• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/sparc/kernel/
1/* Performance event support for sparc64.
2 *
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4 *
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
7 *
8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 *  Copyright (C) 2009 Jaswinder Singh Rajput
11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
15#include <linux/perf_event.h>
16#include <linux/kprobes.h>
17#include <linux/ftrace.h>
18#include <linux/kernel.h>
19#include <linux/kdebug.h>
20#include <linux/mutex.h>
21
22#include <asm/stacktrace.h>
23#include <asm/cpudata.h>
24#include <asm/uaccess.h>
25#include <asm/atomic.h>
26#include <asm/nmi.h>
27#include <asm/pcr.h>
28
29#include "kstack.h"
30
31/* Sparc64 chips have two performance counters, 32-bits each, with
32 * overflow interrupts generated on transition from 0xffffffff to 0.
33 * The counters are accessed in one go using a 64-bit register.
34 *
35 * Both counters are controlled using a single control register.  The
36 * only way to stop all sampling is to clear all of the context (user,
37 * supervisor, hypervisor) sampling enable bits.  But these bits apply
38 * to both counters, thus the two counters can't be enabled/disabled
39 * individually.
40 *
41 * The control register has two event fields, one for each of the two
42 * counters.  It's thus nearly impossible to have one counter going
43 * while keeping the other one stopped.  Therefore it is possible to
44 * get overflow interrupts for counters not currently "in use" and
45 * that condition must be checked in the overflow interrupt handler.
46 *
47 * So we use a hack, in that we program inactive counters with the
48 * "sw_count0" and "sw_count1" events.  These count how many times
49 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
50 * unusual way to encode a NOP and therefore will not trigger in
51 * normal code.
52 */
53
54#define MAX_HWEVENTS			2
55#define MAX_PERIOD			((1UL << 32) - 1)
56
57#define PIC_UPPER_INDEX			0
58#define PIC_LOWER_INDEX			1
59#define PIC_NO_INDEX			-1
60
61struct cpu_hw_events {
62	/* Number of events currently scheduled onto this cpu.
63	 * This tells how many entries in the arrays below
64	 * are valid.
65	 */
66	int			n_events;
67
68	/* Number of new events added since the last hw_perf_disable().
69	 * This works because the perf event layer always adds new
70	 * events inside of a perf_{disable,enable}() sequence.
71	 */
72	int			n_added;
73
74	/* Array of events current scheduled on this cpu.  */
75	struct perf_event	*event[MAX_HWEVENTS];
76
77	/* Array of encoded longs, specifying the %pcr register
78	 * encoding and the mask of PIC counters this even can
79	 * be scheduled on.  See perf_event_encode() et al.
80	 */
81	unsigned long		events[MAX_HWEVENTS];
82
83	/* The current counter index assigned to an event.  When the
84	 * event hasn't been programmed into the cpu yet, this will
85	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
86	 * we ought to schedule the event.
87	 */
88	int			current_idx[MAX_HWEVENTS];
89
90	/* Software copy of %pcr register on this cpu.  */
91	u64			pcr;
92
93	/* Enabled/disable state.  */
94	int			enabled;
95
96	unsigned int		group_flag;
97};
98DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
99
100/* An event map describes the characteristics of a performance
101 * counter event.  In particular it gives the encoding as well as
102 * a mask telling which counters the event can be measured on.
