• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/dma/
1/*
2 * driver/dma/ste_dma40.c
3 *
4 * Copyright (C) ST-Ericsson 2007-2010
5 * License terms: GNU General Public License (GPL) version 2
6 * Author: Per Friden <per.friden@stericsson.com>
7 * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
8 *
9 */
10
11#include <linux/kernel.h>
12#include <linux/slab.h>
13#include <linux/dmaengine.h>
14#include <linux/platform_device.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17
18#include <plat/ste_dma40.h>
19
20#include "ste_dma40_ll.h"
21
22#define D40_NAME "dma40"
23
24#define D40_PHY_CHAN -1
25
26/* For masking out/in 2 bit channel positions */
27#define D40_CHAN_POS(chan)  (2 * (chan / 2))
28#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
29
30/* Maximum iterations taken before giving up suspending a channel */
31#define D40_SUSPEND_MAX_IT 500
32
33/* Hardware requirement on LCLA alignment */
34#define LCLA_ALIGNMENT 0x40000
35/* Attempts before giving up to trying to get pages that are aligned */
36#define MAX_LCLA_ALLOC_ATTEMPTS 256
37
38/* Bit markings for allocation map */
39#define D40_ALLOC_FREE		(1 << 31)
40#define D40_ALLOC_PHY		(1 << 30)
41#define D40_ALLOC_LOG_FREE	0
42
43/* Hardware designer of the block */
44#define D40_PERIPHID2_DESIGNER 0x8
45
46/**
47 * enum 40_command - The different commands and/or statuses.
48 *
49 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
50 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
51 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
52 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
53 */
54enum d40_command {
55	D40_DMA_STOP		= 0,
56	D40_DMA_RUN		= 1,
57	D40_DMA_SUSPEND_REQ	= 2,
58	D40_DMA_SUSPENDED	= 3
59};
60
61/**
62 * struct d40_lli_pool - Structure for keeping LLIs in memory
63 *
64 * @base: Pointer to memory area when the pre_alloc_lli's are not large
65 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
66 * pre_alloc_lli is used.
67 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
68 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
69 * one buffer to one buffer.
70 */
71struct d40_lli_pool {
72	void	*base;
73	int	 size;
74	/* Space for dst and src, plus an extra for padding */
75	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
76};
77
78/**
79 * struct d40_desc - A descriptor is one DMA job.
80 *
81 * @lli_phy: LLI settings for physical channel. Both src and dst=
82 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
83 * lli_len equals one.
84 * @lli_log: Same as above but for logical channels.
85 * @lli_pool: The pool with two entries pre-allocated.
86 * @lli_len: Number of llis of current descriptor.
87 * @lli_count: Number of transfered llis.
88 * @lli_tx_len: Max number of LLIs per transfer, there can be
89 * many transfer for one descriptor.
90 * @txd: DMA engine struct. Used for among other things for communication
91 * during a transfer.
92 * @node: List entry.
93 * @dir: The transfer direction of this job.
94 * @is_in_client_list: true if the client owns this descriptor.
95 *
96 * This descriptor is used for both logical and physical transfers.
97 */
98
99struct d40_desc {
100	/* LLI physical */
101	struct d40_phy_lli_bidir	 lli_phy;
102	/* LLI logical */
103	struct d40_log_lli_bidir	 lli_log;
104
105	struct d40_lli_pool		 lli_pool;
106	int				 lli_len;
107	int				 lli_count;
108	u32				 lli_tx_len;
109
110	struct dma_async_tx_descriptor	 txd;
111	struct list_head		 node;
112
113	enum dma_data_direction		 dir;
114	bool				 is_in_client_list;
115};
116
117/**
118 * struct d40_lcla_pool - LCLA pool settings and data.
119 *
120 * @base: The virtual address of LCLA. 18 bit aligned.
121 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
122 * This pointer is only there for clean-up on error.
123 * @pages: The number of pages needed for all physical channels.
124 * Only used later for clean-up on error
125 * @lock: Lock to protect the content in this struct.
126 * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
127 * @num_blocks: The number of entries of alloc_map. Equals to the
128 * number of physical channels.
129 */
130struct d40_lcla_pool {
131	void		*base;
132	void		*base_unaligned;
133	int		 pages;
134	spinlock_t	 lock;
135	u32		*alloc_map;
136	int		 num_blocks;
137};
138
139/**
140 * struct d40_phy_res - struct for handling eventlines mapped to physical
141 * channels.
142 *
143 * @lock: A lock protection this entity.
144 * @num: The physical channel number of this entity.
145 * @allocated_src: Bit mapped to show which src event line's are mapped to
146 * this physical channel. Can also be free or physically allocated.
147 * @allocated_dst: Same as for src but is dst.
148 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
149 * event line number. Both allocated_src and allocated_dst can not be
150 * allocated to a physical channel, since the interrupt handler has then
151 * no way of figure out which one the interrupt belongs to.
152 */
153struct d40_phy_res {
154	spinlock_t lock;
155	int	   num;
156	u32	   allocated_src;
157	u32	   allocated_dst;
158};
159
160struct d40_base;
161
162/**
163 * struct d40_chan - Struct that describes a channel.
164 *
165 * @lock: A spinlock to protect this struct.
166 * @log_num: The logical number, if any of this channel.
167 * @completed: Starts with 1, after first interrupt it is set to dma engine's
168 * current cookie.
169 * @pending_tx: The number of pending transfers. Used between interrupt handler
170 * and tasklet.
171 * @busy: Set to true when transfer is ongoing on this channel.
172 * @phy_chan: Pointer to physical channel which this instance runs on. If this
173 * point is NULL, then the channel is not allocated.
174 * @chan: DMA engine handle.
175 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176 * transfer and call client callback.
177 * @client: Cliented owned descriptor list.
178 * @active: Active descriptor.
179 * @queue: Queued jobs.
180 * @dma_cfg: The client configuration of this dma channel.
181 * @base: Pointer to the device instance struct.
182 * @src_def_cfg: Default cfg register setting for src.
183 * @dst_def_cfg: Default cfg register setting for dst.
184 * @log_def: Default logical channel settings.
185 * @lcla: Space for one dst src pair for logical channel transfers.
186 * @lcpa: Pointer to dst and src lcpa settings.
187 *
188 * This struct can either "be" a logical or a physical channel.
189 */
190struct d40_chan {
191	spinlock_t			 lock;
192	int				 log_num;
193	/* ID of the most recent completed transfer */
194	int				 completed;
195	int				 pending_tx;
196	bool				 busy;
197	struct d40_phy_res		*phy_chan;
198	struct dma_chan			 chan;
199	struct tasklet_struct		 tasklet;
200	struct list_head		 client;
201	struct list_head		 active;
202	struct list_head		 queue;
203	struct stedma40_chan_cfg	 dma_cfg;
204	struct d40_base			*base;
205	/* Default register configurations */
206	u32				 src_def_cfg;
207	u32				 dst_def_cfg;
208	struct d40_def_lcsp		 log_def;
209	struct d40_lcla_elem		 lcla;
210	struct d40_log_lli_full		*lcpa;
211	/* Runtime reconfiguration */
212	dma_addr_t			runtime_addr;
213	enum dma_data_direction		runtime_direction;
214};
215
216/**
217 * struct d40_base - The big global struct, one for each probe'd instance.
218 *
219 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
220 * @execmd_lock: Lock for execute command usage since several channels share
221 * the same physical register.
222 * @dev: The device structure.
223 * @virtbase: The virtual base address of the DMA's register.
224 * @rev: silicon revision detected.
225 * @clk: Pointer to the DMA clock structure.
226 * @phy_start: Physical memory start of the DMA registers.
227 * @phy_size: Size of the DMA register map.
228 * @irq: The IRQ number.
229 * @num_phy_chans: The number of physical channels. Read from HW. This
230 * is the number of available channels for this driver, not counting "Secure
231 * mode" allocated physical channels.
232 * @num_log_chans: The number of logical channels. Calculated from
233 * num_phy_chans.
234 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
235 * @dma_slave: dma_device channels that can do only do slave transfers.
236 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
237 * @phy_chans: Room for all possible physical channels in system.
238 * @log_chans: Room for all possible logical channels in system.
239 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
240 * to log_chans entries.
241 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
242 * to phy_chans entries.
243 * @plat_data: Pointer to provided platform_data which is the driver
244 * configuration.
245 * @phy_res: Vector containing all physical channels.
246 * @lcla_pool: lcla pool settings and data.
247 * @lcpa_base: The virtual mapped address of LCPA.
248 * @phy_lcpa: The physical address of the LCPA.
249 * @lcpa_size: The size of the LCPA area.
250 * @desc_slab: cache for descriptors.
251 */
252struct d40_base {
253	spinlock_t			 interrupt_lock;
254	spinlock_t			 execmd_lock;
255	struct device			 *dev;
256	void __iomem			 *virtbase;
257	u8				  rev:4;
258	struct clk			 *clk;
259	phys_addr_t			  phy_start;
260	resource_size_t			  phy_size;
261	int				  irq;
262	int				  num_phy_chans;
263	int				  num_log_chans;
264	struct dma_device		  dma_both;
265	struct dma_device		  dma_slave;
266	struct dma_device		  dma_memcpy;
267	struct d40_chan			 *phy_chans;
268	struct d40_chan			 *log_chans;
269	struct d40_chan			**lookup_log_chans;
270	struct d40_chan			**lookup_phy_chans;
271	struct stedma40_platform_data	 *plat_data;
272	/* Physical half channels */
273	struct d40_phy_res		 *phy_res;
274	struct d40_lcla_pool		  lcla_pool;
275	void				 *lcpa_base;
276	dma_addr_t			  phy_lcpa;
277	resource_size_t			  lcpa_size;
278	struct kmem_cache		 *desc_slab;
279};
280
281/**
282 * struct d40_interrupt_lookup - lookup table for interrupt handler
283 *
284 * @src: Interrupt mask register.
285 * @clr: Interrupt clear register.
286 * @is_error: true if this is an error interrupt.
287 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
288 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
289 */
290struct d40_interrupt_lookup {
291	u32 src;
292	u32 clr;
293	bool is_error;
294	int offset;
295};
296
297/**
298 * struct d40_reg_val - simple lookup struct
299 *
300 * @reg: The register.
301 * @val: The value that belongs to the register in reg.
