• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/x86/kernel/cpu/cpufreq/
1/*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 *  This program is free software; you can redistribute it and/or modify
12 *  it under the terms of the GNU General Public License as published by
13 *  the Free Software Foundation; either version 2 of the License, or (at
14 *  your option) any later version.
15 *
16 *  This program is distributed in the hope that it will be useful, but
17 *  WITHOUT ANY WARRANTY; without even the implied warranty of
18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 *  General Public License for more details.
20 *
21 *  You should have received a copy of the GNU General Public License along
22 *  with this program; if not, write to the Free Software Foundation, Inc.,
23 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/smp.h>
32#include <linux/sched.h>
33#include <linux/cpufreq.h>
34#include <linux/compiler.h>
35#include <linux/dmi.h>
36#include <linux/slab.h>
37
38#include <linux/acpi.h>
39#include <linux/io.h>
40#include <linux/delay.h>
41#include <linux/uaccess.h>
42
43#include <acpi/processor.h>
44
45#include <asm/msr.h>
46#include <asm/processor.h>
47#include <asm/cpufeature.h>
48#include "mperf.h"
49
50#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
51		"acpi-cpufreq", msg)
52
53MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
54MODULE_DESCRIPTION("ACPI Processor P-States Driver");
55MODULE_LICENSE("GPL");
56
57enum {
58	UNDEFINED_CAPABLE = 0,
59	SYSTEM_INTEL_MSR_CAPABLE,
60	SYSTEM_IO_CAPABLE,
61};
62
63#define INTEL_MSR_RANGE		(0xffff)
64
65struct acpi_cpufreq_data {
66	struct acpi_processor_performance *acpi_data;
67	struct cpufreq_frequency_table *freq_table;
68	unsigned int resume;
69	unsigned int cpu_feature;
70};
71
72static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
73
74/* acpi_perf_data is a pointer to percpu data. */
75static struct acpi_processor_performance __percpu *acpi_perf_data;
76
77static struct cpufreq_driver acpi_cpufreq_driver;
78
79static unsigned int acpi_pstate_strict;
80
81static int check_est_cpu(unsigned int cpuid)
82{
83	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
84
85	return cpu_has(cpu, X86_FEATURE_EST);
86}
87
88static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
89{
90	struct acpi_processor_performance *perf;
91	int i;
92
93	perf = data->acpi_data;
94
95	for (i = 0; i < perf->state_count; i++) {
96		if (value == perf->states[i].status)
97			return data->freq_table[i].frequency;
98	}
99	return 0;
100}
101
102static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
103{
104	int i;
105	struct acpi_processor_performance *perf;
106
107	msr &= INTEL_MSR_RANGE;
108	perf = data->acpi_data;
109
110	for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
111		if (msr == perf->states[data->freq_table[i].index].status)
112			return data->freq_table[i].frequency;
113	}
114	return data->freq_table[0].frequency;
115}
116
117static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
118{
119	switch (data->cpu_feature) {
120	case SYSTEM_INTEL_MSR_CAPABLE:
121		return extract_msr(val, data);
122	case SYSTEM_IO_CAPABLE:
123		return extract_io(val, data);
124	default:
125		return 0;
126	}
127}
128
129struct msr_addr {
130	u32 reg;
131};
132
133struct io_addr {
134	u16 port;
135	u8 bit_width;
136};
137
138struct drv_cmd {
139	unsigned int type;
140	const struct cpumask *mask;
141	union {
142		struct msr_addr msr;
143		struct io_addr io;
144	} addr;
145	u32 val;
146};
147
148/* Called via smp_call_function_single(), on the target CPU */
149static void do_drv_read(void *_cmd)
150{
151	struct drv_cmd *cmd = _cmd;
152	u32 h;
153
154	switch (cmd->type) {
155	case SYSTEM_INTEL_MSR_CAPABLE:
156		rdmsr(cmd->addr.msr.reg, cmd->val, h);
157		break;
158	case SYSTEM_IO_CAPABLE:
159		acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
160				&cmd->val,
161				(u32)cmd->addr.io.bit_width);
162		break;
163	default:
164		break;
165	}
166}
167
168/* Called via smp_call_function_many(), on the target CPUs */
169static void do_drv_write(void *_cmd)
170{