103 */
104struct perf_event_map {
105	u16	encoding;
106	u8	pic_mask;
107#define PIC_NONE	0x00
108#define PIC_UPPER	0x01
109#define PIC_LOWER	0x02
110};
111
112/* Encode a perf_event_map entry into a long.  */
113static unsigned long perf_event_encode(const struct perf_event_map *pmap)
114{
115	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
116}
117
118static u8 perf_event_get_msk(unsigned long val)
119{
120	return val & 0xff;
121}
122
123static u64 perf_event_get_enc(unsigned long val)
124{
125	return val >> 16;
126}
127
128#define C(x) PERF_COUNT_HW_CACHE_##x
129
130#define CACHE_OP_UNSUPPORTED	0xfffe
131#define CACHE_OP_NONSENSE	0xffff
132
133typedef struct perf_event_map cache_map_t
134				[PERF_COUNT_HW_CACHE_MAX]
135				[PERF_COUNT_HW_CACHE_OP_MAX]
136				[PERF_COUNT_HW_CACHE_RESULT_MAX];
137
138struct sparc_pmu {
139	const struct perf_event_map	*(*event_map)(int);
140	const cache_map_t		*cache_map;
141	int				max_events;
142	int				upper_shift;
143	int				lower_shift;
144	int				event_mask;
145	int				hv_bit;
146	int				irq_bit;
147	int				upper_nop;
148	int				lower_nop;
149};
150
151static const struct perf_event_map ultra3_perfmon_event_map[] = {
152	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
153	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
154	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
155	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
156};
157
158static const struct perf_event_map *ultra3_event_map(int event_id)
159{
160	return &ultra3_perfmon_event_map[event_id];
161}
162
163static const cache_map_t ultra3_cache_map = {
164[C(L1D)] = {
165	[C(OP_READ)] = {
166		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
167		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
168	},
169	[C(OP_WRITE)] = {
170		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
171		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
172	},
173	[C(OP_PREFETCH)] = {
174		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
175		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
176	},
177},
178[C(L1I)] = {
179	[C(OP_READ)] = {
180		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
181		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
182	},
183	[ C(OP_WRITE) ] = {
184		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
185		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
186	},
187	[ C(OP_PREFETCH) ] = {
188		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
189		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
190	},
191},
192[C(LL)] = {
193	[C(OP_READ)] = {
194		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
195		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
196	},
197	[C(OP_WRITE)] = {
198		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
199		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
200	},
201	[C(OP_PREFETCH)] = {
202		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
203		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
204	},
205},
206[C(DTLB)] = {
207	[C(OP_READ)] = {
208		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
209		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
210	},
211	[ C(OP_WRITE) ] = {
212		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
213		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
214	},
215	[ C(OP_PREFETCH) ] = {
216		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
217		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
218	},
219},
220[C(ITLB)] = {
221	[C(OP_READ)] = {
222		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
223		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
224	},
225	[ C(OP_WRITE) ] = {
226		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
227		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
228	},
229	[ C(OP_PREFETCH) ] = {
230		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
231		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
232	},
233},
234[C(BPU)] = {
235	[C(OP_READ)] = {
236		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
237		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
238	},
239	[ C(OP_WRITE) ] = {
240		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
241		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
242	},
243	[ C(OP_PREFETCH) ] = {
244		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
245		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
246	},
247},
248};
249
250static const struct sparc_pmu ultra3_pmu = {
251	.event_map	= ultra3_event_map,
252	.cache_map	= &ultra3_cache_map,
253	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
254	.upper_shift	= 11,
255	.lower_shift	= 4,
256	.event_mask	= 0x3f,
257	.upper_nop	= 0x1c,
258	.lower_nop	= 0x14,
259};
260
261/* Niagara1 is very limited.  The upper PIC is hard-locked to count
262 * only instructions, so it is free running which creates all kinds of
263 * problems.  Some hardware designs make one wonder if the creator
264 * even looked at how this stuff gets used by software.
