsi_add_host(shost, &unit->device) < 0)
1155		goto fail_shost_put;
1156
1157	fw_device_get(device);
1158	fw_unit_get(unit);
1159
1160	/* implicit directory ID */
1161	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1162			     + CSR_CONFIG_ROM) & 0xffffff;
1163
1164	firmware_revision = SBP2_ROM_VALUE_MISSING;
1165	model		  = SBP2_ROM_VALUE_MISSING;
1166
1167	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1168			       &firmware_revision) < 0)
1169		goto fail_tgt_put;
1170
1171	sbp2_clamp_management_orb_timeout(tgt);
1172	sbp2_init_workarounds(tgt, model, firmware_revision);
1173
1174	/*
1175	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1176	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1177	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1178	 * if we set this to max_speed + 7, we get the right value.
1179	 */
1180	tgt->max_payload = min(device->max_speed + 7, 10U);
1181	tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1182
1183	/* Do the login in a workqueue so we can easily reschedule retries. */
1184	list_for_each_entry(lu, &tgt->lu_list, link)
1185		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1186	return 0;
1187
1188 fail_tgt_put:
1189	sbp2_target_put(tgt);
1190	return -ENOMEM;
1191
1192 fail_shost_put:
1193	scsi_host_put(shost);
1194	return -ENOMEM;
1195}
1196
1197static int sbp2_remove(struct device *dev)
1198{
1199	struct fw_unit *unit = fw_unit(dev);
1200	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1201
1202	sbp2_target_put(tgt);
1203	return 0;
1204}
1205
1206static void sbp2_reconnect(struct work_struct *work)
1207{
1208	struct sbp2_logical_unit *lu =
1209		container_of(work, struct sbp2_logical_unit, work.work);
1210	struct sbp2_target *tgt = lu->tgt;
1211	struct fw_device *device = target_device(tgt);
1212	int generation, node_id, local_node_id;
1213
1214	if (fw_device_is_shutdown(device))
1215		goto out;
1216
1217	generation    = device->generation;
1218	smp_rmb();    /* node IDs must not be older than generation */
1219	node_id       = device->node_id;
1220	local_node_id = device->card->node_id;
1221
1222	if (sbp2_send_management_orb(lu, node_id, generation,
1223				     SBP2_RECONNECT_REQUEST,
1224				     lu->login_id, NULL) < 0) {
1225		/*
1226		 * If reconnect was impossible even though we are in the
1227		 * current generation, fall back and try to log in again.
1228		 *
1229		 * We could check for "Function rejected" status, but
1230		 * looking at the bus generation as simpler and more general.
1231		 */
1232		smp_rmb(); /* get current card generation */
1233		if (generation == device->card->generation ||
1234		    lu->retries++ >= 5) {
1235			fw_error("%s: failed to reconnect\n", tgt->bus_id);
1236			lu->retries = 0;
1237			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1238		}
1239		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1240		goto out;
1241	}
1242
1243	tgt->node_id      = node_id;
1244	tgt->address_high = local_node_id << 16;
1245	smp_wmb();	  /* node IDs must not be older than generation */
1246	lu->generation	  = generation;
1247
1248	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1249		  tgt->bus_id, lu->lun, lu->retries);
1250
1251	sbp2_agent_reset(lu);
1252	sbp2_cancel_orbs(lu);
1253	sbp2_conditionally_unblock(lu);
1254 out:
1255	sbp2_target_put(tgt);
1256}
1257
1258static void sbp2_update(struct fw_unit *unit)
1259{
1260	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1261	struct sbp2_logical_unit *lu;
1262
1263	fw_device_enable_phys_dma(fw_parent_device(unit));
1264
1265	/*
1266	 * Fw-core serializes sbp2_update() against sbp2_remove().
1267	 * Iteration over tgt->lu_list is therefore safe here.
