• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/edac/
1/*
2 * Intel X38 Memory Controller kernel module
3 * Copyright (C) 2008 Cluster Computing, Inc.
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * This file is based on i3200_edac.c
9 *
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
16#include <linux/edac.h>
17#include "edac_core.h"
18
19#define X38_REVISION		"1.1"
20
21#define EDAC_MOD_STR		"x38_edac"
22
23#define PCI_DEVICE_ID_INTEL_X38_HB	0x29e0
24
25#define X38_RANKS		8
26#define X38_RANKS_PER_CHANNEL	4
27#define X38_CHANNELS		2
28
29/* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
30
31#define X38_MCHBAR_LOW	0x48	/* MCH Memory Mapped Register BAR */
32#define X38_MCHBAR_HIGH	0x4c
33#define X38_MCHBAR_MASK	0xfffffc000ULL	/* bits 35:14 */
34#define X38_MMR_WINDOW_SIZE	16384
35
36#define X38_TOM	0xa0	/* Top of Memory (16b)
37				 *
38				 * 15:10 reserved
39				 *  9:0  total populated physical memory
40				 */
41#define X38_TOM_MASK	0x3ff	/* bits 9:0 */
42#define X38_TOM_SHIFT 26	/* 64MiB grain */
43
44#define X38_ERRSTS	0xc8	/* Error Status Register (16b)
45				 *
46				 * 15    reserved
47				 * 14    Isochronous TBWRR Run Behind FIFO Full
48				 *       (ITCV)
49				 * 13    Isochronous TBWRR Run Behind FIFO Put
50				 *       (ITSTV)
51				 * 12    reserved
52				 * 11    MCH Thermal Sensor Event
53				 *       for SMI/SCI/SERR (GTSE)
54				 * 10    reserved
55				 *  9    LOCK to non-DRAM Memory Flag (LCKF)
56				 *  8    reserved
57				 *  7    DRAM Throttle Flag (DTF)
58				 *  6:2  reserved
59				 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
60				 *  0    Single-bit DRAM ECC Error Flag (DSERR)
61				 */
62#define X38_ERRSTS_UE		0x0002
63#define X38_ERRSTS_CE		0x0001
64#define X38_ERRSTS_BITS	(X38_ERRSTS_UE | X38_ERRSTS_CE)
65
66
67/* Intel  MMIO register space - device 0 function 0 - MMR space */
68
69#define X38_C0DRB	0x200	/* Channel 0 DRAM Rank Boundary (16b x 4)
70				 *
71				 * 15:10 reserved
72				 *  9:0  Channel 0 DRAM Rank Boundary Address
73				 */
74#define X38_C1DRB	0x600	/* Channel 1 DRAM Rank Boundary (16b x 4) */
75#define X38_DRB_MASK	0x3ff	/* bits 9:0 */
76#define X38_DRB_SHIFT 26	/* 64MiB grain */
77
78#define X38_C0ECCERRLOG 0x280	/* Channel 0 ECC Error Log (64b)
79				 *
80				 * 63:48 Error Column Address (ERRCOL)
81				 * 47:32 Error Row Address (ERRROW)
82				 * 31:29 Error Bank Address (ERRBANK)
83				 * 28:27 Error Rank Address (ERRRANK)
84				 * 26:24 reserved
85				 * 23:16 Error Syndrome (ERRSYND)
86				 * 15: 2 reserved
87				 *    1  Multiple Bit Error Status (MERRSTS)
88				 *    0  Correctable Error Status (CERRSTS)
89				 */
90#define X38_C1ECCERRLOG 0x680	/* Channel 1 ECC Error Log (64b) */
91#define X38_ECCERRLOG_CE	0x1
92#define X38_ECCERRLOG_UE	0x2
93#define X38_ECCERRLOG_RANK_BITS	0x18000000
94#define X38_ECCERRLOG_SYNDROME_BITS	0xff0000
95
96#define X38_CAPID0 0xe0	/* see P.94 of spec for details */
97
98static int x38_channel_num;
99
100static int how_many_channel(struct pci_dev *pdev)
101{
102	unsigned char capid0_8b; /* 8th byte of CAPID0 */
103
104	pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
105	if (capid0_8b & 0x20) {	/* check DCD: Dual Channel Disable */
106		debugf0("In single channel mode.\n");
107		x38_channel_num = 1;
108	} else {
109		debugf0("In dual channel mode.\n");
110		x38_channel_num = 2;
111	}
112
113	return x38_channel_num;
114}
115
116static unsigned long eccerrlog_syndrome(u64 log)
117{
118	return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
119}
120
121static int eccerrlog_row(int channel, u64 log)
122{
123	return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
124		(channel * X38_RANKS_PER_CHANNEL);
125}
126
127enum x38_chips {
128	X38 = 0,
129};
130
131struct x38_dev_info {
132	const char *ctl_name;
133};
134
135struct x38_error_info {
136	u16 errsts;
137	u16 errsts2;
138	u64 eccerrlog[X38_CHANNELS];
139};
140
141static const struct x38_dev_info x38_devs[] = {
142	[X38] = {
143		.ctl_name = "x38"},
144};
145
146static struct pci_dev *mci_pdev;
147static int x38_registered = 1;
148
149
150static void x38_clear_error_info(struct mem_ctl_info *mci)
151{
152	struct pci_dev *pdev;
153
154	pdev = to_pci_dev(mci->dev);
155
156	/*
157	 * Clear any error bits.