265 */
266static const struct perf_event_map niagara1_perfmon_event_map[] = {
267	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
268	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
269	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
270	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
271};
272
273static const struct perf_event_map *niagara1_event_map(int event_id)
274{
275	return &niagara1_perfmon_event_map[event_id];
276}
277
278static const cache_map_t niagara1_cache_map = {
279[C(L1D)] = {
280	[C(OP_READ)] = {
281		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
282		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
283	},
284	[C(OP_WRITE)] = {
285		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
286		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
287	},
288	[C(OP_PREFETCH)] = {
289		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
290		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
291	},
292},
293[C(L1I)] = {
294	[C(OP_READ)] = {
295		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
296		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
297	},
298	[ C(OP_WRITE) ] = {
299		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
300		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
301	},
302	[ C(OP_PREFETCH) ] = {
303		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
304		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
305	},
306},
307[C(LL)] = {
308	[C(OP_READ)] = {
309		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
310		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
311	},
312	[C(OP_WRITE)] = {
313		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
314		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
315	},
316	[C(OP_PREFETCH)] = {
317		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
318		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
319	},
320},
321[C(DTLB)] = {
322	[C(OP_READ)] = {
323		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
324		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
325	},
326	[ C(OP_WRITE) ] = {
327		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
328		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
329	},
330	[ C(OP_PREFETCH) ] = {
331		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
332		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
333	},
334},
335[C(ITLB)] = {
336	[C(OP_READ)] = {
337		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
338		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
339	},
340	[ C(OP_WRITE) ] = {
341		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
342		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
343	},
344	[ C(OP_PREFETCH) ] = {
345		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
346		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
347	},
348},
349[C(BPU)] = {
350	[C(OP_READ)] = {
351		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
352		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
353	},
354	[ C(OP_WRITE) ] = {
355		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
356		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
357	},
358	[ C(OP_PREFETCH) ] = {
359		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
360		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
361	},
362},
363};
364
365static const struct sparc_pmu niagara1_pmu = {
366	.event_map	= niagara1_event_map,
367	.cache_map	= &niagara1_cache_map,
368	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
369	.upper_shift	= 0,
370	.lower_shift	= 4,
371	.event_mask	= 0x7,
372	.upper_nop	= 0x0,
373	.lower_nop	= 0x0,
374};
375
376static const struct perf_event_map niagara2_perfmon_event_map[] = {
377	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
378	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
379	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
380	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
381	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
382	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
383};
384
385static const struct perf_event_map *niagara2_event_map(int event_id)
386{
387	return &niagara2_perfmon_event_map[event_id];
388}
389
390static const cache_map_t niagara2_cache_map = {
391[C(L1D)] = {
392	[C(OP_READ)] = {
393		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
394		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
395	},
396	[C(OP_WRITE)] = {
397		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
398		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
399	},
400	[C(OP_PREFETCH)] = {
401		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
403	},
404},
405[C(L1I)] = {
406	[C(OP_READ)] = {
407		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
408		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
409	},
410	[ C(OP_WRITE) ] = {
411		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
412		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
413	},
414	[ C(OP_PREFETCH) ] = {
415		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
416		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
417	},
418},
419[C(LL)] = {
420	[C(OP_READ)] = {
421		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
422		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
423	},
424	[C(OP_WRITE)] = {
425		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
426		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
427	},
428	[C(OP_PREFETCH)] = {
429		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
431	},
432},
433[C(DTLB)] = {
434	[C(OP_READ)] = {
435		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
436		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
437	},
438	[ C(OP_WRITE) ] = {
439		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
440		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
441	},
442	[ C(OP_PREFETCH) ] = {
443		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
444		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
445	},
446},
447[C(ITLB)] = {
448	[C(OP_READ)] = {
449		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
450		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
451	},
452	[ C(OP_WRITE) ] = {
453		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
454		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
455	},
456	[ C(OP_PREFETCH) ] = {
457		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
458		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
459	},
460},
461[C(BPU)] = {
462	[C(OP_READ)] = {
463		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
464		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
465	},
466	[ C(OP_WRITE) ] = {
467		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
468		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
469	},
470	[ C(OP_PREFETCH) ] = {
471		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
472		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
473	},
474},
475};
476
477static const struct sparc_pmu niagara2_pmu = {
478	.event_map	= niagara2_event_map,
479	.cache_map	= &niagara2_cache_map,
480	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
481	.upper_shift	= 19,
482	.lower_shift	= 6,
483	.event_mask	= 0xfff,
484	.hv_bit		= 0x8,
485	.irq_bit	= 0x30,
486	.upper_nop	= 0x220,
487	.lower_nop	= 0x220,
488};
489
490static const struct sparc_pmu *sparc_pmu __read_mostly;
491
492static u64 event_encoding(u64 event_id, int idx)
493{
494	if (idx == PIC_UPPER_INDEX)
495		event_id <<= sparc_pmu->upper_shift;
496	else
497		event_id <<= sparc_pmu->lower_shift;
498	return event_id;
499}
500
501static u64 mask_for_index(int idx)
502{
503	return event_encoding(sparc_pmu->event_mask, idx);
504}
505
506static u64 nop_for_index(int idx)
507{
508	return event_encoding(idx == PIC_UPPER_INDEX ?
