• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/sparc/kernel/
1/*
2 * unaligned.c: Unaligned load/store trap handling with special
3 *              cases for the kernel to do them more quickly.
4 *
5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9
10#include <linux/jiffies.h>
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <asm/asi.h>
16#include <asm/ptrace.h>
17#include <asm/pstate.h>
18#include <asm/processor.h>
19#include <asm/system.h>
20#include <asm/uaccess.h>
21#include <linux/smp.h>
22#include <linux/bitops.h>
23#include <linux/perf_event.h>
24#include <linux/ratelimit.h>
25#include <asm/fpumacro.h>
26
27enum direction {
28	load,    /* ld, ldd, ldh, ldsh */
29	store,   /* st, std, sth, stsh */
30	both,    /* Swap, ldstub, cas, ... */
31	fpld,
32	fpst,
33	invalid,
34};
35
36static inline enum direction decode_direction(unsigned int insn)
37{
38	unsigned long tmp = (insn >> 21) & 1;
39
40	if (!tmp)
41		return load;
42	else {
43		switch ((insn>>19)&0xf) {
44		case 15: /* swap* */
45			return both;
46		default:
47			return store;
48		}
49	}
50}
51
52/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
53static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
54{
55	unsigned int tmp;
56
57	tmp = ((insn >> 19) & 0xf);
58	if (tmp == 11 || tmp == 14) /* ldx/stx */
59		return 8;
60	tmp &= 3;
61	if (!tmp)
62		return 4;
63	else if (tmp == 3)
64		return 16;	/* ldd/std - Although it is actually 8 */
65	else if (tmp == 2)
66		return 2;
67	else {
68		printk("Impossible unaligned trap. insn=%08x\n", insn);
69		die_if_kernel("Byte sized unaligned access?!?!", regs);
70
71		/* GCC should never warn that control reaches the end
72		 * of this function without returning a value because
73		 * die_if_kernel() is marked with attribute 'noreturn'.
74		 * Alas, some versions do...
75		 */
76
77		return 0;
78	}
79}
80
81static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
82{
83	if (insn & 0x800000) {
84		if (insn & 0x2000)
85			return (unsigned char)(regs->tstate >> 24);	/* %asi */
86		else
87			return (unsigned char)(insn >> 5);		/* imm_asi */
88	} else
89		return ASI_P;
90}
91
92/* 0x400000 = signed, 0 = unsigned */
93static inline int decode_signedness(unsigned int insn)
94{
95	return (insn & 0x400000);
96}
97
98static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
99				       unsigned int rd, int from_kernel)
100{
101	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
102		if (from_kernel != 0)
103			__asm__ __volatile__("flushw");
104		else
105			flushw_user();
106	}
107}
108
109static inline long sign_extend_imm13(long imm)
110{
111	return imm << 51 >> 51;
112}
113
114static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
115{
116	unsigned long value;
117
118	if (reg < 16)
119		return (!reg ? 0 : regs->u_regs[reg]);
120	if (regs->tstate & TSTATE_PRIV) {
121		struct reg_window *win;
122		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
123		value = win->locals[reg - 16];
124	} else if (test_thread_flag(TIF_32BIT)) {
125		struct reg_window32 __user *win32;
126		win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
127		get_user(value, &win32->locals[reg - 16]);
128	} else {
129		struct reg_window __user *win;
130		win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
131		get_user(value, &win->locals[reg - 16]);
132	}
133	return value;
134}
135
136static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
137{
138	if (reg < 16)
139		return &regs->u_regs[reg];
140	if (regs->tstate & TSTATE_PRIV) {
141		struct reg_window *win;
142		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
143		return &win->locals[reg - 16];
144	} else if (test_thread_flag(TIF_32BIT)) {
145		struct reg_window32 *win32;
146		win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
147		return (unsigned long *)&win32->locals[reg - 16];
148	} else {
149		struct reg_window *win;
150		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
151		return &win->locals[reg - 16];
152	}
153}
154
155unsigned long compute_effective_address(struct pt_regs *regs,
156					unsigned int insn, unsigned int rd)
157{
158	unsigned int rs1 = (insn >> 14) & 0x1f;
159	unsigned int rs2 = insn & 0x1f;
160	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
161
162	if (insn & 0x2000) {
163		maybe_flush_windows(rs1, 0, rd, from_kernel);
164		return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
165	} else {
166		maybe_flush_windows(rs1, rs2, rd, from_kernel);
167		return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
168	}
169}
170
171/* This is just to make gcc think die_if_kernel does return... */
172static void __used unaligned_panic(char *str, struct pt_regs *regs)
173{
174	die_if_kernel(str, regs);
175}
176
177extern int do_int_load(unsigned long *dest_reg, int size,
178		       unsigned long *saddr, int is_signed, int asi);
179
180extern int __do_int_store(unsigned long *dst_addr, int size,
181			  unsigned long src_val, int asi);
182
183static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
184			       struct pt_regs *regs, int asi, int orig_asi)
185{
186	unsigned long zero = 0;
187	unsigned long *src_val_p = &zero;
188	unsigned long src_val;
189
190	if (size == 16) {
191		size = 8;
192		zero = (((long)(reg_num ?