171	struct drv_cmd *cmd = _cmd;
172	u32 lo, hi;
173
174	switch (cmd->type) {
175	case SYSTEM_INTEL_MSR_CAPABLE:
176		rdmsr(cmd->addr.msr.reg, lo, hi);
177		lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
178		wrmsr(cmd->addr.msr.reg, lo, hi);
179		break;
180	case SYSTEM_IO_CAPABLE:
181		acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
182				cmd->val,
183				(u32)cmd->addr.io.bit_width);
184		break;
185	default:
186		break;
187	}
188}
189
190static void drv_read(struct drv_cmd *cmd)
191{
192	int err;
193	cmd->val = 0;
194
195	err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
196	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
197}
198
199static void drv_write(struct drv_cmd *cmd)
200{
201	int this_cpu;
202
203	this_cpu = get_cpu();
204	if (cpumask_test_cpu(this_cpu, cmd->mask))
205		do_drv_write(cmd);
206	smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
207	put_cpu();
208}
209
210static u32 get_cur_val(const struct cpumask *mask)
211{
212	struct acpi_processor_performance *perf;
213	struct drv_cmd cmd;
214
215	if (unlikely(cpumask_empty(mask)))
216		return 0;
217
218	switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
219	case SYSTEM_INTEL_MSR_CAPABLE:
220		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
221		cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
222		break;
223	case SYSTEM_IO_CAPABLE:
224		cmd.type = SYSTEM_IO_CAPABLE;
225		perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
226		cmd.addr.io.port = perf->control_register.address;
227		cmd.addr.io.bit_width = perf->control_register.bit_width;
228		break;
229	default:
230		return 0;
231	}
232
233	cmd.mask = mask;
234	drv_read(&cmd);
235
236	dprintk("get_cur_val = %u\n", cmd.val);
237
238	return cmd.val;
239}
240
241static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
242{
243	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
244	unsigned int freq;
245	unsigned int cached_freq;
246
247	dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
248
249	if (unlikely(data == NULL ||
250		     data->acpi_data == NULL || data->freq_table == NULL)) {
251		return 0;
252	}
253
254	cached_freq = data->freq_table[data->acpi_data->state].frequency;
255	freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
256	if (freq != cached_freq) {
257		/*
258		 * The dreaded BIOS frequency change behind our back.
259		 * Force set the frequency on next target call.
260		 */
261		data->resume = 1;
262	}
263
264	dprintk("cur freq = %u\n", freq);
265
266	return freq;
267}
268
269static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
270				struct acpi_cpufreq_data *data)
271{
272	unsigned int cur_freq;
273	unsigned int i;
274
275	for (i = 0; i < 100; i++) {
276		cur_freq = extract_freq(get_cur_val(mask), data);
277		if (cur_freq == freq)
278			return 1;
279		udelay(10);
280	}
281	return 0;
282}
283
284static int acpi_cpufreq_target(struct cpufreq_policy *policy,
285			       unsigned int target_freq, unsigned int relation)
286{
287	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
288	struct acpi_processor_performance *perf;
289	struct cpufreq_freqs freqs;
290	struct drv_cmd cmd;
291	unsigned int next_state = 0; /* Index into freq_table */
292	unsigned int next_perf_state = 0; /* Index into perf table */
293	unsigned int i;
294	int result = 0;
295
296	dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
297
298	if (unlikely(data == NULL ||
299	     data->acpi_data == NULL || data->freq_table == NULL)) {
300		return -ENODEV;
301	}
302
303	perf = data->acpi_data;
304	result = cpufreq_frequency_table_target(policy,
305						data->freq_table,
306						target_freq,
307						relation, &next_state);
308	if (unlikely(result)) {
309		result = -ENODEV;
310		goto out;
311	}
312
313	next_perf_state = data->freq_table[next_state].index;
314	if (perf->state == next_perf_state) {
315		if (unlikely(data->resume)) {
316			dprintk("Called after resume, resetting to P%d\n",
317				next_perf_state);
318			data->resume = 0;
319		} else {
320			dprintk("Already at target state (P%d)\n",
321				next_perf_state);
322			goto out;
323		}
324	}
325