509			      sparc_pmu->upper_nop :
510			      sparc_pmu->lower_nop, idx);
511}
512
513static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
514{
515	u64 val, mask = mask_for_index(idx);
516
517	val = cpuc->pcr;
518	val &= ~mask;
519	val |= hwc->config;
520	cpuc->pcr = val;
521
522	pcr_ops->write(cpuc->pcr);
523}
524
525static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
526{
527	u64 mask = mask_for_index(idx);
528	u64 nop = nop_for_index(idx);
529	u64 val;
530
531	val = cpuc->pcr;
532	val &= ~mask;
533	val |= nop;
534	cpuc->pcr = val;
535
536	pcr_ops->write(cpuc->pcr);
537}
538
539static u32 read_pmc(int idx)
540{
541	u64 val;
542
543	read_pic(val);
544	if (idx == PIC_UPPER_INDEX)
545		val >>= 32;
546
547	return val & 0xffffffff;
548}
549
550static void write_pmc(int idx, u64 val)
551{
552	u64 shift, mask, pic;
553
554	shift = 0;
555	if (idx == PIC_UPPER_INDEX)
556		shift = 32;
557
558	mask = ((u64) 0xffffffff) << shift;
559	val <<= shift;
560
561	read_pic(pic);
562	pic &= ~mask;
563	pic |= val;
564	write_pic(pic);
565}
566
567static u64 sparc_perf_event_update(struct perf_event *event,
568				   struct hw_perf_event *hwc, int idx)
569{
570	int shift = 64 - 32;
571	u64 prev_raw_count, new_raw_count;
572	s64 delta;
573
574again:
575	prev_raw_count = local64_read(&hwc->prev_count);
576	new_raw_count = read_pmc(idx);
577
578	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
579			     new_raw_count) != prev_raw_count)
580		goto again;
581
582	delta = (new_raw_count << shift) - (prev_raw_count << shift);
583	delta >>= shift;
584
585	local64_add(delta, &event->count);
586	local64_sub(delta, &hwc->period_left);
587
588	return new_raw_count;
589}
590
591static int sparc_perf_event_set_period(struct perf_event *event,
592				       struct hw_perf_event *hwc, int idx)
593{
594	s64 left = local64_read(&hwc->period_left);
595	s64 period = hwc->sample_period;
596	int ret = 0;
597
598	if (unlikely(left <= -period)) {
599		left = period;
600		local64_set(&hwc->period_left, left);
601		hwc->last_period = period;
602		ret = 1;
603	}
604
605	if (unlikely(left <= 0)) {
606		left += period;
607		local64_set(&hwc->period_left, left);
608		hwc->last_period = period;
609		ret = 1;
610	}
611	if (left > MAX_PERIOD)
612		left = MAX_PERIOD;
613
614	local64_set(&hwc->prev_count, (u64)-left);
615
616	write_pmc(idx, (u64)(-left) & 0xffffffff);
617
618	perf_event_update_userpage(event);
619
620	return ret;
621}
622
623/* If performance event entries have been added, move existing
624 * events around (if necessary) and then assign new entries to
625 * counters.
626 */
627static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
628{
629	int i;
630
631	if (!cpuc->n_added)
632		goto out;
633
634	/* Read in the counters which are moving.  */
635	for (i = 0; i < cpuc->n_events; i++) {
636		struct perf_event *cp = cpuc->event[i];
637
638		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
639		    cpuc->current_idx[i] != cp->hw.idx) {
640			sparc_perf_event_update(cp, &cp->hw,
641						cpuc->current_idx[i]);
642			cpuc->current_idx[i] = PIC_NO_INDEX;
643		}
644	}
645
646	/* Assign to counters all unassigned events.  */
647	for (i = 0; i < cpuc->n_events; i++) {
648		struct perf_event *cp = cpuc->event[i];
649		struct hw_perf_event *hwc = &cp->hw;
650		int idx = hwc->idx;
651		u64 enc;
652
653		if (cpuc->current_idx[i] != PIC_NO_INDEX)
654			continue;
655
656		sparc_perf_event_set_period(cp, hwc, idx);
657		cpuc->current_idx[i] = idx;
658
659		enc = perf_event_get_enc(cpuc->events[i]);
660		pcr &= ~mask_for_index(idx);
661		pcr |= event_encoding(enc, idx);
662	}
663out:
664	return pcr;
665}
666
667void hw_perf_enable(void)
668{
669	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
670	u64 pcr;
671
672	if (cpuc->enabled)
673		return;
674
675	cpuc->enabled = 1;
676	barrier();
677
678	pcr = cpuc->pcr;
679	if (!cpuc->n_events) {
680		pcr = 0;
681	} else {
682		pcr = maybe_change_configuration(cpuc, pcr);
683
684		/* We require that all of the events have the same
685		 * configuration, so just fetch the settings from the
686		 * first entry.