193		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
194			(unsigned)fetch_reg(reg_num + 1, regs);
195	} else if (reg_num) {
196		src_val_p = fetch_reg_addr(reg_num, regs);
197	}
198	src_val = *src_val_p;
199	if (unlikely(asi != orig_asi)) {
200		switch (size) {
201		case 2:
202			src_val = swab16(src_val);
203			break;
204		case 4:
205			src_val = swab32(src_val);
206			break;
207		case 8:
208			src_val = swab64(src_val);
209			break;
210		case 16:
211		default:
212			BUG();
213			break;
214		};
215	}
216	return __do_int_store(dst_addr, size, src_val, asi);
217}
218
219static inline void advance(struct pt_regs *regs)
220{
221	regs->tpc   = regs->tnpc;
222	regs->tnpc += 4;
223	if (test_thread_flag(TIF_32BIT)) {
224		regs->tpc &= 0xffffffff;
225		regs->tnpc &= 0xffffffff;
226	}
227}
228
229static inline int floating_point_load_or_store_p(unsigned int insn)
230{
231	return (insn >> 24) & 1;
232}
233
234static inline int ok_for_kernel(unsigned int insn)
235{
236	return !floating_point_load_or_store_p(insn);
237}
238
239static void kernel_mna_trap_fault(int fixup_tstate_asi)
240{
241	struct pt_regs *regs = current_thread_info()->kern_una_regs;
242	unsigned int insn = current_thread_info()->kern_una_insn;
243	const struct exception_table_entry *entry;
244
245	entry = search_exception_tables(regs->tpc);
246	if (!entry) {
247		unsigned long address;
248
249		address = compute_effective_address(regs, insn,
250						    ((insn >> 25) & 0x1f));
251        	if (address < PAGE_SIZE) {
252                	printk(KERN_ALERT "Unable to handle kernel NULL "
253			       "pointer dereference in mna handler");
254        	} else
255                	printk(KERN_ALERT "Unable to handle kernel paging "
256			       "request in mna handler");
257	        printk(KERN_ALERT " at virtual address %016lx\n",address);
258		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
259			(current->mm ? CTX_HWBITS(current->mm->context) :
260			CTX_HWBITS(current->active_mm->context)));
261		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
262			(current->mm ? (unsigned long) current->mm->pgd :
263			(unsigned long) current->active_mm->pgd));
264	        die_if_kernel("Oops", regs);
265		/* Not reached */
266	}
267	regs->tpc = entry->fixup;
268	regs->tnpc = regs->tpc + 4;
269
270	if (fixup_tstate_asi) {
271		regs->tstate &= ~TSTATE_ASI;
272		regs->tstate |= (ASI_AIUS << 24UL);
273	}
274}
275
276static void log_unaligned(struct pt_regs *regs)
277{
278	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
279
280	if (__ratelimit(&ratelimit)) {
281		printk("Kernel unaligned access at TPC[%lx] %pS\n",
282		       regs->tpc, (void *) regs->tpc);
283	}
284}
285
286asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
287{
288	enum direction dir = decode_direction(insn);
289	int size = decode_access_size(regs, insn);
290	int orig_asi, asi;
291
292	current_thread_info()->kern_una_regs = regs;
293	current_thread_info()->kern_una_insn = insn;
294
295	orig_asi = asi = decode_asi(insn, regs);
296
297	/* If this is a {get,put}_user() on an unaligned userspace pointer,
298	 * just signal a fault and do not log the event.