302 */
303struct d40_reg_val {
304	unsigned int reg;
305	unsigned int val;
306};
307
308static int d40_pool_lli_alloc(struct d40_desc *d40d,
309			      int lli_len, bool is_log)
310{
311	u32 align;
312	void *base;
313
314	if (is_log)
315		align = sizeof(struct d40_log_lli);
316	else
317		align = sizeof(struct d40_phy_lli);
318
319	if (lli_len == 1) {
320		base = d40d->lli_pool.pre_alloc_lli;
321		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
322		d40d->lli_pool.base = NULL;
323	} else {
324		d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
325
326		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
327		d40d->lli_pool.base = base;
328
329		if (d40d->lli_pool.base == NULL)
330			return -ENOMEM;
331	}
332
333	if (is_log) {
334		d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
335					      align);
336		d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
337					      align);
338	} else {
339		d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
340					      align);
341		d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
342					      align);
343
344		d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
345		d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
346	}
347
348	return 0;
349}
350
351static void d40_pool_lli_free(struct d40_desc *d40d)
352{
353	kfree(d40d->lli_pool.base);
354	d40d->lli_pool.base = NULL;
355	d40d->lli_pool.size = 0;
356	d40d->lli_log.src = NULL;
357	d40d->lli_log.dst = NULL;
358	d40d->lli_phy.src = NULL;
359	d40d->lli_phy.dst = NULL;
360	d40d->lli_phy.src_addr = 0;
361	d40d->lli_phy.dst_addr = 0;
362}
363
364static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
365				      struct d40_desc *desc)
366{
367	dma_cookie_t cookie = d40c->chan.cookie;
368
369	if (++cookie < 0)
370		cookie = 1;
371
372	d40c->chan.cookie = cookie;
373	desc->txd.cookie = cookie;
374
375	return cookie;
376}
377
378static void d40_desc_remove(struct d40_desc *d40d)
379{
380	list_del(&d40d->node);
381}
382
383static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
384{
385	struct d40_desc *d;
386	struct d40_desc *_d;
387
388	if (!list_empty(&d40c->client)) {
389		list_for_each_entry_safe(d, _d, &d40c->client, node)
390			if (async_tx_test_ack(&d->txd)) {
391				d40_pool_lli_free(d);
392				d40_desc_remove(d);
393				break;
394			}
395	} else {
396		d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
397		if (d != NULL) {
398			memset(d, 0, sizeof(struct d40_desc));
399			INIT_LIST_HEAD(&d->node);
400		}
401	}
402	return d;
403}
404
405static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
406{
407	kmem_cache_free(d40c->base->desc_slab, d40d);
408}
409
410static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
411{
412	list_add_tail(&desc->node, &d40c->active);
413}
414
415static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
416{
417	struct d40_desc *d;
418
419	if (list_empty(&d40c->active))
420		return NULL;
421
422	d = list_first_entry(&d40c->active,
423			     struct d40_desc,
424			     node);
425	return d;
426}
427
428static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
429{
430	list_add_tail(&desc->node, &d40c->queue);
431}
432
433static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
434{
435	struct d40_desc *d;
436
437	if (list_empty(&d40c->queue))
438		return NULL;
439
440	d = list_first_entry(&d40c->queue,
441			     struct d40_desc,
442			     node);
443	return d;
444}
445
446/* Support functions for logical channels */
447
448static int d40_lcla_id_get(struct d40_chan *d40c)
449{
450	int src_id = 0;
451	int dst_id = 0;
452	struct d40_log_lli *lcla_lidx_base =
453		d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
454	int i;
455	int lli_per_log = d40c->base->plat_data->llis_per_log;
456	unsigned long flags;
457
458	if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
459		return 0;
460
461	if (d40c->base->lcla_pool.num_blocks > 32)
462		return -EINVAL;
463
464	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
465
466	for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
467		if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
468		      (0x1 << i))) {
469			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
470				(0x1 << i);
471			break;
472		}
473	}
474	src_id = i;
475	if (src_id >= d40c->base->lcla_pool.num_blocks)
476		goto err;
477
478	for (; i < d40c->base->lcla_pool.num_blocks; i++) {
479		if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
480		      (0x1 << i))) {
481			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
482				(0x1 << i);
483			break;
484		}
485	}
486
487	dst_id = i;
488	if (dst_id == src_id)
489		goto err;
490
491	d40c->lcla.src_id = src_id;
492	d40c->lcla.dst_id = dst_id;
493	d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
494	d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
495
496	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
497	return 0;
498err:
499	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
500	return -EINVAL;
501}
502
503
504static int d40_channel_execute_command(struct d40_chan *d40c,
505				       enum d40_command command)
506{
507	int status, i;
508	void __iomem *active_reg;
509	int ret = 0;
510	unsigned long flags;
511	u32 wmask;
512
513	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
514
515	if (d40c->phy_chan->num % 2 == 0)
516		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
517	else
518		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
519
520	if (command == D40_DMA_SUSPEND_REQ) {
521		status = (readl(active_reg) &
522			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
523			D40_CHAN_POS(d40c->phy_chan->num);
524
525		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
526			goto done;
527	}
528
529	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
530	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
531	       active_reg);
532
533	if (command == D40_DMA_SUSPEND_REQ) {
534
535		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
536			status = (readl(active_reg) &
537				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
538				D40_CHAN_POS(d40c->phy_chan->num);
539
540			cpu_relax();
541			/*
542			 * Reduce the number of bus accesses while
543			 * waiting for the DMA to suspend.
544			 */
545			udelay(3);
546
547			if (status == D40_DMA_STOP ||
548			    status == D40_DMA_SUSPENDED)
549				break;
550		}
551
552		if (i == D40_SUSPEND_MAX_IT) {
553			dev_err(&d40c->chan.dev->device,
554				"[%s]: unable to suspend the chl %d (log: %d) status %x\n",
555				__func__, d40c->phy_chan->num, d40c->log_num,
556				status);
557			dump_stack();
558			ret = -EBUSY;
559		}
560
561	}
562done:
563	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
564	return ret;
565}
566
567static void d40_term_all(struct d40_chan *d40c)
568{
569	struct d40_desc *d40d;
570	unsigned long flags;
571
572	/* Release active descriptors */
573	while ((d40d = d40_first_active_get(d40c))) {
574		d40_desc_remove(d40d);
575
576		/* Return desc to free-list */
577		d40_desc_free(d40c, d40d);
578	}
579
580	/* Release queued descriptors waiting for transfer */
581	while ((d40d = d40_first_queued(d40c))) {
582		d40_desc_remove(d40d);
583
584		/* Return desc to free-list */
585		d40_desc_free(d40c, d40d);
586	}
587
588	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
589
590	d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
591		(~(0x1 << d40c->lcla.dst_id));
592	d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
593		(~(0x1 << d40c->lcla.src_id));
594
595	d40c->lcla.src_id = -1;
596	d40c->lcla.dst_id = -1;
597
598	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
599
600	d40c->pending_tx = 0;
601	d40c->busy = false;
602}
603
604static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
605{
606	u32 val;
607	unsigned long flags;
608
609	/* Notice, that disable requires the physical channel to be stopped */
610	if (do_enable)
611		val = D40_ACTIVATE_EVENTLINE;
612	else
613		val = D40_DEACTIVATE_EVENTLINE;
614
615	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
616
617	/* Enable event line connected to device (or memcpy) */
618	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
619	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
620		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
621
622		writel((val << D40_EVENTLINE_POS(event)) |
623		       ~D40_EVENTLINE_MASK(event),
624		       d40c->base->virtbase + D40_DREG_PCBASE +
625		       d40c->phy_chan->num * D40_DREG_PCDELTA +
626		       D40_CHAN_REG_SSLNK);
627	}
628	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
629		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
630
631		writel((val << D40_EVENTLINE_POS(event)) |
632		       ~D40_EVENTLINE_MASK(event),
633		       d40c->base->virtbase + D40_DREG_PCBASE +
634		       d40c->phy_chan->num * D40_DREG_PCDELTA +
635		       D40_CHAN_REG_SDLNK);
636	}
637
638	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
639}
640
641static u32 d40_chan_has_events(struct d40_chan *d40c)
642{
643	u32 val = 0;
644
645	/* If SSLNK or SDLNK is zero all events are disabled */
646	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
647	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
648		val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
649			    d40c->phy_chan->num * D40_DREG_PCDELTA +
650			    D40_CHAN_REG_SSLNK);
651
652	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM)
653		val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
654			    d40c->phy_chan->num * D40_DREG_PCDELTA +
655			    D40_CHAN_REG_SDLNK);
656	return val;
657}
658
659static void d40_config_enable_lidx(struct d40_chan *d40c)
660{
661	/* Set LIDX for lcla */
662	writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
663	       D40_SREG_ELEM_LOG_LIDX_MASK,
664	       d40c->base->virtbase + D40_DREG_PCBASE +
665	       d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
666
667	writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
668	       D40_SREG_ELEM_LOG_LIDX_MASK,
669	       d40c->base->virtbase + D40_DREG_PCBASE +
670	       d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
671}
672
673static int d40_config_write(struct d40_chan *d40c)
674{
675	u32 addr_base;
676	u32 var;
677	int res;
678
679	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
680	if (res)
681		return res;
682
683	/* Odd addresses are even addresses + 4 */
684	addr_base = (d40c->phy_chan->num % 2) * 4;
685	/* Setup channel mode to logical or physical */
686	var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
687		D40_CHAN_POS(d40c->phy_chan->num);
688	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
689
690	/* Setup operational mode option register */
691	var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
692	       0x3) << D40_CHAN_POS(d40c->phy_chan->num);
693
694	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
695
696	if (d40c->log_num != D40_PHY_CHAN) {
697		/* Set default config for CFG reg */
698		writel(d40c->src_def_cfg,
699		       d40c->base->virtbase + D40_DREG_PCBASE +
700		       d40c->phy_chan->num * D40_DREG_PCDELTA +
701		       D40_CHAN_REG_SSCFG);
702		writel(d40c->dst_def_cfg,
703		       d40c->base->virtbase + D40_DREG_PCBASE +
704		       d40c->phy_chan->num * D40_DREG_PCDELTA +
705		       D40_CHAN_REG_SDCFG);
706
707		d40_config_enable_lidx(d40c);
708	}
709	return res;
710}
711
712static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
713{
714	if (d40d->lli_phy.dst && d40d->lli_phy.src) {
715		d40_phy_lli_write(d40c->base->virtbase,
716				  d40c->phy_chan->num,
717				  d40d->lli_phy.dst,
718				  d40d->lli_phy.src);
719	} else if (d40d->lli_log.dst && d40d->lli_log.src) {
720		struct d40_log_lli *src = d40d->lli_log.src;
721		struct d40_log_lli *dst = d40d->lli_log.dst;
722		int s;
723
724		src += d40d->lli_count;
725		dst += d40d->lli_count;
726		s = d40_log_lli_write(d40c->lcpa,
727				      d40c->lcla.src, d40c->lcla.dst,
728				      dst, src,
729				      d40c->base->plat_data->llis_per_log);
730
731		/* If s equals to zero, the job is not linked */
732		if (s > 0) {
733			(void) dma_map_single(d40c->base->dev, d40c->lcla.src,
734					      s * sizeof(struct d40_log_lli),