687		 */
688		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
689	}
690
691	pcr_ops->write(cpuc->pcr);
692}
693
694void hw_perf_disable(void)
695{
696	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
697	u64 val;
698
699	if (!cpuc->enabled)
700		return;
701
702	cpuc->enabled = 0;
703	cpuc->n_added = 0;
704
705	val = cpuc->pcr;
706	val &= ~(PCR_UTRACE | PCR_STRACE |
707		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
708	cpuc->pcr = val;
709
710	pcr_ops->write(cpuc->pcr);
711}
712
713static void sparc_pmu_disable(struct perf_event *event)
714{
715	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
716	struct hw_perf_event *hwc = &event->hw;
717	unsigned long flags;
718	int i;
719
720	local_irq_save(flags);
721	perf_disable();
722
723	for (i = 0; i < cpuc->n_events; i++) {
724		if (event == cpuc->event[i]) {
725			int idx = cpuc->current_idx[i];
726
727			/* Shift remaining entries down into
728			 * the existing slot.
729			 */
730			while (++i < cpuc->n_events) {
731				cpuc->event[i - 1] = cpuc->event[i];
732				cpuc->events[i - 1] = cpuc->events[i];
733				cpuc->current_idx[i - 1] =
734					cpuc->current_idx[i];
735			}
736
737			/* Absorb the final count and turn off the
738			 * event.
739			 */
740			sparc_pmu_disable_event(cpuc, hwc, idx);
741			barrier();
742			sparc_perf_event_update(event, hwc, idx);
743
744			perf_event_update_userpage(event);
745
746			cpuc->n_events--;
747			break;
748		}
749	}
750
751	perf_enable();
752	local_irq_restore(flags);
753}
754
755static int active_event_index(struct cpu_hw_events *cpuc,
756			      struct perf_event *event)
757{
758	int i;
759
760	for (i = 0; i < cpuc->n_events; i++) {
761		if (cpuc->event[i] == event)
762			break;
763	}
764	BUG_ON(i == cpuc->n_events);
765	return cpuc->current_idx[i];
766}
767
768static void sparc_pmu_read(struct perf_event *event)
769{
770	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
771	int idx = active_event_index(cpuc, event);
772	struct hw_perf_event *hwc = &event->hw;
773
774	sparc_perf_event_update(event, hwc, idx);
775}
776
777static void sparc_pmu_unthrottle(struct perf_event *event)
778{
779	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
780	int idx = active_event_index(cpuc, event);
781	struct hw_perf_event *hwc = &event->hw;
782
783	sparc_pmu_enable_event(cpuc, hwc, idx);
784}
785
786static atomic_t active_events = ATOMIC_INIT(0);
787static DEFINE_MUTEX(pmc_grab_mutex);
788
789static void perf_stop_nmi_watchdog(void *unused)
790{
791	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
792
793	stop_nmi_watchdog(NULL);
794	cpuc->pcr = pcr_ops->read();
795}
796
797void perf_event_grab_pmc(void)
798{
799	if (atomic_inc_not_zero(&active_events))
800		return;
801
802	mutex_lock(&pmc_grab_mutex);
803	if (atomic_read(&active_events) == 0) {
804		if (atomic_read(&nmi_active) > 0) {
805			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
806			BUG_ON(atomic_read(&nmi_active) != 0);
807		}
808		atomic_inc(&active_events);
809	}
810	mutex_unlock(&pmc_grab_mutex);
811}
812
813void perf_event_release_pmc(void)
814{
815	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
816		if (atomic_read(&nmi_active) == 0)
817			on_each_cpu(start_nmi_watchdog, NULL, 1);