299	 */
300	if (asi == ASI_AIUS) {
301		kernel_mna_trap_fault(0);
302		return;
303	}
304
305	log_unaligned(regs);
306
307	if (!ok_for_kernel(insn) || dir == both) {
308		printk("Unsupported unaligned load/store trap for kernel "
309		       "at <%016lx>.\n", regs->tpc);
310		unaligned_panic("Kernel does fpu/atomic "
311				"unaligned load/store.", regs);
312
313		kernel_mna_trap_fault(0);
314	} else {
315		unsigned long addr, *reg_addr;
316		int err;
317
318		addr = compute_effective_address(regs, insn,
319						 ((insn >> 25) & 0x1f));
320		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, addr);
321		switch (asi) {
322		case ASI_NL:
323		case ASI_AIUPL:
324		case ASI_AIUSL:
325		case ASI_PL:
326		case ASI_SL:
327		case ASI_PNFL:
328		case ASI_SNFL:
329			asi &= ~0x08;
330			break;
331		};
332		switch (dir) {
333		case load:
334			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
335			err = do_int_load(reg_addr, size,
336					  (unsigned long *) addr,
337					  decode_signedness(insn), asi);
338			if (likely(!err) && unlikely(asi != orig_asi)) {
339				unsigned long val_in = *reg_addr;
340				switch (size) {
341				case 2:
342					val_in = swab16(val_in);
343					break;
344				case 4:
345					val_in = swab32(val_in);
346					break;
347				case 8:
348					val_in = swab64(val_in);
349					break;
350				case 16:
351				default:
352					BUG();
353					break;
354				};
355				*reg_addr = val_in;
356			}
357			break;
358
359		case store:
360			err = do_int_store(((insn>>25)&0x1f), size,
361					   (unsigned long *) addr, regs,
362					   asi, orig_asi);
363			break;
364
365		default:
366			panic("Impossible kernel unaligned trap.");
367			/* Not reached... */
368		}
369		if (unlikely(err))
370			kernel_mna_trap_fault(1);
371		else
372			advance(regs);
373	}
374}
375
376static char popc_helper[] = {
3770, 1, 1, 2, 1, 2, 2, 3,
3781, 2, 2, 3, 2, 3, 3, 4,
379};
380
381int handle_popc(u32 insn, struct pt_regs *regs)
382{
383	u64 value;
384	int ret, i, rd = ((insn >> 25) & 0x1f);
385	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
386
387	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
388	if (insn & 0x2000) {
389		maybe_flush_windows(0, 0, rd, from_kernel);
390		value = sign_extend_imm13(insn);
391	} else {
392		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
393		value = fetch_reg(insn & 0x1f, regs);
394	}
395	for (ret = 0, i = 0; i < 16; i++) {
396		ret += popc_helper[value & 0xf];
397		value >>= 4;
398	}
399	if (rd < 16) {
400		if (rd)
401			regs->u_regs[rd] = ret;
402	} else {
403		if (test_thread_flag(TIF_32BIT)) {
404			struct reg_window32 __user *win32;
405			win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
406			put_user(ret, &win32->locals[rd - 16]);
407		} else {
408			struct reg_window __user *win;
409			win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
410			put_user(ret, &win->locals[rd - 16]);
411		}
412	}
413	advance(regs);
414	return 1;
415}
416
417extern void do_fpother(struct pt_regs *regs);
418extern void do_privact(struct pt_regs *regs);
419extern void spitfire_data_access_exception(struct pt_regs *regs,
420					   unsigned long sfsr,
421					   unsigned long sfar);
422extern void sun4v_data_access_exception(struct pt_regs *regs,
423					unsigned long addr,
424					unsigned long type_ctx);
425
426int handle_ldf_stq(u32 insn, struct pt_regs *regs)
427{
428	unsigned long addr = compute_effective_address(regs, insn, 0);
429	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
430	struct fpustate *f = FPUSTATE;
431	int asi = decode_asi(insn, regs);
432	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