326	switch (data->cpu_feature) {
327	case SYSTEM_INTEL_MSR_CAPABLE:
328		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
329		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
330		cmd.val = (u32) perf->states[next_perf_state].control;
331		break;
332	case SYSTEM_IO_CAPABLE:
333		cmd.type = SYSTEM_IO_CAPABLE;
334		cmd.addr.io.port = perf->control_register.address;
335		cmd.addr.io.bit_width = perf->control_register.bit_width;
336		cmd.val = (u32) perf->states[next_perf_state].control;
337		break;
338	default:
339		result = -ENODEV;
340		goto out;
341	}
342
343	/* cpufreq holds the hotplug lock, so we are safe from here on */
344	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
345		cmd.mask = policy->cpus;
346	else
347		cmd.mask = cpumask_of(policy->cpu);
348
349	freqs.old = perf->states[perf->state].core_frequency * 1000;
350	freqs.new = data->freq_table[next_state].frequency;
351	for_each_cpu(i, policy->cpus) {
352		freqs.cpu = i;
353		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
354	}
355
356	drv_write(&cmd);
357
358	if (acpi_pstate_strict) {
359		if (!check_freqs(cmd.mask, freqs.new, data)) {
360			dprintk("acpi_cpufreq_target failed (%d)\n",
361				policy->cpu);
362			result = -EAGAIN;
363			goto out;
364		}
365	}
366
367	for_each_cpu(i, policy->cpus) {
368		freqs.cpu = i;
369		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
370	}
371	perf->state = next_perf_state;
372
373out:
374	return result;
375}
376
377static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
378{
379	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
380
381	dprintk("acpi_cpufreq_verify\n");
382
383	return cpufreq_frequency_table_verify(policy, data->freq_table);
384}
385
386static unsigned long
387acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
388{
389	struct acpi_processor_performance *perf = data->acpi_data;
390
391	if (cpu_khz) {
392		/* search the closest match to cpu_khz */
393		unsigned int i;
394		unsigned long freq;
395		unsigned long freqn = perf->states[0].core_frequency * 1000;
396
397		for (i = 0; i < (perf->state_count-1); i++) {
398			freq = freqn;
399			freqn = perf->states[i+1].core_frequency * 1000;
400			if ((2 * cpu_khz) > (freqn + freq)) {
401				perf->state = i;
402				return freq;
403			}
404		}
405		perf->state = perf->state_count-1;
406		return freqn;
407	} else {
408		/* assume CPU is at P0... */
409		perf->state = 0;
410		return perf->states[0].core_frequency * 1000;
411	}
412}
413
414static void free_acpi_perf_data(void)
415{
416	unsigned int i;
417
418	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
419	for_each_possible_cpu(i)
420		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
421				 ->shared_cpu_map);
422	free_percpu(acpi_perf_data);
423}
424
425/*
426 * acpi_cpufreq_early_init - initialize ACPI P-States library
427 *
428 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
429 * in order to determine correct frequency and voltage pairings. We can
430 * do _PDC and _PSD and find out the processor dependency for the
431 * actual init that will happen later...
432 */
433static int __init acpi_cpufreq_early_init(void)
434{
435	unsigned int i;
436	dprintk("acpi_cpufreq_early_init\n");
437
438	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
439	if (!acpi_perf_data) {
440		dprintk("Memory allocation error for acpi_perf_data.\n");
441		return -ENOMEM;
442	}
443	for_each_possible_cpu(i) {
444		if (!zalloc_cpumask_var_node(
445			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
446			GFP_KERNEL, cpu_to_node(i))) {
447
448			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
449			free_acpi_perf_data();
450			return -ENOMEM;
451		}
452	}
453
454	/* Do initialization in ACPI core */
455	acpi_processor_preregister_performance(acpi_perf_data);
456	return 0;
457}
458
459#ifdef CONFIG_SMP
460/*
461 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
462 * or do it in BIOS firmware and won't inform about it to OS. If not
463 * detected, this has a side effect of making CPU run at a different speed
464 * than OS intended it to run at. Detect it and handle it cleanly.