818		mutex_unlock(&pmc_grab_mutex);
819	}
820}
821
822static const struct perf_event_map *sparc_map_cache_event(u64 config)
823{
824	unsigned int cache_type, cache_op, cache_result;
825	const struct perf_event_map *pmap;
826
827	if (!sparc_pmu->cache_map)
828		return ERR_PTR(-ENOENT);
829
830	cache_type = (config >>  0) & 0xff;
831	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
832		return ERR_PTR(-EINVAL);
833
834	cache_op = (config >>  8) & 0xff;
835	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
836		return ERR_PTR(-EINVAL);
837
838	cache_result = (config >> 16) & 0xff;
839	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
840		return ERR_PTR(-EINVAL);
841
842	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
843
844	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
845		return ERR_PTR(-ENOENT);
846
847	if (pmap->encoding == CACHE_OP_NONSENSE)
848		return ERR_PTR(-EINVAL);
849
850	return pmap;
851}
852
853static void hw_perf_event_destroy(struct perf_event *event)
854{
855	perf_event_release_pmc();
856}
857
858/* Make sure all events can be scheduled into the hardware at
859 * the same time.  This is simplified by the fact that we only
860 * need to support 2 simultaneous HW events.
861 *
862 * As a side effect, the evts[]->hw.idx values will be assigned
863 * on success.  These are pending indexes.  When the events are
864 * actually programmed into the chip, these values will propagate
865 * to the per-cpu cpuc->current_idx[] slots, see the code in
866 * maybe_change_configuration() for details.
867 */
868static int sparc_check_constraints(struct perf_event **evts,
869				   unsigned long *events, int n_ev)
870{
871	u8 msk0 = 0, msk1 = 0;
872	int idx0 = 0;
873
874	/* This case is possible when we are invoked from
875	 * hw_perf_group_sched_in().
876	 */
877	if (!n_ev)
878		return 0;
879
880	if (n_ev > perf_max_events)
881		return -1;
882
883	msk0 = perf_event_get_msk(events[0]);
884	if (n_ev == 1) {
885		if (msk0 & PIC_LOWER)
886			idx0 = 1;
887		goto success;
888	}
889	BUG_ON(n_ev != 2);
890	msk1 = perf_event_get_msk(events[1]);
891
892	/* If both events can go on any counter, OK.  */
893	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
894	    msk1 == (PIC_UPPER | PIC_LOWER))
895		goto success;
896
897	/* If one event is limited to a specific counter,
898	 * and the other can go on both, OK.
899	 */
900	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
901	    msk1 == (PIC_UPPER | PIC_LOWER)) {
902		if (msk0 & PIC_LOWER)
903			idx0 = 1;
904		goto success;
905	}
906
907	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
908	    msk0 == (PIC_UPPER | PIC_LOWER)) {
909		if (msk1 & PIC_UPPER)
910			idx0 = 1;
911		goto success;
912	}
913
914	/* If the events are fixed to different counters, OK.  */
915	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
916	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
917		if (msk0 & PIC_LOWER)
918			idx0 = 1;
919		goto success;
920	}
921
922	/* Otherwise, there is a conflict.  */
923	return -1;
924
925success:
926	evts[0]->hw.idx = idx0;
927	if (n_ev == 2)
928		evts[1]->hw.idx = idx0 ^ 1;
929	return 0;
930}
931
932static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
933{
934	int eu = 0, ek = 0, eh = 0;