735					      DMA_TO_DEVICE);
736			(void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
737					      s * sizeof(struct d40_log_lli),
738					      DMA_TO_DEVICE);
739		}
740	}
741	d40d->lli_count += d40d->lli_tx_len;
742}
743
744static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
745{
746	struct d40_chan *d40c = container_of(tx->chan,
747					     struct d40_chan,
748					     chan);
749	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
750	unsigned long flags;
751
752	spin_lock_irqsave(&d40c->lock, flags);
753
754	tx->cookie = d40_assign_cookie(d40c, d40d);
755
756	d40_desc_queue(d40c, d40d);
757
758	spin_unlock_irqrestore(&d40c->lock, flags);
759
760	return tx->cookie;
761}
762
763static int d40_start(struct d40_chan *d40c)
764{
765	if (d40c->base->rev == 0) {
766		int err;
767
768		if (d40c->log_num != D40_PHY_CHAN) {
769			err = d40_channel_execute_command(d40c,
770							  D40_DMA_SUSPEND_REQ);
771			if (err)
772				return err;
773		}
774	}
775
776	if (d40c->log_num != D40_PHY_CHAN)
777		d40_config_set_event(d40c, true);
778
779	return d40_channel_execute_command(d40c, D40_DMA_RUN);
780}
781
782static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
783{
784	struct d40_desc *d40d;
785	int err;
786
787	/* Start queued jobs, if any */
788	d40d = d40_first_queued(d40c);
789
790	if (d40d != NULL) {
791		d40c->busy = true;
792
793		/* Remove from queue */
794		d40_desc_remove(d40d);
795
796		/* Add to active queue */
797		d40_desc_submit(d40c, d40d);
798
799		/* Initiate DMA job */
800		d40_desc_load(d40c, d40d);
801
802		/* Start dma job */
803		err = d40_start(d40c);
804
805		if (err)
806			return NULL;
807	}
808
809	return d40d;
810}
811
812/* called from interrupt context */
813static void dma_tc_handle(struct d40_chan *d40c)
814{
815	struct d40_desc *d40d;
816
817	if (!d40c->phy_chan)
818		return;
819
820	/* Get first active entry from list */
821	d40d = d40_first_active_get(d40c);
822
823	if (d40d == NULL)
824		return;
825
826	if (d40d->lli_count < d40d->lli_len) {
827
828		d40_desc_load(d40c, d40d);
829		/* Start dma job */
830		(void) d40_start(d40c);
831		return;
832	}
833
834	if (d40_queue_start(d40c) == NULL)
835		d40c->busy = false;
836
837	d40c->pending_tx++;
838	tasklet_schedule(&d40c->tasklet);
839
840}
841
842static void dma_tasklet(unsigned long data)
843{
844	struct d40_chan *d40c = (struct d40_chan *) data;
845	struct d40_desc *d40d_fin;
846	unsigned long flags;
847	dma_async_tx_callback callback;
848	void *callback_param;
849
850	spin_lock_irqsave(&d40c->lock, flags);
851
852	/* Get first active entry from list */
853	d40d_fin = d40_first_active_get(d40c);
854
855	if (d40d_fin == NULL)
856		goto err;
857
858	d40c->completed = d40d_fin->txd.cookie;
859
860	/*
861	 * If terminating a channel pending_tx is set to zero.
862	 * This prevents any finished active jobs to return to the client.
863	 */
864	if (d40c->pending_tx == 0) {
865		spin_unlock_irqrestore(&d40c->lock, flags);
866		return;
867	}
868
869	/* Callback to client */
870	callback = d40d_fin->txd.callback;
871	callback_param = d40d_fin->txd.callback_param;
872
873	if (async_tx_test_ack(&d40d_fin->txd)) {
874		d40_pool_lli_free(d40d_fin);
875		d40_desc_remove(d40d_fin);
876		/* Return desc to free-list */
877		d40_desc_free(d40c, d40d_fin);
878	} else {
879		if (!d40d_fin->is_in_client_list) {
880			d40_desc_remove(d40d_fin);
881			list_add_tail(&d40d_fin->node, &d40c->client);
882			d40d_fin->is_in_client_list = true;
883		}
884	}
885
886	d40c->pending_tx--;
887
888	if (d40c->pending_tx)
889		tasklet_schedule(&d40c->tasklet);
890
891	spin_unlock_irqrestore(&d40c->lock, flags);
892
893	if (callback)
894		callback(callback_param);
895
896	return;
897
898 err:
899	/* Rescue manouver if receiving double interrupts */
900	if (d40c->pending_tx > 0)
901		d40c->pending_tx--;
902	spin_unlock_irqrestore(&d40c->lock, flags);
903}
904
905static irqreturn_t d40_handle_interrupt(int irq, void *data)
906{
907	static const struct d40_interrupt_lookup il[] = {
908		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
909		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
910		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
911		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
912		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
913		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
914		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
915		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
916		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
917		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
918	};
919
920	int i;
921	u32 regs[ARRAY_SIZE(il)];
922	u32 tmp;
923	u32 idx;
924	u32 row;
925	long chan = -1;
926	struct d40_chan *d40c;
927	unsigned long flags;
928	struct d40_base *base = data;
929
930	spin_lock_irqsave(&base->interrupt_lock, flags);
931
932	/* Read interrupt status of both logical and physical channels */
933	for (i = 0; i < ARRAY_SIZE(il); i++)
934		regs[i] = readl(base->virtbase + il[i].src);
935
936	for (;;) {
937
938		chan = find_next_bit((unsigned long *)regs,
939				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
940
941		/* No more set bits found? */
942		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
943			break;
944
945		row = chan / BITS_PER_LONG;
946		idx = chan & (BITS_PER_LONG - 1);
947
948		/* ACK interrupt */
949		tmp = readl(base->virtbase + il[row].clr);
950		tmp |= 1 << idx;
951		writel(tmp, base->virtbase + il[row].clr);
952
953		if (il[row].offset == D40_PHY_CHAN)
954			d40c = base->lookup_phy_chans[idx];
955		else
956			d40c = base->lookup_log_chans[il[row].offset + idx];
957		spin_lock(&d40c->lock);
958
959		if (!il[row].is_error)
960			dma_tc_handle(d40c);
961		else
962			dev_err(base->dev,
963				"[%s] IRQ chan: %ld offset %d idx %d\n",
964				__func__, chan, il[row].offset, idx);
965
966		spin_unlock(&d40c->lock);
967	}
968
969	spin_unlock_irqrestore(&base->interrupt_lock, flags);
970
971	return IRQ_HANDLED;
972}
973
974
975static int d40_validate_conf(struct d40_chan *d40c,
976			     struct stedma40_chan_cfg *conf)
977{
978	int res = 0;
979	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
980	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
981	bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
982		== STEDMA40_CHANNEL_IN_LOG_MODE;
983
984	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH &&
985	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
986		dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
987			__func__);
988		res = -EINVAL;
989	}
990
991	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM &&
992	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
993		dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
994			__func__);
995		res = -EINVAL;
996	}
997
998	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
999	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1000		dev_err(&d40c->chan.dev->device,
1001			"[%s] No event line\n", __func__);
1002		res = -EINVAL;
1003	}
1004
1005	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1006	    (src_event_group != dst_event_group)) {
1007		dev_err(&d40c->chan.dev->device,
1008			"[%s] Invalid event group\n", __func__);
1009		res = -EINVAL;
1010	}
1011
1012	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1013		/*
1014		 * DMAC HW supports it. Will be added to this driver,
1015		 * in case any dma client requires it.
1016		 */
1017		dev_err(&d40c->chan.dev->device,
1018			"[%s] periph to periph not supported\n",
1019			__func__);
1020		res = -EINVAL;
1021	}
1022
1023	return res;
1024}
1025
1026static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1027			       int log_event_line, bool is_log)
1028{
1029	unsigned long flags;
1030	spin_lock_irqsave(&phy->lock, flags);
1031	if (!is_log) {
1032		/* Physical interrupts are masked per physical full channel */
1033		if (phy->allocated_src == D40_ALLOC_FREE &&
1034		    phy->allocated_dst == D40_ALLOC_FREE) {
1035			phy->allocated_dst = D40_ALLOC_PHY;
1036			phy->allocated_src = D40_ALLOC_PHY;
1037			goto found;
1038		} else
1039			goto not_found;
1040	}
1041
1042	/* Logical channel */
1043	if (is_src) {
1044		if (phy->allocated_src == D40_ALLOC_PHY)
1045			goto not_found;
1046
1047		if (phy->allocated_src == D40_ALLOC_FREE)
1048			phy->allocated_src = D40_ALLOC_LOG_FREE;
1049
1050		if (!(phy->allocated_src & (1 << log_event_line))) {
1051			phy->allocated_src |= 1 << log_event_line;
1052			goto found;
1053		} else
1054			goto not_found;
1055	} else {
1056		if (phy->allocated_dst == D40_ALLOC_PHY)
1057			goto not_found;
1058
1059		if (phy->allocated_dst == D40_ALLOC_FREE)
1060			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1061
1062		if (!(phy->allocated_dst & (1 << log_event_line))) {
1063			phy->allocated_dst |= 1 << log_event_line;
1064			goto found;
1065		} else
1066			goto not_found;
1067	}
1068
1069not_found:
1070	spin_unlock_irqrestore(&phy->lock, flags);
1071	return false;
1072found:
1073	spin_unlock_irqrestore(&phy->lock, flags);
1074	return true;
1075}
1076
1077static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1078			       int log_event_line)
1079{
1080	unsigned long flags;
1081	bool is_free = false;
1082
1083	spin_lock_irqsave(&phy->lock, flags);
1084	if (!log_event_line) {
1085		/* Physical interrupts are masked per physical full channel */
1086		phy->allocated_dst = D40_ALLOC_FREE;
1087		phy->allocated_src = D40_ALLOC_FREE;
1088		is_free = true;
1089		goto out;
1090	}
1091
1092	/* Logical channel */
1093	if (is_src) {
1094		phy->allocated_src &= ~(1 << log_event_line);
1095		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1096			phy->allocated_src = D40_ALLOC_FREE;
1097	} else {
1098		phy->allocated_dst &= ~(1 << log_event_line);
1099		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1100			phy->allocated_dst = D40_ALLOC_FREE;
1101	}
1102
1103	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1104		   D40_ALLOC_FREE);
1105
1106out:
1107	spin_unlock_irqrestore(&phy->lock, flags);
1108
1109	return is_free;
1110}
1111
1112static int d40_allocate_channel(struct d40_chan *d40c)
1113{
1114	int dev_type;
1115	int event_group;
1116	int event_line;
1117	struct d40_phy_res *phys;
1118	int i;
1119	int j;
1120	int log_num;
1121	bool is_src;
1122	bool is_log = (d40c->dma_cfg.channel_type &
1123		       STEDMA40_CHANNEL_IN_OPER_MODE)
1124		== STEDMA40_CHANNEL_IN_LOG_MODE;
1125
1126
1127	phys = d40c->base->phy_res;
1128
1129	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1130		dev_type = d40c->dma_cfg.src_dev_type;
1131		log_num = 2 * dev_type;
1132		is_src = true;
1133	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1134		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1135		/* dst event lines are used for logical memcpy */
1136		dev_type = d40c->dma_cfg.dst_dev_type;
1137		log_num = 2 * dev_type + 1;
1138		is_src = false;
1139	} else
1140		return -EINVAL;
1141
1142	event_group = D40_TYPE_TO_GROUP(dev_type);
1143	event_line = D40_TYPE_TO_EVENT(dev_type);
1144
1145	if (!is_log) {
1146		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1147			/* Find physical half channel */
1148			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1149
1150				if (d40_alloc_mask_set(&phys[i], is_src,
1151						       0, is_log))
1152					goto found_phy;
1153			}
1154		} else
1155			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1156				int phy_num = j  + event_group * 2;
1157				for (i = phy_num; i < phy_num + 2; i++) {
1158					if (d40_alloc_mask_set(&phys[i],
1159							       is_src,
1160							       0,
1161							       is_log))
1162						goto found_phy;
1163				}
1164			}
1165		return -EINVAL;
1166found_phy:
1167		d40c->phy_chan = &phys[i];
1168		d40c->log_num = D40_PHY_CHAN;
1169		goto out;
1170	}
1171	if (dev_type == -1)
1172		return -EINVAL;
1173
1174	/* Find logical channel */
1175	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1176		int phy_num = j + event_group * 2;
1177		/*
1178		 * Spread logical channels across all available physical rather
1179		 * than pack every logical channel at the first available phy
1180		 * channels.