158	 * (Yes, we really clear bits by writing 1 to them.)
159	 */
160	pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
161			 X38_ERRSTS_BITS);
162}
163
164static u64 x38_readq(const void __iomem *addr)
165{
166	return readl(addr) | (((u64)readl(addr + 4)) << 32);
167}
168
169static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
170				 struct x38_error_info *info)
171{
172	struct pci_dev *pdev;
173	void __iomem *window = mci->pvt_info;
174
175	pdev = to_pci_dev(mci->dev);
176
177	/*
178	 * This is a mess because there is no atomic way to read all the
179	 * registers at once and the registers can transition from CE being
180	 * overwritten by UE.
181	 */
182	pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
183	if (!(info->errsts & X38_ERRSTS_BITS))
184		return;
185
186	info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
187	if (x38_channel_num == 2)
188		info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
189
190	pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
191
192	/*
193	 * If the error is the same for both reads then the first set
194	 * of reads is valid.  If there is a change then there is a CE
195	 * with no info and the second set of reads is valid and
196	 * should be UE info.
197	 */
198	if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
199		info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
200		if (x38_channel_num == 2)
201			info->eccerrlog[1] =
202				x38_readq(window + X38_C1ECCERRLOG);
203	}
204
205	x38_clear_error_info(mci);
206}
207
208static void x38_process_error_info(struct mem_ctl_info *mci,
209				struct x38_error_info *info)
210{
211	int channel;
212	u64 log;
213
214	if (!(info->errsts & X38_ERRSTS_BITS))
215		return;
216
217	if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
218		edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
219		info->errsts = info->errsts2;
220	}
221
222	for (channel = 0; channel < x38_channel_num; channel++) {
223		log = info->eccerrlog[channel];
224		if (log & X38_ECCERRLOG_UE) {
225			edac_mc_handle_ue(mci, 0, 0,
226				eccerrlog_row(channel, log), "x38 UE");
227		} else if (log & X38_ECCERRLOG_CE) {
228			edac_mc_handle_ce(mci, 0, 0,
229				eccerrlog_syndrome(log),
230				eccerrlog_row(channel, log), 0, "x38 CE");
231		}
232	}
233}
234
235static void x38_check(struct mem_ctl_info *mci)
236{
237	struct x38_error_info info;
238
239	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
240	x38_get_and_clear_error_info(mci, &info);
241	x38_process_error_info(mci, &info);
242}
243
244
245void __iomem *x38_map_mchbar(struct pci_dev *pdev)
246{
247	union {
248		u64 mchbar;
249		struct {
250			u32 mchbar_low;
251			u32 mchbar_high;
252		};
253	} u;
254	void __iomem *window;
255
256	pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
257	pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
258	pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
259	u.mchbar &= X38_MCHBAR_MASK;
260
261	if (u.mchbar != (resource_size_t)u.mchbar) {
262		printk(KERN_ERR
263			"x38: mmio space beyond accessible range (0x%llx)\n",
264			(unsigned long long)u.mchbar);
265		return NULL;
266	}
267
268	window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
269	if (!window)
270		printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
271			(unsigned long long)u.mchbar);
272
273	return window;
274}
275
276
277static void x38_get_drbs(void __iomem *window,
278			u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
279{
280	int i;
281
282	for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
283		drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
284		drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
285	}
286}
287
288static bool x38_is_stacked(struct pci_dev *pdev,
289			u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
290{
291	u16 tom;
292
293	pci_read_config_word(pdev, X38_TOM, &tom);
294	tom &= X38_TOM_MASK;
295
296	return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
297}
298
299static unsigned long drb_to_nr_pages(
300			u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
301			bool stacked, int channel, int rank)
302{
303	int n;
304
305	n = drbs[channel][rank];
306	if (rank > 0)
307		n -= drbs[channel][rank - 1];
308	if (stacked && (channel == 1) && drbs[channel][rank] ==
309				drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
310		n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
311	}
312
313	n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
314	return n;
315}
316
317static int x38_probe1(struct pci_dev *pdev, int dev_idx)
318{
319	int rc;
320	int i;
321	struct mem_ctl_info *mci = NULL;
322	unsigned long last_page;
323	u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
324	bool stacked;
325	void __iomem *window;
326
327	debugf0("MC: %s()\n", __func__);
328
329	window = x38_map_mchbar(pdev);
330	if (!window)
331		return -ENODEV;
332
333	x38_get_drbs(window, drbs);
334
335	how_many_channel(pdev);
336
337	mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0);
338	if (!mci)
339		return -ENOMEM;
340
341	debugf3("MC: %s(): init mci\n", __func__);
342
343	mci->dev = &pdev->dev;
344	mci->mtype_cap = MEM_FLAG_DDR2;
345
346	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
347	mci->edac_cap = EDAC_FLAG_SECDED;
348
349	mci->mod_name = EDAC_MOD_STR;
350	mci->mod_ver = X38_REVISION;
351	mci->ctl_name = x38_devs[dev_idx].ctl_name;
352	mci->dev_name = pci_name(pdev);
353	mci->edac_check = x38_check;
354	mci->ctl_page_to_phys = NULL;
355	mci->pvt_info = window;
356
357	stacked = x38_is_stacked(pdev, drbs);
358
359	/*
360	 * The dram rank boundary (DRB) reg values are boundary addresses
361	 * for each DRAM rank with a granularity of 64MB.  DRB regs are
362	 * cumulative; the last one will contain the total memory
363	 * contained in all ranks.