433
434	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
435
436	save_and_clear_fpu();
437	current_thread_info()->xfsr[0] &= ~0x1c000;
438	if (freg & 3) {
439		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
440		do_fpother(regs);
441		return 0;
442	}
443	if (insn & 0x200000) {
444		/* STQ */
445		u64 first = 0, second = 0;
446
447		if (current_thread_info()->fpsaved[0] & flag) {
448			first = *(u64 *)&f->regs[freg];
449			second = *(u64 *)&f->regs[freg+2];
450		}
451		if (asi < 0x80) {
452			do_privact(regs);
453			return 1;
454		}
455		switch (asi) {
456		case ASI_P:
457		case ASI_S: break;
458		case ASI_PL:
459		case ASI_SL:
460			{
461				/* Need to convert endians */
462				u64 tmp = __swab64p(&first);
463
464				first = __swab64p(&second);
465				second = tmp;
466				break;
467			}
468		default:
469			if (tlb_type == hypervisor)
470				sun4v_data_access_exception(regs, addr, 0);
471			else
472				spitfire_data_access_exception(regs, 0, addr);
473			return 1;
474		}
475		if (put_user (first >> 32, (u32 __user *)addr) ||
476		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
477		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
478		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
479			if (tlb_type == hypervisor)
480				sun4v_data_access_exception(regs, addr, 0);
481			else
482				spitfire_data_access_exception(regs, 0, addr);
483		    	return 1;
484		}
485	} else {
486		/* LDF, LDDF, LDQF */
487		u32 data[4] __attribute__ ((aligned(8)));
488		int size, i;
489		int err;
490
491		if (asi < 0x80) {
492			do_privact(regs);
493			return 1;
494		} else if (asi > ASI_SNFL) {
495			if (tlb_type == hypervisor)
496				sun4v_data_access_exception(regs, addr, 0);
497			else
498				spitfire_data_access_exception(regs, 0, addr);
499			return 1;
500		}
501		switch (insn & 0x180000) {
502		case 0x000000: size = 1; break;
503		case 0x100000: size = 4; break;
504		default: size = 2; break;
505		}
506		for (i = 0; i < size; i++)
507			data[i] = 0;
508
509		err = get_user (data[0], (u32 __user *) addr);
510		if (!err) {
511			for (i = 1; i < size; i++)
512				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
513		}
514		if (err && !(asi & 0x2 /* NF */)) {
515			if (tlb_type == hypervisor)
516				sun4v_data_access_exception(regs, addr, 0);
517			else
518				spitfire_data_access_exception(regs, 0, addr);
519			return 1;
520		}
521		if (asi & 0x8) /* Little */ {
522			u64 tmp;
523
524			switch (size) {
525			case 1: data[0] = le32_to_cpup(data + 0); break;
526			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
527				break;
528			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
529				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
530				*(u64 *)(data + 2) = tmp;
531				break;
532			}
533		}
534		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
535			current_thread_info()->fpsaved[0] = FPRS_FEF;
536			current_thread_info()->gsr[0] = 0;
537		}
538		if (!(current_thread_info()->fpsaved[0] & flag)) {
539			if (freg < 32)
540				memset(f->regs, 0, 32*sizeof(u32));
541			else
542				memset(f->regs+32, 0, 32*sizeof(u32));
543		}
544		memcpy(f->regs + freg, data, size * 4);
545		current_thread_info()->fpsaved[0] |= flag;
546	}
547	advance(regs);
548	return 1;
549}
550
551void handle_ld_nf(u32 insn, struct pt_regs *regs)
552{
553	int rd = ((insn >> 25) & 0x1f);
554	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
555	unsigned long *reg;
556
557	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
558
559	maybe_flush_windows(0, 0, rd, from_kernel);
560	reg = fetch_reg_addr(rd, regs);