1181		 */
1182		if (is_src) {
1183			for (i = phy_num; i < phy_num + 2; i++) {
1184				if (d40_alloc_mask_set(&phys[i], is_src,
1185						       event_line, is_log))
1186					goto found_log;
1187			}
1188		} else {
1189			for (i = phy_num + 1; i >= phy_num; i--) {
1190				if (d40_alloc_mask_set(&phys[i], is_src,
1191						       event_line, is_log))
1192					goto found_log;
1193			}
1194		}
1195	}
1196	return -EINVAL;
1197
1198found_log:
1199	d40c->phy_chan = &phys[i];
1200	d40c->log_num = log_num;
1201out:
1202
1203	if (is_log)
1204		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1205	else
1206		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1207
1208	return 0;
1209
1210}
1211
1212static int d40_config_memcpy(struct d40_chan *d40c)
1213{
1214	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1215
1216	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1217		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1218		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1219		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1220			memcpy[d40c->chan.chan_id];
1221
1222	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1223		   dma_has_cap(DMA_SLAVE, cap)) {
1224		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1225	} else {
1226		dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1227			__func__);
1228		return -EINVAL;
1229	}
1230
1231	return 0;
1232}
1233
1234
1235static int d40_free_dma(struct d40_chan *d40c)
1236{
1237
1238	int res = 0;
1239	u32 event;
1240	struct d40_phy_res *phy = d40c->phy_chan;
1241	bool is_src;
1242	struct d40_desc *d;
1243	struct d40_desc *_d;
1244
1245
1246	/* Terminate all queued and active transfers */
1247	d40_term_all(d40c);
1248
1249	/* Release client owned descriptors */
1250	if (!list_empty(&d40c->client))
1251		list_for_each_entry_safe(d, _d, &d40c->client, node) {
1252			d40_pool_lli_free(d);
1253			d40_desc_remove(d);
1254			/* Return desc to free-list */
1255			d40_desc_free(d40c, d);
1256		}
1257
1258	if (phy == NULL) {
1259		dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1260			__func__);
1261		return -EINVAL;
1262	}
1263
1264	if (phy->allocated_src == D40_ALLOC_FREE &&
1265	    phy->allocated_dst == D40_ALLOC_FREE) {
1266		dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1267			__func__);
1268		return -EINVAL;
1269	}
1270
1271	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1272	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1273		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1274		is_src = false;
1275	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1276		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1277		is_src = true;
1278	} else {
1279		dev_err(&d40c->chan.dev->device,
1280			"[%s] Unknown direction\n", __func__);
1281		return -EINVAL;
1282	}
1283
1284	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1285	if (res) {
1286		dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
1287			__func__);
1288		return res;
1289	}
1290
1291	if (d40c->log_num != D40_PHY_CHAN) {
1292		/* Release logical channel, deactivate the event line */
1293
1294		d40_config_set_event(d40c, false);
1295		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1296
1297		/*
1298		 * Check if there are more logical allocation
1299		 * on this phy channel.
1300		 */
1301		if (!d40_alloc_mask_free(phy, is_src, event)) {
1302			/* Resume the other logical channels if any */
1303			if (d40_chan_has_events(d40c)) {
1304				res = d40_channel_execute_command(d40c,
1305								  D40_DMA_RUN);
1306				if (res) {
1307					dev_err(&d40c->chan.dev->device,
1308						"[%s] Executing RUN command\n",
1309						__func__);
1310					return res;
1311				}
1312			}
1313			return 0;
1314		}
1315	} else {
1316		(void) d40_alloc_mask_free(phy, is_src, 0);
1317	}
1318
1319	/* Release physical channel */
1320	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1321	if (res) {
1322		dev_err(&d40c->chan.dev->device,
1323			"[%s] Failed to stop channel\n", __func__);
1324		return res;
1325	}
1326	d40c->phy_chan = NULL;
1327	/* Invalidate channel type */
1328	d40c->dma_cfg.channel_type = 0;
1329	d40c->base->lookup_phy_chans[phy->num] = NULL;
1330
1331	return 0;
1332}
1333
1334static int d40_pause(struct dma_chan *chan)
1335{
1336	struct d40_chan *d40c =
1337		container_of(chan, struct d40_chan, chan);
1338	int res;
1339	unsigned long flags;
1340
1341	spin_lock_irqsave(&d40c->lock, flags);
1342
1343	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1344	if (res == 0) {
1345		if (d40c->log_num != D40_PHY_CHAN) {
1346			d40_config_set_event(d40c, false);
1347			/* Resume the other logical channels if any */
1348			if (d40_chan_has_events(d40c))
1349				res = d40_channel_execute_command(d40c,
1350								  D40_DMA_RUN);
1351		}
1352	}
1353
1354	spin_unlock_irqrestore(&d40c->lock, flags);
1355	return res;
1356}
1357
1358static bool d40_is_paused(struct d40_chan *d40c)
1359{
1360	bool is_paused = false;
1361	unsigned long flags;
1362	void __iomem *active_reg;
1363	u32 status;
1364	u32 event;
1365
1366	spin_lock_irqsave(&d40c->lock, flags);
1367
1368	if (d40c->log_num == D40_PHY_CHAN) {
1369		if (d40c->phy_chan->num % 2 == 0)
1370			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1371		else
1372			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1373
1374		status = (readl(active_reg) &
1375			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1376			D40_CHAN_POS(d40c->phy_chan->num);
1377		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1378			is_paused = true;
1379
1380		goto _exit;
1381	}
1382
1383	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1384	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
1385		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1386	else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1387		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1388	else {
1389		dev_err(&d40c->chan.dev->device,
1390			"[%s] Unknown direction\n", __func__);
1391		goto _exit;
1392	}
1393	status = d40_chan_has_events(d40c);
1394	status = (status & D40_EVENTLINE_MASK(event)) >>
1395		D40_EVENTLINE_POS(event);
1396
1397	if (status != D40_DMA_RUN)
1398		is_paused = true;
1399_exit:
1400	spin_unlock_irqrestore(&d40c->lock, flags);
1401	return is_paused;
1402
1403}
1404
1405
1406static bool d40_tx_is_linked(struct d40_chan *d40c)
1407{
1408	bool is_link;
1409
1410	if (d40c->log_num != D40_PHY_CHAN)
1411		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1412	else
1413		is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1414				d40c->phy_chan->num * D40_DREG_PCDELTA +
1415				D40_CHAN_REG_SDLNK) &
1416			D40_SREG_LNK_PHYS_LNK_MASK;
1417	return is_link;
1418}
1419
1420static u32 d40_residue(struct d40_chan *d40c)
1421{
1422	u32 num_elt;
1423
1424	if (d40c->log_num != D40_PHY_CHAN)
1425		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1426			>> D40_MEM_LCSP2_ECNT_POS;
1427	else
1428		num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
1429				 d40c->phy_chan->num * D40_DREG_PCDELTA +
1430				 D40_CHAN_REG_SDELT) &
1431			   D40_SREG_ELEM_PHY_ECNT_MASK) >>
1432			D40_SREG_ELEM_PHY_ECNT_POS;
1433	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1434}
1435
1436static int d40_resume(struct dma_chan *chan)
1437{
1438	struct d40_chan *d40c =
1439		container_of(chan, struct d40_chan, chan);
1440	int res = 0;
1441	unsigned long flags;
1442
1443	spin_lock_irqsave(&d40c->lock, flags);
1444
1445	if (d40c->base->rev == 0)
1446		if (d40c->log_num != D40_PHY_CHAN) {
1447			res = d40_channel_execute_command(d40c,
1448							  D40_DMA_SUSPEND_REQ);
1449			goto no_suspend;
1450		}
1451
1452	/* If bytes left to transfer or linked tx resume job */
1453	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1454		if (d40c->log_num != D40_PHY_CHAN)
1455			d40_config_set_event(d40c, true);
1456		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1457	}
1458
1459no_suspend:
1460	spin_unlock_irqrestore(&d40c->lock, flags);
1461	return res;
1462}
1463
1464static u32 stedma40_residue(struct dma_chan *chan)
1465{
1466	struct d40_chan *d40c =
1467		container_of(chan, struct d40_chan, chan);
1468	u32 bytes_left;
1469	unsigned long flags;
1470
1471	spin_lock_irqsave(&d40c->lock, flags);
1472	bytes_left = d40_residue(d40c);
1473	spin_unlock_irqrestore(&d40c->lock, flags);
1474
1475	return bytes_left;
1476}
1477
1478/* Public DMA functions in addition to the DMA engine framework */
1479
1480int stedma40_set_psize(struct dma_chan *chan,
1481		       int src_psize,
1482		       int dst_psize)
1483{
1484	struct d40_chan *d40c =
1485		container_of(chan, struct d40_chan, chan);
1486	unsigned long flags;
1487
1488	spin_lock_irqsave(&d40c->lock, flags);
1489
1490	if (d40c->log_num != D40_PHY_CHAN) {
1491		d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1492		d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1493		d40c->log_def.lcsp1 |= src_psize <<
1494			D40_MEM_LCSP1_SCFG_PSIZE_POS;
1495		d40c->log_def.lcsp3 |= dst_psize <<
1496			D40_MEM_LCSP1_SCFG_PSIZE_POS;
1497		goto out;
1498	}
1499
1500	if (src_psize == STEDMA40_PSIZE_PHY_1)
1501		d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1502	else {
1503		d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1504		d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1505				       D40_SREG_CFG_PSIZE_POS);
1506		d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
1507	}
1508
1509	if (dst_psize == STEDMA40_PSIZE_PHY_1)
1510		d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1511	else {
1512		d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1513		d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1514				       D40_SREG_CFG_PSIZE_POS);
1515		d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
1516	}
1517out:
1518	spin_unlock_irqrestore(&d40c->lock, flags);
1519	return 0;
1520}
1521EXPORT_SYMBOL(stedma40_set_psize);
1522
1523struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1524						   struct scatterlist *sgl_dst,
1525						   struct scatterlist *sgl_src,
1526						   unsigned int sgl_len,
1527						   unsigned long dma_flags)
1528{
1529	int res;
1530	struct d40_desc *d40d;
1531	struct d40_chan *d40c = container_of(chan, struct d40_chan,
1532					     chan);
1533	unsigned long flags;
1534
1535	if (d40c->phy_chan == NULL) {
1536		dev_err(&d40c->chan.dev->device,
1537			"[%s] Unallocated channel.\n", __func__);
1538		return ERR_PTR(-EINVAL);
1539	}
1540
1541	spin_lock_irqsave(&d40c->lock, flags);
1542	d40d = d40_desc_get(d40c);
1543
1544	if (d40d == NULL)
1545		goto err;
1546
1547	d40d->lli_len = sgl_len;
1548	d40d->lli_tx_len = d40d->lli_len;
1549	d40d->txd.flags = dma_flags;
1550
1551	if (d40c->log_num != D40_PHY_CHAN) {
1552		if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
1553			d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1554
1555		if (sgl_len > 1)
1556			/*
1557			 * Check if there is space available in lcla. If not,
1558			 * split list into 1-length and run only in lcpa
1559			 * space.