1268	 */
1269	list_for_each_entry(lu, &tgt->lu_list, link) {
1270		sbp2_conditionally_block(lu);
1271		lu->retries = 0;
1272		sbp2_queue_work(lu, 0);
1273	}
1274}
1275
1276#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1277#define SBP2_SW_VERSION_ENTRY	0x00010483
1278
1279static const struct ieee1394_device_id sbp2_id_table[] = {
1280	{
1281		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1282				IEEE1394_MATCH_VERSION,
1283		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1284		.version      = SBP2_SW_VERSION_ENTRY,
1285	},
1286	{ }
1287};
1288
1289static struct fw_driver sbp2_driver = {
1290	.driver   = {
1291		.owner  = THIS_MODULE,
1292		.name   = sbp2_driver_name,
1293		.bus    = &fw_bus_type,
1294		.probe  = sbp2_probe,
1295		.remove = sbp2_remove,
1296	},
1297	.update   = sbp2_update,
1298	.id_table = sbp2_id_table,
1299};
1300
1301static void sbp2_unmap_scatterlist(struct device *card_device,
1302				   struct sbp2_command_orb *orb)
1303{
1304	if (scsi_sg_count(orb->cmd))
1305		dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1306			     scsi_sg_count(orb->cmd),
1307			     orb->cmd->sc_data_direction);
1308
1309	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1310		dma_unmap_single(card_device, orb->page_table_bus,
1311				 sizeof(orb->page_table), DMA_TO_DEVICE);
1312}
1313
1314static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1315{
1316	int sam_status;
1317
1318	sense_data[0] = 0x70;
1319	sense_data[1] = 0x0;
1320	sense_data[2] = sbp2_status[1];
1321	sense_data[3] = sbp2_status[4];
1322	sense_data[4] = sbp2_status[5];
1323	sense_data[5] = sbp2_status[6];
1324	sense_data[6] = sbp2_status[7];
1325	sense_data[7] = 10;
1326	sense_data[8] = sbp2_status[8];
1327	sense_data[9] = sbp2_status[9];
1328	sense_data[10] = sbp2_status[10];
1329	sense_data[11] = sbp2_status[11];
1330	sense_data[12] = sbp2_status[2];
1331	sense_data[13] = sbp2_status[3];
1332	sense_data[14] = sbp2_status[12];
1333	sense_data[15] = sbp2_status[13];
1334
1335	sam_status = sbp2_status[0] & 0x3f;
1336
1337	switch (sam_status) {
1338	case SAM_STAT_GOOD:
1339	case SAM_STAT_CHECK_CONDITION:
1340	case SAM_STAT_CONDITION_MET:
1341	case SAM_STAT_BUSY:
1342	case SAM_STAT_RESERVATION_CONFLICT:
1343	case SAM_STAT_COMMAND_TERMINATED:
1344		return DID_OK << 16 | sam_status;
1345
1346	default:
1347		return DID_ERROR << 16;
1348	}
1349}
1350
1351static void complete_command_orb(struct sbp2_orb *base_orb,
1352				 struct sbp2_status *status)
1353{
1354	struct sbp2_command_orb *orb =
1355		container_of(base_orb, struct sbp2_command_orb, base);
1356	struct fw_device *device = target_device(orb->lu->tgt);
1357	int result;
1358
1359	if (status != NULL) {
1360		if (STATUS_GET_DEAD(*status))
1361			sbp2_agent_reset_no_wait(orb->lu);
1362
1363		switch (STATUS_GET_RESPONSE(*status)) {
1364		case SBP2_STATUS_REQUEST_COMPLETE:
1365			result = DID_OK << 16;
1366			break;
1367		case SBP2_STATUS_TRANSPORT_FAILURE:
1368			result = DID_BUS_BUSY << 16;
1369			break;
1370		case SBP2_STATUS_ILLEGAL_REQUEST:
1371		case SBP2_STATUS_VENDOR_DEPENDENT:
1372		default:
1373			result = DID_ERROR << 16;
1374			break;
1375		}
1376
1377		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1378			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1379							   orb->cmd->sense_buffer);
1380	} else {
1381		/*
1382		 * If the orb completes with status == NULL, something
1383		 * went wrong, typically a bus reset happened mid-orb
1384		 * or when sending the write (less likely).