364	 */
365	last_page = -1UL;
366	for (i = 0; i < mci->nr_csrows; i++) {
367		unsigned long nr_pages;
368		struct csrow_info *csrow = &mci->csrows[i];
369
370		nr_pages = drb_to_nr_pages(drbs, stacked,
371			i / X38_RANKS_PER_CHANNEL,
372			i % X38_RANKS_PER_CHANNEL);
373
374		if (nr_pages == 0) {
375			csrow->mtype = MEM_EMPTY;
376			continue;
377		}
378
379		csrow->first_page = last_page + 1;
380		last_page += nr_pages;
381		csrow->last_page = last_page;
382		csrow->nr_pages = nr_pages;
383
384		csrow->grain = nr_pages << PAGE_SHIFT;
385		csrow->mtype = MEM_DDR2;
386		csrow->dtype = DEV_UNKNOWN;
387		csrow->edac_mode = EDAC_UNKNOWN;
388	}
389
390	x38_clear_error_info(mci);
391
392	rc = -ENODEV;
393	if (edac_mc_add_mc(mci)) {
394		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
395		goto fail;
396	}
397
398	/* get this far and it's successful */
399	debugf3("MC: %s(): success\n", __func__);
400	return 0;
401
402fail:
403	iounmap(window);
404	if (mci)
405		edac_mc_free(mci);
406
407	return rc;
408}
409
410static int __devinit x38_init_one(struct pci_dev *pdev,
411				const struct pci_device_id *ent)
412{
413	int rc;
414
415	debugf0("MC: %s()\n", __func__);
416
417	if (pci_enable_device(pdev) < 0)
418		return -EIO;
419
420	rc = x38_probe1(pdev, ent->driver_data);
421	if (!mci_pdev)
422		mci_pdev = pci_dev_get(pdev);
423
424	return rc;
425}
426
427static void __devexit x38_remove_one(struct pci_dev *pdev)
428{
429	struct mem_ctl_info *mci;
430
431	debugf0("%s()\n", __func__);
432
433	mci = edac_mc_del_mc(&pdev->dev);
434	if (!mci)
435		return;
436
437	iounmap(mci->pvt_info);
438
439	edac_mc_free(mci);
440}
441
442static const struct pci_device_id x38_pci_tbl[] __devinitdata = {
443	{
444	 PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
445	 X38},
446	{
447	 0,
448	 }			/* 0 terminated list. */
449};
450
451MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
452
453static struct pci_driver x38_driver = {
454	.name = EDAC_MOD_STR,
455	.probe = x38_init_one,
456	.remove = __devexit_p(x38_remove_one),
457	.id_table = x38_pci_tbl,
458};
459
460static int __init x38_init(void)
461{
462	int pci_rc;
463
464	debugf3("MC: %s()\n", __func__);
465
466	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
467	opstate_init();
468
469	pci_rc = pci_register_driver(&x38_driver);
470	if (pci_rc < 0)
471		goto fail0;
472
473	if (!mci_pdev) {
474		x38_registered = 0;
475		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
476					PCI_DEVICE_ID_INTEL_X38_HB, NULL);
477		if (!mci_pdev) {
478			debugf0("x38 pci_get_device fail\n");
479			pci_rc = -ENODEV;
480			goto fail1;
481		}
482
483		pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
484		if (pci_rc < 0) {
485			debugf0("x38 init fail\n");
486			pci_rc = -ENODEV;
487			goto fail1;
488		}
489	}
490
491	return 0;
492
493fail1:
494	pci_unregister_driver(&x38_driver);
495
496fail0:
497	if (mci_pdev)
498		pci_dev_put(mci_pdev);
499
500	return pci_rc;
501}
502
503static void __exit x38_exit(void)
504{
505	debugf3("MC: %s()\n", __func__);
506
507	pci_unregister_driver(&x38_driver);
508	if (!x38_registered) {
509		x38_remove_one(mci_pdev);
510		pci_dev_put(mci_pdev);
511	}
512}
513
514module_init(x38_init);
515module_exit(x38_exit);
516
517MODULE_LICENSE("GPL");
518MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
519MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
520
521module_param(edac_op_state, int, 0444);
522MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
523