1560			 */
1561			if (d40_lcla_id_get(d40c) != 0)
1562				d40d->lli_tx_len = 1;
1563
1564		if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1565			dev_err(&d40c->chan.dev->device,
1566				"[%s] Out of memory\n", __func__);
1567			goto err;
1568		}
1569
1570		(void) d40_log_sg_to_lli(d40c->lcla.src_id,
1571					 sgl_src,
1572					 sgl_len,
1573					 d40d->lli_log.src,
1574					 d40c->log_def.lcsp1,
1575					 d40c->dma_cfg.src_info.data_width,
1576					 dma_flags & DMA_PREP_INTERRUPT,
1577					 d40d->lli_tx_len,
1578					 d40c->base->plat_data->llis_per_log);
1579
1580		(void) d40_log_sg_to_lli(d40c->lcla.dst_id,
1581					 sgl_dst,
1582					 sgl_len,
1583					 d40d->lli_log.dst,
1584					 d40c->log_def.lcsp3,
1585					 d40c->dma_cfg.dst_info.data_width,
1586					 dma_flags & DMA_PREP_INTERRUPT,
1587					 d40d->lli_tx_len,
1588					 d40c->base->plat_data->llis_per_log);
1589
1590
1591	} else {
1592		if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1593			dev_err(&d40c->chan.dev->device,
1594				"[%s] Out of memory\n", __func__);
1595			goto err;
1596		}
1597
1598		res = d40_phy_sg_to_lli(sgl_src,
1599					sgl_len,
1600					0,
1601					d40d->lli_phy.src,
1602					d40d->lli_phy.src_addr,
1603					d40c->src_def_cfg,
1604					d40c->dma_cfg.src_info.data_width,
1605					d40c->dma_cfg.src_info.psize,
1606					true);
1607
1608		if (res < 0)
1609			goto err;
1610
1611		res = d40_phy_sg_to_lli(sgl_dst,
1612					sgl_len,
1613					0,
1614					d40d->lli_phy.dst,
1615					d40d->lli_phy.dst_addr,
1616					d40c->dst_def_cfg,
1617					d40c->dma_cfg.dst_info.data_width,
1618					d40c->dma_cfg.dst_info.psize,
1619					true);
1620
1621		if (res < 0)
1622			goto err;
1623
1624		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1625				      d40d->lli_pool.size, DMA_TO_DEVICE);
1626	}
1627
1628	dma_async_tx_descriptor_init(&d40d->txd, chan);
1629
1630	d40d->txd.tx_submit = d40_tx_submit;
1631
1632	spin_unlock_irqrestore(&d40c->lock, flags);
1633
1634	return &d40d->txd;
1635err:
1636	spin_unlock_irqrestore(&d40c->lock, flags);
1637	return NULL;
1638}
1639EXPORT_SYMBOL(stedma40_memcpy_sg);
1640
1641bool stedma40_filter(struct dma_chan *chan, void *data)
1642{
1643	struct stedma40_chan_cfg *info = data;
1644	struct d40_chan *d40c =
1645		container_of(chan, struct d40_chan, chan);
1646	int err;
1647
1648	if (data) {
1649		err = d40_validate_conf(d40c, info);
1650		if (!err)
1651			d40c->dma_cfg = *info;
1652	} else
1653		err = d40_config_memcpy(d40c);
1654
1655	return err == 0;
1656}
1657EXPORT_SYMBOL(stedma40_filter);
1658
1659/* DMA ENGINE functions */
1660static int d40_alloc_chan_resources(struct dma_chan *chan)
1661{
1662	int err;
1663	unsigned long flags;
1664	struct d40_chan *d40c =
1665		container_of(chan, struct d40_chan, chan);
1666	bool is_free_phy;
1667	spin_lock_irqsave(&d40c->lock, flags);
1668
1669	d40c->completed = chan->cookie = 1;
1670
1671	/*
1672	 * If no dma configuration is set (channel_type == 0)
1673	 * use default configuration (memcpy)
1674	 */
1675	if (d40c->dma_cfg.channel_type == 0) {
1676		err = d40_config_memcpy(d40c);
1677		if (err) {
1678			dev_err(&d40c->chan.dev->device,
1679				"[%s] Failed to configure memcpy channel\n",
1680				__func__);
1681			goto fail;
1682		}
1683	}
1684	is_free_phy = (d40c->phy_chan == NULL);
1685
1686	err = d40_allocate_channel(d40c);
1687	if (err) {
1688		dev_err(&d40c->chan.dev->device,
1689			"[%s] Failed to allocate channel\n", __func__);
1690		goto fail;
1691	}
1692
1693	/* Fill in basic CFG register values */
1694	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1695		    &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1696
1697	if (d40c->log_num != D40_PHY_CHAN) {
1698		d40_log_cfg(&d40c->dma_cfg,
1699			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1700
1701		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1702			d40c->lcpa = d40c->base->lcpa_base +
1703			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1704		else
1705			d40c->lcpa = d40c->base->lcpa_base +
1706			  d40c->dma_cfg.dst_dev_type *
1707			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1708	}
1709
1710	/*
1711	 * Only write channel configuration to the DMA if the physical
1712	 * resource is free. In case of multiple logical channels
1713	 * on the same physical resource, only the first write is necessary.
1714	 */
1715	if (is_free_phy) {
1716		err = d40_config_write(d40c);
1717		if (err) {
1718			dev_err(&d40c->chan.dev->device,
1719				"[%s] Failed to configure channel\n",
1720				__func__);
1721		}
1722	}
1723fail:
1724	spin_unlock_irqrestore(&d40c->lock, flags);
1725	return err;
1726}
1727
1728static void d40_free_chan_resources(struct dma_chan *chan)
1729{
1730	struct d40_chan *d40c =
1731		container_of(chan, struct d40_chan, chan);
1732	int err;
1733	unsigned long flags;
1734
1735	if (d40c->phy_chan == NULL) {
1736		dev_err(&d40c->chan.dev->device,
1737			"[%s] Cannot free unallocated channel\n", __func__);
1738		return;
1739	}
1740
1741
1742	spin_lock_irqsave(&d40c->lock, flags);
1743
1744	err = d40_free_dma(d40c);
1745
1746	if (err)
1747		dev_err(&d40c->chan.dev->device,
1748			"[%s] Failed to free channel\n", __func__);
1749	spin_unlock_irqrestore(&d40c->lock, flags);
1750}
1751
1752static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1753						       dma_addr_t dst,
1754						       dma_addr_t src,
1755						       size_t size,
1756						       unsigned long dma_flags)
1757{
1758	struct d40_desc *d40d;
1759	struct d40_chan *d40c = container_of(chan, struct d40_chan,
1760					     chan);
1761	unsigned long flags;
1762	int err = 0;
1763
1764	if (d40c->phy_chan == NULL) {
1765		dev_err(&d40c->chan.dev->device,
1766			"[%s] Channel is not allocated.\n", __func__);
1767		return ERR_PTR(-EINVAL);
1768	}
1769
1770	spin_lock_irqsave(&d40c->lock, flags);
1771	d40d = d40_desc_get(d40c);
1772
1773	if (d40d == NULL) {
1774		dev_err(&d40c->chan.dev->device,
1775			"[%s] Descriptor is NULL\n", __func__);
1776		goto err;
1777	}
1778
1779	d40d->txd.flags = dma_flags;
1780
1781	dma_async_tx_descriptor_init(&d40d->txd, chan);
1782
1783	d40d->txd.tx_submit = d40_tx_submit;
1784
1785	if (d40c->log_num != D40_PHY_CHAN) {
1786
1787		if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1788			dev_err(&d40c->chan.dev->device,
1789				"[%s] Out of memory\n", __func__);
1790			goto err;
1791		}
1792		d40d->lli_len = 1;
1793		d40d->lli_tx_len = 1;
1794
1795		d40_log_fill_lli(d40d->lli_log.src,
1796				 src,
1797				 size,
1798				 0,
1799				 d40c->log_def.lcsp1,
1800				 d40c->dma_cfg.src_info.data_width,
1801				 false, true);
1802
1803		d40_log_fill_lli(d40d->lli_log.dst,
1804				 dst,
1805				 size,
1806				 0,
1807				 d40c->log_def.lcsp3,
1808				 d40c->dma_cfg.dst_info.data_width,
1809				 true, true);
1810
1811	} else {
1812
1813		if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1814			dev_err(&d40c->chan.dev->device,
1815				"[%s] Out of memory\n", __func__);
1816			goto err;
1817		}
1818
1819		err = d40_phy_fill_lli(d40d->lli_phy.src,
1820				       src,
1821				       size,
1822				       d40c->dma_cfg.src_info.psize,
1823				       0,
1824				       d40c->src_def_cfg,
1825				       true,
1826				       d40c->dma_cfg.src_info.data_width,
1827				       false);
1828		if (err)
1829			goto err_fill_lli;
1830
1831		err = d40_phy_fill_lli(d40d->lli_phy.dst,
1832				       dst,
1833				       size,
1834				       d40c->dma_cfg.dst_info.psize,
1835				       0,
1836				       d40c->dst_def_cfg,
1837				       true,
1838				       d40c->dma_cfg.dst_info.data_width,
1839				       false);
1840
1841		if (err)
1842			goto err_fill_lli;
1843
1844		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1845				      d40d->lli_pool.size, DMA_TO_DEVICE);
1846	}
1847
1848	spin_unlock_irqrestore(&d40c->lock, flags);
1849	return &d40d->txd;
1850
1851err_fill_lli:
1852	dev_err(&d40c->chan.dev->device,
1853		"[%s] Failed filling in PHY LLI\n", __func__);
1854	d40_pool_lli_free(d40d);
1855err:
1856	spin_unlock_irqrestore(&d40c->lock, flags);
1857	return NULL;
1858}
1859
1860static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1861				 struct d40_chan *d40c,
1862				 struct scatterlist *sgl,
1863				 unsigned int sg_len,
1864				 enum dma_data_direction direction,
1865				 unsigned long dma_flags)
1866{
1867	dma_addr_t dev_addr = 0;
1868	int total_size;
1869
1870	if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1871		dev_err(&d40c->chan.dev->device,
1872			"[%s] Out of memory\n", __func__);
1873		return -ENOMEM;
1874	}
1875
1876	d40d->lli_len = sg_len;
1877	if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
1878		d40d->lli_tx_len = d40d->lli_len;
1879	else
1880		d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1881
1882	if (sg_len > 1)
1883		/*
1884		 * Check if there is space available in lcla.