561	if (from_kernel || rd < 16) {
562		reg[0] = 0;
563		if ((insn & 0x780000) == 0x180000)
564			reg[1] = 0;
565	} else if (test_thread_flag(TIF_32BIT)) {
566		put_user(0, (int __user *) reg);
567		if ((insn & 0x780000) == 0x180000)
568			put_user(0, ((int __user *) reg) + 1);
569	} else {
570		put_user(0, (unsigned long __user *) reg);
571		if ((insn & 0x780000) == 0x180000)
572			put_user(0, (unsigned long __user *) reg + 1);
573	}
574	advance(regs);
575}
576
577void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
578{
579	unsigned long pc = regs->tpc;
580	unsigned long tstate = regs->tstate;
581	u32 insn;
582	u64 value;
583	u8 freg;
584	int flag;
585	struct fpustate *f = FPUSTATE;
586
587	if (tstate & TSTATE_PRIV)
588		die_if_kernel("lddfmna from kernel", regs);
589	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
590	if (test_thread_flag(TIF_32BIT))
591		pc = (u32)pc;
592	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
593		int asi = decode_asi(insn, regs);
594		u32 first, second;
595		int err;
596
597		if ((asi > ASI_SNFL) ||
598		    (asi < ASI_P))
599			goto daex;
600		first = second = 0;
601		err = get_user(first, (u32 __user *)sfar);
602		if (!err)
603			err = get_user(second, (u32 __user *)(sfar + 4));
604		if (err) {
605			if (!(asi & 0x2))
606				goto daex;
607			first = second = 0;
608		}
609		save_and_clear_fpu();
610		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
611		value = (((u64)first) << 32) | second;
612		if (asi & 0x8) /* Little */
613			value = __swab64p(&value);
614		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
615		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
616			current_thread_info()->fpsaved[0] = FPRS_FEF;
617			current_thread_info()->gsr[0] = 0;
618		}
619		if (!(current_thread_info()->fpsaved[0] & flag)) {
620			if (freg < 32)
621				memset(f->regs, 0, 32*sizeof(u32));
622			else
623				memset(f->regs+32, 0, 32*sizeof(u32));
624		}
625		*(u64 *)(f->regs + freg) = value;
626		current_thread_info()->fpsaved[0] |= flag;
627	} else {
628daex:
629		if (tlb_type == hypervisor)
630			sun4v_data_access_exception(regs, sfar, sfsr);
631		else
632			spitfire_data_access_exception(regs, sfsr, sfar);
633		return;
634	}
635	advance(regs);
636}
637
638void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
639{
640	unsigned long pc = regs->tpc;
641	unsigned long tstate = regs->tstate;
642	u32 insn;
643	u64 value;
644	u8 freg;
645	int flag;
646	struct fpustate *f = FPUSTATE;
647
648	if (tstate & TSTATE_PRIV)
649		die_if_kernel("stdfmna from kernel", regs);
650	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
651	if (test_thread_flag(TIF_32BIT))
652		pc = (u32)pc;
653	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
654		int asi = decode_asi(insn, regs);
655		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
656		value = 0;
657		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
658		if ((asi > ASI_SNFL) ||
659		    (asi < ASI_P))
660			goto daex;
661		save_and_clear_fpu();
662		if (current_thread_info()->fpsaved[0] & flag)
663			value = *(u64 *)&f->regs[freg];
664		switch (asi) {
665		case ASI_P:
666		case ASI_S: break;
667		case ASI_PL:
668		case ASI_SL:
669			value = __swab64p(&value); break;
670		default: goto daex;
671		}
672		if (put_user (value >> 32, (u32 __user *) sfar) ||
673		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
674			goto daex;
675	} else {
676daex:
677		if (tlb_type == hypervisor)
678			sun4v_data_access_exception(regs, sfar, sfsr);
679		else
680			spitfire_data_access_exception(regs, sfsr, sfar);
681		return;
682	}
683	advance(regs);
684}
685