1385		 */
1386		result = DID_BUS_BUSY << 16;
1387		sbp2_conditionally_block(orb->lu);
1388	}
1389
1390	dma_unmap_single(device->card->device, orb->base.request_bus,
1391			 sizeof(orb->request), DMA_TO_DEVICE);
1392	sbp2_unmap_scatterlist(device->card->device, orb);
1393
1394	orb->cmd->result = result;
1395	orb->done(orb->cmd);
1396}
1397
1398static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1399		struct fw_device *device, struct sbp2_logical_unit *lu)
1400{
1401	struct scatterlist *sg = scsi_sglist(orb->cmd);
1402	int i, n;
1403
1404	n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1405		       orb->cmd->sc_data_direction);
1406	if (n == 0)
1407		goto fail;
1408
1409	if (n == 1) {
1410		orb->request.data_descriptor.high =
1411			cpu_to_be32(lu->tgt->address_high);
1412		orb->request.data_descriptor.low  =
1413			cpu_to_be32(sg_dma_address(sg));
1414		orb->request.misc |=
1415			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1416		return 0;
1417	}
1418
1419	for_each_sg(sg, sg, n, i) {
1420		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1421		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1422	}
1423
1424	orb->page_table_bus =
1425		dma_map_single(device->card->device, orb->page_table,
1426			       sizeof(orb->page_table), DMA_TO_DEVICE);
1427	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1428		goto fail_page_table;
1429
1430	/*
1431	 * The data_descriptor pointer is the one case where we need
1432	 * to fill in the node ID part of the address.  All other
1433	 * pointers assume that the data referenced reside on the
1434	 * initiator (i.e. us), but data_descriptor can refer to data
1435	 * on other nodes so we need to put our ID in descriptor.high.
1436	 */
1437	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1438	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1439	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1440					 COMMAND_ORB_DATA_SIZE(n));
1441
1442	return 0;
1443
1444 fail_page_table:
1445	dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1446		     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1447 fail:
1448	return -ENOMEM;
1449}
1450
1451/* SCSI stack integration */
1452
1453static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1454{
1455	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1456	struct fw_device *device = target_device(lu->tgt);
1457	struct sbp2_command_orb *orb;
1458	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1459
1460	/*
1461	 * Bidirectional commands are not yet implemented, and unknown
1462	 * transfer direction not handled.
1463	 */
1464	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1465		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1466		cmd->result = DID_ERROR << 16;
1467		done(cmd);
1468		return 0;
1469	}
1470
1471	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1472	if (orb == NULL) {
1473		fw_notify("failed to alloc orb\n");
1474		return SCSI_MLQUEUE_HOST_BUSY;
1475	}
1476
1477	/* Initialize rcode to something not RCODE_COMPLETE. */
1478	orb->base.rcode = -1;
1479	kref_init(&orb->base.kref);
1480
1481	orb->lu   = lu;
1482	orb->done = done;
1483	orb->cmd  = cmd;
1484
1485	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1486	orb->request.misc = cpu_to_be32(
1487		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1488		COMMAND_ORB_SPEED(device->max_speed) |
1489		COMMAND_ORB_NOTIFY);
1490
1491	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1492		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1493
1494	generation = device->generation;
1495	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1496
1497	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1498		goto out;
1499
1500	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1501
1502	orb->base.callback = complete_command_orb;
1503	orb->base.request_bus =
1504		dma_map_single(device->card->device, &orb->request,
1505			       sizeof(orb->request), DMA_TO_DEVICE);
1506	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1507		sbp2_unmap_scatterlist(device->card->device, orb);
1508		goto out;
1509	}
1510