1885		 * If not, split list into 1-length and run only
1886		 * in lcpa space.
1887		 */
1888		if (d40_lcla_id_get(d40c) != 0)
1889			d40d->lli_tx_len = 1;
1890
1891	if (direction == DMA_FROM_DEVICE)
1892		if (d40c->runtime_addr)
1893			dev_addr = d40c->runtime_addr;
1894		else
1895			dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1896	else if (direction == DMA_TO_DEVICE)
1897		if (d40c->runtime_addr)
1898			dev_addr = d40c->runtime_addr;
1899		else
1900			dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1901
1902	else
1903		return -EINVAL;
1904
1905	total_size = d40_log_sg_to_dev(&d40c->lcla,
1906				       sgl, sg_len,
1907				       &d40d->lli_log,
1908				       &d40c->log_def,
1909				       d40c->dma_cfg.src_info.data_width,
1910				       d40c->dma_cfg.dst_info.data_width,
1911				       direction,
1912				       dma_flags & DMA_PREP_INTERRUPT,
1913				       dev_addr, d40d->lli_tx_len,
1914				       d40c->base->plat_data->llis_per_log);
1915
1916	if (total_size < 0)
1917		return -EINVAL;
1918
1919	return 0;
1920}
1921
1922static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1923				 struct d40_chan *d40c,
1924				 struct scatterlist *sgl,
1925				 unsigned int sgl_len,
1926				 enum dma_data_direction direction,
1927				 unsigned long dma_flags)
1928{
1929	dma_addr_t src_dev_addr;
1930	dma_addr_t dst_dev_addr;
1931	int res;
1932
1933	if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1934		dev_err(&d40c->chan.dev->device,
1935			"[%s] Out of memory\n", __func__);
1936		return -ENOMEM;
1937	}
1938
1939	d40d->lli_len = sgl_len;
1940	d40d->lli_tx_len = sgl_len;
1941
1942	if (direction == DMA_FROM_DEVICE) {
1943		dst_dev_addr = 0;
1944		if (d40c->runtime_addr)
1945			src_dev_addr = d40c->runtime_addr;
1946		else
1947			src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1948	} else if (direction == DMA_TO_DEVICE) {
1949		if (d40c->runtime_addr)
1950			dst_dev_addr = d40c->runtime_addr;
1951		else
1952			dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1953		src_dev_addr = 0;
1954	} else
1955		return -EINVAL;
1956
1957	res = d40_phy_sg_to_lli(sgl,
1958				sgl_len,
1959				src_dev_addr,
1960				d40d->lli_phy.src,
1961				d40d->lli_phy.src_addr,
1962				d40c->src_def_cfg,
1963				d40c->dma_cfg.src_info.data_width,
1964				d40c->dma_cfg.src_info.psize,
1965				true);
1966	if (res < 0)
1967		return res;
1968
1969	res = d40_phy_sg_to_lli(sgl,
1970				sgl_len,
1971				dst_dev_addr,
1972				d40d->lli_phy.dst,
1973				d40d->lli_phy.dst_addr,
1974				d40c->dst_def_cfg,
1975				d40c->dma_cfg.dst_info.data_width,
1976				d40c->dma_cfg.dst_info.psize,
1977				 true);
1978	if (res < 0)
1979		return res;
1980
1981	(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1982			      d40d->lli_pool.size, DMA_TO_DEVICE);
1983	return 0;
1984}
1985
1986static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
1987							 struct scatterlist *sgl,
1988							 unsigned int sg_len,
1989							 enum dma_data_direction direction,
1990							 unsigned long dma_flags)
1991{
1992	struct d40_desc *d40d;
1993	struct d40_chan *d40c = container_of(chan, struct d40_chan,
1994					     chan);
1995	unsigned long flags;
1996	int err;
1997
1998	if (d40c->phy_chan == NULL) {
1999		dev_err(&d40c->chan.dev->device,
2000			"[%s] Cannot prepare unallocated channel\n", __func__);
2001		return ERR_PTR(-EINVAL);
2002	}
2003
2004	if (d40c->dma_cfg.pre_transfer)
2005		d40c->dma_cfg.pre_transfer(chan,
2006					   d40c->dma_cfg.pre_transfer_data,
2007					   sg_dma_len(sgl));
2008
2009	spin_lock_irqsave(&d40c->lock, flags);
2010	d40d = d40_desc_get(d40c);
2011	spin_unlock_irqrestore(&d40c->lock, flags);
2012
2013	if (d40d == NULL)
2014		return NULL;
2015
2016	if (d40c->log_num != D40_PHY_CHAN)
2017		err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2018					    direction, dma_flags);
2019	else
2020		err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2021					    direction, dma_flags);
2022	if (err) {
2023		dev_err(&d40c->chan.dev->device,
2024			"[%s] Failed to prepare %s slave sg job: %d\n",
2025			__func__,
2026			d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2027		return NULL;
2028	}
2029
2030	d40d->txd.flags = dma_flags;
2031
2032	dma_async_tx_descriptor_init(&d40d->txd, chan);
2033
2034	d40d->txd.tx_submit = d40_tx_submit;
2035
2036	return &d40d->txd;
2037}
2038
2039static enum dma_status d40_tx_status(struct dma_chan *chan,
2040				     dma_cookie_t cookie,
2041				     struct dma_tx_state *txstate)
2042{
2043	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2044	dma_cookie_t last_used;
2045	dma_cookie_t last_complete;
2046	int ret;
2047
2048	if (d40c->phy_chan == NULL) {
2049		dev_err(&d40c->chan.dev->device,
2050			"[%s] Cannot read status of unallocated channel\n",
2051			__func__);
2052		return -EINVAL;
2053	}
2054
2055	last_complete = d40c->completed;
2056	last_used = chan->cookie;
2057
2058	if (d40_is_paused(d40c))
2059		ret = DMA_PAUSED;
2060	else
2061		ret = dma_async_is_complete(cookie, last_complete, last_used);
2062
2063	dma_set_tx_state(txstate, last_complete, last_used,
2064			 stedma40_residue(chan));
2065
2066	return ret;
2067}
2068
2069static void d40_issue_pending(struct dma_chan *chan)
2070{
2071	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2072	unsigned long flags;
2073
2074	if (d40c->phy_chan == NULL) {
2075		dev_err(&d40c->chan.dev->device,
2076			"[%s] Channel is not allocated!\n", __func__);
2077		return;
2078	}
2079
2080	spin_lock_irqsave(&d40c->lock, flags);
2081
2082	/* Busy means that pending jobs are already being processed */
2083	if (!d40c->busy)
2084		(void) d40_queue_start(d40c);
2085
2086	spin_unlock_irqrestore(&d40c->lock, flags);
2087}
2088
2089/* Runtime reconfiguration extension */
2090static void d40_set_runtime_config(struct dma_chan *chan,
2091			       struct dma_slave_config *config)
2092{
2093	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2094	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2095	enum dma_slave_buswidth config_addr_width;
2096	dma_addr_t config_addr;
2097	u32 config_maxburst;
2098	enum stedma40_periph_data_width addr_width;
2099	int psize;
2100
2101	if (config->direction == DMA_FROM_DEVICE) {
2102		dma_addr_t dev_addr_rx =
2103			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2104
2105		config_addr = config->src_addr;
2106		if (dev_addr_rx)
2107			dev_dbg(d40c->base->dev,
2108				"channel has a pre-wired RX address %08x "
2109				"overriding with %08x\n",
2110				dev_addr_rx, config_addr);
2111		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2112			dev_dbg(d40c->base->dev,
2113				"channel was not configured for peripheral "
2114				"to memory transfer (%d) overriding\n",
2115				cfg->dir);
2116		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2117
2118		config_addr_width = config->src_addr_width;
2119		config_maxburst = config->src_maxburst;
2120
2121	} else if (config->direction == DMA_TO_DEVICE) {
2122		dma_addr_t dev_addr_tx =
2123			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2124
2125		config_addr = config->dst_addr;
2126		if (dev_addr_tx)
2127			dev_dbg(d40c->base->dev,
2128				"channel has a pre-wired TX address %08x "
2129				"overriding with %08x\n",
2130				dev_addr_tx, config_addr);
2131		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2132			dev_dbg(d40c->base->dev,
2133				"channel was not configured for memory "
2134				"to peripheral transfer (%d) overriding\n",
2135				cfg->dir);
2136		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2137
2138		config_addr_width = config->dst_addr_width;
2139		config_maxburst = config->dst_maxburst;
2140
2141	} else {
2142		dev_err(d40c->base->dev,
2143			"unrecognized channel direction %d\n",
2144			config->direction);
2145		return;
2146	}
2147
2148	switch (config_addr_width) {
2149	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2150		addr_width = STEDMA40_BYTE_WIDTH;
2151		break;
2152	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2153		addr_width = STEDMA40_HALFWORD_WIDTH;
2154		break;
2155	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2156		addr_width = STEDMA40_WORD_WIDTH;
2157		break;
2158	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2159		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2160		break;
2161	default:
2162		dev_err(d40c->base->dev,
2163			"illegal peripheral address width "
2164			"requested (%d)\n",
2165			config->src_addr_width);
2166		return;
2167	}
2168
2169	if (config_maxburst >= 16)
2170		psize = STEDMA40_PSIZE_LOG_16;
2171	else if (config_maxburst >= 8)
2172		psize = STEDMA40_PSIZE_LOG_8;
2173	else if (config_maxburst >= 4)
2174		psize = STEDMA40_PSIZE_LOG_4;
2175	else
2176		psize = STEDMA40_PSIZE_LOG_1;
2177
2178	/* Set up all the endpoint configs */
2179	cfg->src_info.data_width = addr_width;
2180	cfg->src_info.psize = psize;
2181	cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
2182	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2183	cfg->dst_info.data_width = addr_width;
2184	cfg->dst_info.psize = psize;
2185	cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
2186	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2187
2188	/* These settings will take precedence later */
2189	d40c->runtime_addr = config_addr;
2190	d40c->runtime_direction = config->direction;
2191	dev_dbg(d40c->base->dev,
2192		"configured channel %s for %s, data width %d, "
2193		"maxburst %d bytes, LE, no flow control\n",
2194		dma_chan_name(chan),
2195		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2196		config_addr_width,
2197		config_maxburst);
2198}
2199
2200static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2201		       unsigned long arg)
2202{
2203	unsigned long flags;
2204	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2205
2206	if (d40c->phy_chan == NULL) {