465 */
466static int bios_with_sw_any_bug;
467
468static int sw_any_bug_found(const struct dmi_system_id *d)
469{
470	bios_with_sw_any_bug = 1;
471	return 0;
472}
473
474static const struct dmi_system_id sw_any_bug_dmi_table[] = {
475	{
476		.callback = sw_any_bug_found,
477		.ident = "Supermicro Server X6DLP",
478		.matches = {
479			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
480			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
481			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
482		},
483	},
484	{ }
485};
486
487static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
488{
489	/* Intel Xeon Processor 7100 Series Specification Update
490	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
491	 * AL30: A Machine Check Exception (MCE) Occurring during an
492	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
493	 * Both Processor Cores to Lock Up. */
494	if (c->x86_vendor == X86_VENDOR_INTEL) {
495		if ((c->x86 == 15) &&
496		    (c->x86_model == 6) &&
497		    (c->x86_mask == 8)) {
498			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
499			    "Xeon(R) 7100 Errata AL30, processors may "
500			    "lock up on frequency changes: disabling "
501			    "acpi-cpufreq.\n");
502			return -ENODEV;
503		    }
504		}
505	return 0;
506}
507#endif
508
509static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
510{
511	unsigned int i;
512	unsigned int valid_states = 0;
513	unsigned int cpu = policy->cpu;
514	struct acpi_cpufreq_data *data;
515	unsigned int result = 0;
516	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
517	struct acpi_processor_performance *perf;
518#ifdef CONFIG_SMP
519	static int blacklisted;
520#endif
521
522	dprintk("acpi_cpufreq_cpu_init\n");
523
524#ifdef CONFIG_SMP
525	if (blacklisted)
526		return blacklisted;
527	blacklisted = acpi_cpufreq_blacklist(c);
528	if (blacklisted)
529		return blacklisted;
530#endif
531
532	data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
533	if (!data)
534		return -ENOMEM;
535
536	data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
537	per_cpu(acfreq_data, cpu) = data;
538
539	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
540		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
541
542	result = acpi_processor_register_performance(data->acpi_data, cpu);
543	if (result)
544		goto err_free;
545
546	perf = data->acpi_data;
547	policy->shared_type = perf->shared_type;
548
549	/*
550	 * Will let policy->cpus know about dependency only when software
551	 * coordination is required.
552	 */
553	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
554	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
555		cpumask_copy(policy->cpus, perf->shared_cpu_map);
556	}
557	cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
558
559#ifdef CONFIG_SMP
560	dmi_check_system(sw_any_bug_dmi_table);
561	if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
562		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
563		cpumask_copy(policy->cpus, cpu_core_mask(cpu));
564	}
565#endif
566
567	/* capability check */
568	if (perf->state_count <= 1) {
569		dprintk("No P-States\n");
570		result = -ENODEV;
571		goto err_unreg;
572	}
573
574	if (perf->control_register.space_id != perf->status_register.space_id) {
575		result = -ENODEV;
576		goto err_unreg;
577	}
578
579	switch (perf->control_register.space_id) {
580	case ACPI_ADR_SPACE_SYSTEM_IO:
581		dprintk("SYSTEM IO addr space\n");
582		data->cpu_feature = SYSTEM_IO_CAPABLE;
583		break;
584	case ACPI_ADR_SPACE_FIXED_HARDWARE:
585		dprintk("HARDWARE addr space\n");
586		if (!check_est_cpu(cpu)) {
587			result = -ENODEV;
588			goto err_unreg;
589		}
590		data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
591		break;
592	default:
593		dprintk("Unknown addr space %d\n",
594			(u32) (perf->control_register.space_id));
595		result = -ENODEV;
596		goto err_unreg;
597	}
598
599	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
600		    (perf->state_count+1), GFP_KERNEL);
601	if (!data->freq_table) {
602		result = -ENOMEM;
603		goto err_unreg;
604	}
605
606	/* detect transition latency */
607	policy->cpuinfo.transition_latency = 0;
608	for (i = 0; i < perf->state_count; i++) {
609		if ((perf->states[i].transition_latency * 1000) >
610		    policy->cpuinfo.transition_latency)
611			policy->cpuinfo.transition_latency =
612			    perf->states[i].transition_latency * 1000;
613	}
614
615	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