1511	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1512		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1513	retval = 0;
1514 out:
1515	kref_put(&orb->base.kref, free_orb);
1516	return retval;
1517}
1518
1519static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1520{
1521	struct sbp2_logical_unit *lu = sdev->hostdata;
1522
1523	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1524	if (!lu)
1525		return -ENOSYS;
1526
1527	sdev->allow_restart = 1;
1528
1529	/* SBP-2 requires quadlet alignment of the data buffers. */
1530	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1531
1532	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1533		sdev->inquiry_len = 36;
1534
1535	return 0;
1536}
1537
1538static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1539{
1540	struct sbp2_logical_unit *lu = sdev->hostdata;
1541
1542	sdev->use_10_for_rw = 1;
1543
1544	if (sbp2_param_exclusive_login)
1545		sdev->manage_start_stop = 1;
1546
1547	if (sdev->type == TYPE_ROM)
1548		sdev->use_10_for_ms = 1;
1549
1550	if (sdev->type == TYPE_DISK &&
1551	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1552		sdev->skip_ms_page_8 = 1;
1553
1554	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1555		sdev->fix_capacity = 1;
1556
1557	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1558		sdev->start_stop_pwr_cond = 1;
1559
1560	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1561		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1562
1563	blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1564
1565	return 0;
1566}
1567
1568/*
1569 * Called by scsi stack when something has really gone wrong.  Usually
1570 * called when a command has timed-out for some reason.
1571 */
1572static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1573{
1574	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1575
1576	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1577	sbp2_agent_reset(lu);
1578	sbp2_cancel_orbs(lu);
1579
1580	return SUCCESS;
1581}
1582
1583/*
1584 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1585 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1586 *
1587 * This is the concatenation of target port identifier and logical unit
1588 * identifier as per SAM-2...SAM-4 annex A.
1589 */
1590static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1591			struct device_attribute *attr, char *buf)
1592{
1593	struct scsi_device *sdev = to_scsi_device(dev);
1594	struct sbp2_logical_unit *lu;
1595
1596	if (!sdev)
1597		return 0;
1598
1599	lu = sdev->hostdata;
1600
1601	return sprintf(buf, "%016llx:%06x:%04x\n",
1602			(unsigned long long)lu->tgt->guid,
1603			lu->tgt->directory_id, lu->lun);
1604}
1605
1606static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1607
1608static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1609	&dev_attr_ieee1394_id,
1610	NULL
1611};
1612
1613static struct scsi_host_template scsi_driver_template = {
1614	.module			= THIS_MODULE,
1615	.name			= "SBP-2 IEEE-1394",
1616	.proc_name		= sbp2_driver_name,
1617	.queuecommand		= sbp2_scsi_queuecommand,
1618	.slave_alloc		= sbp2_scsi_slave_alloc,
1619	.slave_configure	= sbp2_scsi_slave_configure,
1620	.eh_abort_handler	= sbp2_scsi_abort,
1621	.this_id		= -1,
1622	.sg_tablesize		= SG_ALL,
1623	.use_clustering		= ENABLE_CLUSTERING,
1624	.cmd_per_lun		= 1,
1625	.can_queue		= 1,
1626	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1627};
1628
1629MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1630MODULE_DESCRIPTION("SCSI over IEEE1394");
1631MODULE_LICENSE("GPL");
1632MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1633
1634/* Provide a module alias so root-on-sbp2 initrds don't break. */
1635#ifndef CONFIG_IEEE1394_SBP2_MODULE
1636MODULE_ALIAS("sbp2");
1637#endif
1638
1639static int __init sbp2_init(void)
1640{
1641	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1642	if (!sbp2_wq)
1643		return -ENOMEM;
1644
1645	return driver_register(&sbp2_driver.driver);
1646}
1647
1648static void __exit sbp2_cleanup(void)
1649{
1650	driver_unregister(&sbp2_driver.driver);
1651	destroy_workqueue(sbp2_wq);
1652}
1653
1654module_init(sbp2_init);
1655module_exit(sbp2_cleanup);
1656