2207		dev_err(&d40c->chan.dev->device,
2208			"[%s] Channel is not allocated!\n", __func__);
2209		return -EINVAL;
2210	}
2211
2212	switch (cmd) {
2213	case DMA_TERMINATE_ALL:
2214		spin_lock_irqsave(&d40c->lock, flags);
2215		d40_term_all(d40c);
2216		spin_unlock_irqrestore(&d40c->lock, flags);
2217		return 0;
2218	case DMA_PAUSE:
2219		return d40_pause(chan);
2220	case DMA_RESUME:
2221		return d40_resume(chan);
2222	case DMA_SLAVE_CONFIG:
2223		d40_set_runtime_config(chan,
2224			(struct dma_slave_config *) arg);
2225		return 0;
2226	default:
2227		break;
2228	}
2229
2230	/* Other commands are unimplemented */
2231	return -ENXIO;
2232}
2233
2234/* Initialization functions */
2235
2236static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2237				 struct d40_chan *chans, int offset,
2238				 int num_chans)
2239{
2240	int i = 0;
2241	struct d40_chan *d40c;
2242
2243	INIT_LIST_HEAD(&dma->channels);
2244
2245	for (i = offset; i < offset + num_chans; i++) {
2246		d40c = &chans[i];
2247		d40c->base = base;
2248		d40c->chan.device = dma;
2249
2250		/* Invalidate lcla element */
2251		d40c->lcla.src_id = -1;
2252		d40c->lcla.dst_id = -1;
2253
2254		spin_lock_init(&d40c->lock);
2255
2256		d40c->log_num = D40_PHY_CHAN;
2257
2258		INIT_LIST_HEAD(&d40c->active);
2259		INIT_LIST_HEAD(&d40c->queue);
2260		INIT_LIST_HEAD(&d40c->client);
2261
2262		tasklet_init(&d40c->tasklet, dma_tasklet,
2263			     (unsigned long) d40c);
2264
2265		list_add_tail(&d40c->chan.device_node,
2266			      &dma->channels);
2267	}
2268}
2269
2270static int __init d40_dmaengine_init(struct d40_base *base,
2271				     int num_reserved_chans)
2272{
2273	int err ;
2274
2275	d40_chan_init(base, &base->dma_slave, base->log_chans,
2276		      0, base->num_log_chans);
2277
2278	dma_cap_zero(base->dma_slave.cap_mask);
2279	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2280
2281	base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2282	base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2283	base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2284	base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2285	base->dma_slave.device_tx_status = d40_tx_status;
2286	base->dma_slave.device_issue_pending = d40_issue_pending;
2287	base->dma_slave.device_control = d40_control;
2288	base->dma_slave.dev = base->dev;
2289
2290	err = dma_async_device_register(&base->dma_slave);
2291
2292	if (err) {
2293		dev_err(base->dev,
2294			"[%s] Failed to register slave channels\n",
2295			__func__);
2296		goto failure1;
2297	}
2298
2299	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2300		      base->num_log_chans, base->plat_data->memcpy_len);
2301
2302	dma_cap_zero(base->dma_memcpy.cap_mask);
2303	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2304
2305	base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2306	base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2307	base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2308	base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2309	base->dma_memcpy.device_tx_status = d40_tx_status;
2310	base->dma_memcpy.device_issue_pending = d40_issue_pending;
2311	base->dma_memcpy.device_control = d40_control;
2312	base->dma_memcpy.dev = base->dev;
2313	/*
2314	 * This controller can only access address at even
2315	 * 32bit boundaries, i.e. 2^2
2316	 */
2317	base->dma_memcpy.copy_align = 2;
2318
2319	err = dma_async_device_register(&base->dma_memcpy);
2320
2321	if (err) {
2322		dev_err(base->dev,
2323			"[%s] Failed to regsiter memcpy only channels\n",
2324			__func__);
2325		goto failure2;
2326	}
2327
2328	d40_chan_init(base, &base->dma_both, base->phy_chans,
2329		      0, num_reserved_chans);
2330
2331	dma_cap_zero(base->dma_both.cap_mask);
2332	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2333	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2334
2335	base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2336	base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2337	base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2338	base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2339	base->dma_both.device_tx_status = d40_tx_status;
2340	base->dma_both.device_issue_pending = d40_issue_pending;
2341	base->dma_both.device_control = d40_control;
2342	base->dma_both.dev = base->dev;
2343	base->dma_both.copy_align = 2;
2344	err = dma_async_device_register(&base->dma_both);
2345
2346	if (err) {
2347		dev_err(base->dev,
2348			"[%s] Failed to register logical and physical capable channels\n",
2349			__func__);
2350		goto failure3;
2351	}
2352	return 0;
2353failure3:
2354	dma_async_device_unregister(&base->dma_memcpy);
2355failure2:
2356	dma_async_device_unregister(&base->dma_slave);
2357failure1:
2358	return err;
2359}
2360
2361/* Initialization functions. */
2362
2363static int __init d40_phy_res_init(struct d40_base *base)
2364{
2365	int i;
2366	int num_phy_chans_avail = 0;
2367	u32 val[2];
2368	int odd_even_bit = -2;
2369
2370	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2371	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2372
2373	for (i = 0; i < base->num_phy_chans; i++) {
2374		base->phy_res[i].num = i;
2375		odd_even_bit += 2 * ((i % 2) == 0);
2376		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2377			/* Mark security only channels as occupied */
2378			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2379			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2380		} else {
2381			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2382			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2383			num_phy_chans_avail++;
2384		}
2385		spin_lock_init(&base->phy_res[i].lock);
2386	}
2387
2388	/* Mark disabled channels as occupied */
2389	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2390			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2391			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2392			num_phy_chans_avail--;
2393	}
2394
2395	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2396		 num_phy_chans_avail, base->num_phy_chans);
2397
2398	/* Verify settings extended vs standard */
2399	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2400
2401	for (i = 0; i < base->num_phy_chans; i++) {
2402
2403		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2404		    (val[0] & 0x3) != 1)
2405			dev_info(base->dev,
2406				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2407				 __func__, i, val[0] & 0x3);
2408
2409		val[0] = val[0] >> 2;
2410	}
2411
2412	return num_phy_chans_avail;
2413}
2414
2415static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2416{
2417	static const struct d40_reg_val dma_id_regs[] = {
2418		/* Peripheral Id */
2419		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2420		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2421		/*
2422		 * D40_DREG_PERIPHID2 Depends on HW revision:
2423		 *  MOP500/HREF ED has 0x0008,
2424		 *  ? has 0x0018,
2425		 *  HREF V1 has 0x0028
2426		 */
2427		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2428
2429		/* PCell Id */
2430		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
2431		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
2432		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
2433		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
2434	};
2435	struct stedma40_platform_data *plat_data;
2436	struct clk *clk = NULL;
2437	void __iomem *virtbase = NULL;
2438	struct resource *res = NULL;
2439	struct d40_base *base = NULL;
2440	int num_log_chans = 0;
2441	int num_phy_chans;
2442	int i;
2443	u32 val;
2444
2445	clk = clk_get(&pdev->dev, NULL);
2446
2447	if (IS_ERR(clk)) {
2448		dev_err(&pdev->dev, "[%s] No matching clock found\n",
2449			__func__);
2450		goto failure;
2451	}
2452
2453	clk_enable(clk);
2454
2455	/* Get IO for DMAC base address */
2456	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2457	if (!res)
2458		goto failure;
2459
2460	if (request_mem_region(res->start, resource_size(res),
2461			       D40_NAME " I/O base") == NULL)
2462		goto failure;
2463
2464	virtbase = ioremap(res->start, resource_size(res));
2465	if (!virtbase)
2466		goto failure;
2467
2468	/* HW version check */
2469	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2470		if (dma_id_regs[i].val !=
2471		    readl(virtbase + dma_id_regs[i].reg)) {
2472			dev_err(&pdev->dev,
2473				"[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2474				__func__,
2475				dma_id_regs[i].val,
2476				dma_id_regs[i].reg,
2477				readl(virtbase + dma_id_regs[i].reg));
2478			goto failure;
2479		}
2480	}
2481
2482	/* Get silicon revision */
2483	val = readl(virtbase + D40_DREG_PERIPHID2);
2484
2485	if ((val & 0xf) != D40_PERIPHID2_DESIGNER) {
2486		dev_err(&pdev->dev,
2487			"[%s] Unknown designer! Got %x wanted %x\n",
2488			__func__, val & 0xf, D40_PERIPHID2_DESIGNER);
2489		goto failure;
2490	}
2491
2492	/* The number of physical channels on this HW */
2493	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2494
2495	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2496		 (val >> 4) & 0xf, res->start);
2497
2498	plat_data = pdev->dev.platform_data;
2499
2500	/* Count the number of logical channels in use */
2501	for (i = 0; i < plat_data->dev_len; i++)
2502		if (plat_data->dev_rx[i] != 0)
2503			num_log_chans++;
2504
2505	for (i = 0; i < plat_data->dev_len; i++)
2506		if (plat_data->dev_tx[i] != 0)
2507			num_log_chans++;
2508
2509	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2510		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2511		       sizeof(struct d40_chan), GFP_KERNEL);
2512
2513	if (base == NULL) {
2514		dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2515		goto failure;
2516	}
2517
2518	base->rev = (val >> 4) & 0xf;
2519	base->clk = clk;
2520	base->num_phy_chans = num_phy_chans;
2521	base->num_log_chans = num_log_chans;