935	struct perf_event *event;
936	int i, n, first;
937
938	n = n_prev + n_new;
939	if (n <= 1)
940		return 0;
941
942	first = 1;
943	for (i = 0; i < n; i++) {
944		event = evts[i];
945		if (first) {
946			eu = event->attr.exclude_user;
947			ek = event->attr.exclude_kernel;
948			eh = event->attr.exclude_hv;
949			first = 0;
950		} else if (event->attr.exclude_user != eu ||
951			   event->attr.exclude_kernel != ek ||
952			   event->attr.exclude_hv != eh) {
953			return -EAGAIN;
954		}
955	}
956
957	return 0;
958}
959
960static int collect_events(struct perf_event *group, int max_count,
961			  struct perf_event *evts[], unsigned long *events,
962			  int *current_idx)
963{
964	struct perf_event *event;
965	int n = 0;
966
967	if (!is_software_event(group)) {
968		if (n >= max_count)
969			return -1;
970		evts[n] = group;
971		events[n] = group->hw.event_base;
972		current_idx[n++] = PIC_NO_INDEX;
973	}
974	list_for_each_entry(event, &group->sibling_list, group_entry) {
975		if (!is_software_event(event) &&
976		    event->state != PERF_EVENT_STATE_OFF) {
977			if (n >= max_count)
978				return -1;
979			evts[n] = event;
980			events[n] = event->hw.event_base;
981			current_idx[n++] = PIC_NO_INDEX;
982		}
983	}
984	return n;
985}
986
987static int sparc_pmu_enable(struct perf_event *event)
988{
989	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
990	int n0, ret = -EAGAIN;
991	unsigned long flags;
992
993	local_irq_save(flags);
994	perf_disable();
995
996	n0 = cpuc->n_events;
997	if (n0 >= perf_max_events)
998		goto out;
999
1000	cpuc->event[n0] = event;
1001	cpuc->events[n0] = event->hw.event_base;
1002	cpuc->current_idx[n0] = PIC_NO_INDEX;
1003
1004	/*
1005	 * If group events scheduling transaction was started,
1006	 * skip the schedulability test here, it will be peformed
1007	 * at commit time(->commit_txn) as a whole
1008	 */
1009	if (cpuc->group_flag & PERF_EVENT_TXN)
1010		goto nocheck;
1011
1012	if (check_excludes(cpuc->event, n0, 1))
1013		goto out;
1014	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1015		goto out;
1016
1017nocheck:
1018	cpuc->n_events++;
1019	cpuc->n_added++;
1020
1021	ret = 0;
1022out:
1023	perf_enable();
1024	local_irq_restore(flags);
1025	return ret;
1026}
1027
1028static int __hw_perf_event_init(struct perf_event *event)
1029{
1030	struct perf_event_attr *attr = &event->attr;
1031	struct perf_event *evts[MAX_HWEVENTS];
1032	struct hw_perf_event *hwc = &event->hw;
1033	unsigned long events[MAX_HWEVENTS];
1034	int current_idx_dmy[MAX_HWEVENTS];
1035	const struct perf_event_map *pmap;
1036	int n;
1037
1038	if (atomic_read(&nmi_active) < 0)
1039		return -ENODEV;
1040
1041	pmap = NULL;
1042	if (attr->type == PERF_TYPE_HARDWARE) {
1043		if (attr->config >= sparc_pmu->max_events)
1044			return -EINVAL;
1045		pmap = sparc_pmu->event_map(attr->config);
1046	} else if (attr->type == PERF_TYPE_HW_CACHE) {
1047		pmap = sparc_map_cache_event(attr->config);
1048		if (IS_ERR(pmap))
1049			return PTR_ERR(pmap);
1050	} else if (attr->type != PERF_TYPE_RAW)
1051		return -EOPNOTSUPP;
1052
1053	if (pmap) {
1054		hwc->event_base = perf_event_encode(pmap);
1055	} else {
1056		/* User gives us "(encoding << 16) | pic_mask" for
1057		 * PERF_TYPE_RAW events.