616	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
617	    policy->cpuinfo.transition_latency > 20 * 1000) {
618		policy->cpuinfo.transition_latency = 20 * 1000;
619		printk_once(KERN_INFO
620			    "P-state transition latency capped at 20 uS\n");
621	}
622
623	/* table init */
624	for (i = 0; i < perf->state_count; i++) {
625		if (i > 0 && perf->states[i].core_frequency >=
626		    data->freq_table[valid_states-1].frequency / 1000)
627			continue;
628
629		data->freq_table[valid_states].index = i;
630		data->freq_table[valid_states].frequency =
631		    perf->states[i].core_frequency * 1000;
632		valid_states++;
633	}
634	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
635	perf->state = 0;
636
637	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
638	if (result)
639		goto err_freqfree;
640
641	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
642		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
643
644	switch (perf->control_register.space_id) {
645	case ACPI_ADR_SPACE_SYSTEM_IO:
646		/* Current speed is unknown and not detectable by IO port */
647		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
648		break;
649	case ACPI_ADR_SPACE_FIXED_HARDWARE:
650		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
651		policy->cur = get_cur_freq_on_cpu(cpu);
652		break;
653	default:
654		break;
655	}
656
657	/* notify BIOS that we exist */
658	acpi_processor_notify_smm(THIS_MODULE);
659
660	/* Check for APERF/MPERF support in hardware */
661	if (cpu_has(c, X86_FEATURE_APERFMPERF))
662		acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
663
664	dprintk("CPU%u - ACPI performance management activated.\n", cpu);
665	for (i = 0; i < perf->state_count; i++)
666		dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
667			(i == perf->state ? '*' : ' '), i,
668			(u32) perf->states[i].core_frequency,
669			(u32) perf->states[i].power,
670			(u32) perf->states[i].transition_latency);
671
672	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
673
674	/*
675	 * the first call to ->target() should result in us actually
676	 * writing something to the appropriate registers.
677	 */
678	data->resume = 1;
679
680	return result;
681
682err_freqfree:
683	kfree(data->freq_table);
684err_unreg:
685	acpi_processor_unregister_performance(perf, cpu);
686err_free:
687	kfree(data);
688	per_cpu(acfreq_data, cpu) = NULL;
689
690	return result;
691}
692
693static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
694{
695	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
696
697	dprintk("acpi_cpufreq_cpu_exit\n");
698
699	if (data) {
700		cpufreq_frequency_table_put_attr(policy->cpu);
701		per_cpu(acfreq_data, policy->cpu) = NULL;
702		acpi_processor_unregister_performance(data->acpi_data,
703						      policy->cpu);
704		kfree(data->freq_table);
705		kfree(data);
706	}
707
708	return 0;
709}
710
711static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
712{
713	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
714
715	dprintk("acpi_cpufreq_resume\n");
716
717	data->resume = 1;
718
719	return 0;
720}
721
722static struct freq_attr *acpi_cpufreq_attr[] = {
723	&cpufreq_freq_attr_scaling_available_freqs,
724	NULL,
725};
726
727static struct cpufreq_driver acpi_cpufreq_driver = {
728	.verify		= acpi_cpufreq_verify,
729	.target		= acpi_cpufreq_target,
730	.bios_limit	= acpi_processor_get_bios_limit,
731	.init		= acpi_cpufreq_cpu_init,
732	.exit		= acpi_cpufreq_cpu_exit,
733	.resume		= acpi_cpufreq_resume,
734	.name		= "acpi-cpufreq",
735	.owner		= THIS_MODULE,
736	.attr		= acpi_cpufreq_attr,
737};
738
739static int __init acpi_cpufreq_init(void)
740{
741	int ret;
742
743	if (acpi_disabled)
744		return 0;
745
746	dprintk("acpi_cpufreq_init\n");
747
748	ret = acpi_cpufreq_early_init();
749	if (ret)
750		return ret;
751
752	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
753	if (ret)
754		free_acpi_perf_data();
755
756	return ret;
757}
758
759static void __exit acpi_cpufreq_exit(void)
760{
761	dprintk("acpi_cpufreq_exit\n");
762
763	cpufreq_unregister_driver(&acpi_cpufreq_driver);
764
765	free_percpu(acpi_perf_data);
766}
767
768module_param(acpi_pstate_strict, uint, 0644);
769MODULE_PARM_DESC(acpi_pstate_strict,
770	"value 0 or non-zero. non-zero -> strict ACPI checks are "
771	"performed during frequency changes.");
772
773late_initcall(acpi_cpufreq_init);
774module_exit(acpi_cpufreq_exit);
775
776MODULE_ALIAS("acpi");
777