2522	base->phy_start = res->start;
2523	base->phy_size = resource_size(res);
2524	base->virtbase = virtbase;
2525	base->plat_data = plat_data;
2526	base->dev = &pdev->dev;
2527	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2528	base->log_chans = &base->phy_chans[num_phy_chans];
2529
2530	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2531				GFP_KERNEL);
2532	if (!base->phy_res)
2533		goto failure;
2534
2535	base->lookup_phy_chans = kzalloc(num_phy_chans *
2536					 sizeof(struct d40_chan *),
2537					 GFP_KERNEL);
2538	if (!base->lookup_phy_chans)
2539		goto failure;
2540
2541	if (num_log_chans + plat_data->memcpy_len) {
2542		/*
2543		 * The max number of logical channels are event lines for all
2544		 * src devices and dst devices
2545		 */
2546		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2547						 sizeof(struct d40_chan *),
2548						 GFP_KERNEL);
2549		if (!base->lookup_log_chans)
2550			goto failure;
2551	}
2552	base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
2553					    GFP_KERNEL);
2554	if (!base->lcla_pool.alloc_map)
2555		goto failure;
2556
2557	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2558					    0, SLAB_HWCACHE_ALIGN,
2559					    NULL);
2560	if (base->desc_slab == NULL)
2561		goto failure;
2562
2563	return base;
2564
2565failure:
2566	if (clk) {
2567		clk_disable(clk);
2568		clk_put(clk);
2569	}
2570	if (virtbase)
2571		iounmap(virtbase);
2572	if (res)
2573		release_mem_region(res->start,
2574				   resource_size(res));
2575	if (virtbase)
2576		iounmap(virtbase);
2577
2578	if (base) {
2579		kfree(base->lcla_pool.alloc_map);
2580		kfree(base->lookup_log_chans);
2581		kfree(base->lookup_phy_chans);
2582		kfree(base->phy_res);
2583		kfree(base);
2584	}
2585
2586	return NULL;
2587}
2588
2589static void __init d40_hw_init(struct d40_base *base)
2590{
2591
2592	static const struct d40_reg_val dma_init_reg[] = {
2593		/* Clock every part of the DMA block from start */
2594		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2595
2596		/* Interrupts on all logical channels */
2597		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2598		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2599		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2600		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2601		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2602		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2603		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2604		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2605		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2606		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2607		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2608		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2609	};
2610	int i;
2611	u32 prmseo[2] = {0, 0};
2612	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2613	u32 pcmis = 0;
2614	u32 pcicr = 0;
2615
2616	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2617		writel(dma_init_reg[i].val,
2618		       base->virtbase + dma_init_reg[i].reg);
2619
2620	/* Configure all our dma channels to default settings */
2621	for (i = 0; i < base->num_phy_chans; i++) {
2622
2623		activeo[i % 2] = activeo[i % 2] << 2;
2624
2625		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2626		    == D40_ALLOC_PHY) {
2627			activeo[i % 2] |= 3;
2628			continue;
2629		}
2630
2631		/* Enable interrupt # */
2632		pcmis = (pcmis << 1) | 1;
2633
2634		/* Clear interrupt # */
2635		pcicr = (pcicr << 1) | 1;
2636
2637		/* Set channel to physical mode */
2638		prmseo[i % 2] = prmseo[i % 2] << 2;
2639		prmseo[i % 2] |= 1;
2640
2641	}
2642
2643	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2644	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2645	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2646	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2647
2648	/* Write which interrupt to enable */
2649	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2650
2651	/* Write which interrupt to clear */
2652	writel(pcicr, base->virtbase + D40_DREG_PCICR);
2653
2654}
2655
2656static int __init d40_lcla_allocate(struct d40_base *base)
2657{
2658	unsigned long *page_list;
2659	int i, j;
2660	int ret = 0;
2661
2662	/*
2663	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2664	 * To full fill this hardware requirement without wasting 256 kb
2665	 * we allocate pages until we get an aligned one.
2666	 */
2667	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2668			    GFP_KERNEL);
2669
2670	if (!page_list) {
2671		ret = -ENOMEM;
2672		goto failure;
2673	}
2674
2675	/* Calculating how many pages that are required */
2676	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2677
2678	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2679		page_list[i] = __get_free_pages(GFP_KERNEL,
2680						base->lcla_pool.pages);
2681		if (!page_list[i]) {
2682
2683			dev_err(base->dev,
2684				"[%s] Failed to allocate %d pages.\n",
2685				__func__, base->lcla_pool.pages);
2686
2687			for (j = 0; j < i; j++)
2688				free_pages(page_list[j], base->lcla_pool.pages);
2689			goto failure;
2690		}
2691
2692		if ((virt_to_phys((void *)page_list[i]) &
2693		     (LCLA_ALIGNMENT - 1)) == 0)
2694			break;
2695	}
2696
2697	for (j = 0; j < i; j++)
2698		free_pages(page_list[j], base->lcla_pool.pages);
2699
2700	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2701		base->lcla_pool.base = (void *)page_list[i];
2702	} else {
2703		/* After many attempts, no succees with finding the correct
2704		 * alignment try with allocating a big buffer */
2705		dev_warn(base->dev,
2706			 "[%s] Failed to get %d pages @ 18 bit align.\n",
2707			 __func__, base->lcla_pool.pages);
2708		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2709							 base->num_phy_chans +
2710							 LCLA_ALIGNMENT,
2711							 GFP_KERNEL);
2712		if (!base->lcla_pool.base_unaligned) {
2713			ret = -ENOMEM;
2714			goto failure;
2715		}
2716
2717		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2718						 LCLA_ALIGNMENT);
2719	}
2720
2721	writel(virt_to_phys(base->lcla_pool.base),
2722	       base->virtbase + D40_DREG_LCLA);
2723failure:
2724	kfree(page_list);
2725	return ret;
2726}
2727
2728static int __init d40_probe(struct platform_device *pdev)
2729{
2730	int err;
2731	int ret = -ENOENT;
2732	struct d40_base *base;
2733	struct resource *res = NULL;
2734	int num_reserved_chans;
2735	u32 val;
2736
2737	base = d40_hw_detect_init(pdev);
2738
2739	if (!base)
2740		goto failure;
2741
2742	num_reserved_chans = d40_phy_res_init(base);
2743
2744	platform_set_drvdata(pdev, base);
2745
2746	spin_lock_init(&base->interrupt_lock);
2747	spin_lock_init(&base->execmd_lock);
2748
2749	/* Get IO for logical channel parameter address */
2750	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2751	if (!res) {
2752		ret = -ENOENT;
2753		dev_err(&pdev->dev,
2754			"[%s] No \"lcpa\" memory resource\n",
2755			__func__);
2756		goto failure;
2757	}
2758	base->lcpa_size = resource_size(res);
2759	base->phy_lcpa = res->start;
2760
2761	if (request_mem_region(res->start, resource_size(res),
2762			       D40_NAME " I/O lcpa") == NULL) {
2763		ret = -EBUSY;
2764		dev_err(&pdev->dev,
2765			"[%s] Failed to request LCPA region 0x%x-0x%x\n",
2766			__func__, res->start, res->end);
2767		goto failure;
2768	}
2769
2770	/* We make use of ESRAM memory for this. */
2771	val = readl(base->virtbase + D40_DREG_LCPA);
2772	if (res->start != val && val != 0) {
2773		dev_warn(&pdev->dev,
2774			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2775			 __func__, val, res->start);
2776	} else
2777		writel(res->start, base->virtbase + D40_DREG_LCPA);
2778
2779	base->lcpa_base = ioremap(res->start, resource_size(res));
2780	if (!base->lcpa_base) {
2781		ret = -ENOMEM;
2782		dev_err(&pdev->dev,
2783			"[%s] Failed to ioremap LCPA region\n",
2784			__func__);
2785		goto failure;
2786	}
2787
2788	ret = d40_lcla_allocate(base);
2789	if (ret) {
2790		dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2791			__func__);
2792		goto failure;
2793	}
2794
2795	spin_lock_init(&base->lcla_pool.lock);
2796
2797	base->lcla_pool.num_blocks = base->num_phy_chans;
2798
2799	base->irq = platform_get_irq(pdev, 0);
2800
2801	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2802
2803	if (ret) {
2804		dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2805		goto failure;
2806	}
2807
2808	err = d40_dmaengine_init(base, num_reserved_chans);
2809	if (err)
2810		goto failure;
2811
2812	d40_hw_init(base);
2813
2814	dev_info(base->dev, "initialized\n");
2815	return 0;
2816
2817failure:
2818	if (base) {
2819		if (base->desc_slab)
2820			kmem_cache_destroy(base->desc_slab);
2821		if (base->virtbase)
2822			iounmap(base->virtbase);
2823		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2824			free_pages((unsigned long)base->lcla_pool.base,
2825				   base->lcla_pool.pages);
2826		if (base->lcla_pool.base_unaligned)
2827			kfree(base->lcla_pool.base_unaligned);
2828		if (base->phy_lcpa)
2829			release_mem_region(base->phy_lcpa,
2830					   base->lcpa_size);
2831		if (base->phy_start)
2832			release_mem_region(base->phy_start,
2833					   base->phy_size);
2834		if (base->clk) {
2835			clk_disable(base->clk);
2836			clk_put(base->clk);
2837		}
2838
2839		kfree(base->lcla_pool.alloc_map);
2840		kfree(base->lookup_log_chans);
2841		kfree(base->lookup_phy_chans);
2842		kfree(base->phy_res);
2843		kfree(base);
2844	}
2845
2846	dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2847	return ret;
2848}
2849
2850static struct platform_driver d40_driver = {
2851	.driver = {
2852		.owner = THIS_MODULE,
2853		.name  = D40_NAME,
2854	},
2855};
2856
2857int __init stedma40_init(void)
2858{
2859	return platform_driver_probe(&d40_driver, d40_probe);
2860}
2861arch_initcall(stedma40_init);
2862