1058		 */
1059		hwc->event_base = attr->config;
1060	}
1061
1062	/* We save the enable bits in the config_base.  */
1063	hwc->config_base = sparc_pmu->irq_bit;
1064	if (!attr->exclude_user)
1065		hwc->config_base |= PCR_UTRACE;
1066	if (!attr->exclude_kernel)
1067		hwc->config_base |= PCR_STRACE;
1068	if (!attr->exclude_hv)
1069		hwc->config_base |= sparc_pmu->hv_bit;
1070
1071	n = 0;
1072	if (event->group_leader != event) {
1073		n = collect_events(event->group_leader,
1074				   perf_max_events - 1,
1075				   evts, events, current_idx_dmy);
1076		if (n < 0)
1077			return -EINVAL;
1078	}
1079	events[n] = hwc->event_base;
1080	evts[n] = event;
1081
1082	if (check_excludes(evts, n, 1))
1083		return -EINVAL;
1084
1085	if (sparc_check_constraints(evts, events, n + 1))
1086		return -EINVAL;
1087
1088	hwc->idx = PIC_NO_INDEX;
1089
1090	/* Try to do all error checking before this point, as unwinding
1091	 * state after grabbing the PMC is difficult.
1092	 */
1093	perf_event_grab_pmc();
1094	event->destroy = hw_perf_event_destroy;
1095
1096	if (!hwc->sample_period) {
1097		hwc->sample_period = MAX_PERIOD;
1098		hwc->last_period = hwc->sample_period;
1099		local64_set(&hwc->period_left, hwc->sample_period);
1100	}
1101
1102	return 0;
1103}
1104
1105/*
1106 * Start group events scheduling transaction
1107 * Set the flag to make pmu::enable() not perform the
1108 * schedulability test, it will be performed at commit time
1109 */
1110static void sparc_pmu_start_txn(const struct pmu *pmu)
1111{
1112	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1113
1114	cpuhw->group_flag |= PERF_EVENT_TXN;
1115}
1116
1117/*
1118 * Stop group events scheduling transaction
1119 * Clear the flag and pmu::enable() will perform the
1120 * schedulability test.
1121 */
1122static void sparc_pmu_cancel_txn(const struct pmu *pmu)
1123{
1124	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1125
1126	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1127}
1128
1129/*
1130 * Commit group events scheduling transaction
1131 * Perform the group schedulability test as a whole
1132 * Return 0 if success
1133 */
1134static int sparc_pmu_commit_txn(const struct pmu *pmu)
1135{
1136	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1137	int n;
1138
1139	if (!sparc_pmu)
1140		return -EINVAL;
1141
1142	cpuc = &__get_cpu_var(cpu_hw_events);
1143	n = cpuc->n_events;
1144	if (check_excludes(cpuc->event, 0, n))
1145		return -EINVAL;
1146	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1147		return -EAGAIN;
1148
1149	cpuc->group_flag &= ~PERF_EVENT_TXN;
1150	return 0;
1151}
1152
1153static const struct pmu pmu = {
1154	.enable		= sparc_pmu_enable,
1155	.disable	= sparc_pmu_disable,
1156	.read		= sparc_pmu_read,
1157	.unthrottle	= sparc_pmu_unthrottle,
1158	.start_txn	= sparc_pmu_start_txn,
1159	.cancel_txn	= sparc_pmu_cancel_txn,
1160	.commit_txn	= sparc_pmu_commit_txn,
1161};
1162
1163const struct pmu *hw_perf_event_init(struct perf_event *event)
1164{
1165	int err = __hw_perf_event_init(event);
1166
1167	if (err)
1168		return ERR_PTR(err);
1169	return &pmu;
1170}
1171
1172void perf_event_print_debug(void)
1173{
1174	unsigned long flags;
1175	u64 pcr, pic;
1176	int cpu;
1177
1178	if (!sparc_pmu)
1179		return;
1180
1181	local_irq_save(flags);
1182
1183	cpu = smp_processor_id();
1184
1185	pcr = pcr_ops->read();
1186	read_pic(pic);
1187
1188	pr_info("\n");
1189	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1190		cpu, pcr, pic);
1191
1192	local_irq_restore(flags);
1193}
1194
1195static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1196					    unsigned long cmd, void *__args)
1197{
1198	struct die_args *args = __args;
1199	struct perf_sample_data data;
1200	struct cpu_hw_events *cpuc;
1201	struct pt_regs *regs;
1202	int i;
1203
1204	if (!atomic_read(&active_events))
1205		return NOTIFY_DONE;
1206
1207	switch (cmd) {
1208	case DIE_NMI:
1209		break;
1210
1211	default:
1212		return NOTIFY_DONE;
1213	}
1214
1215	regs = args->regs;
1216
1217	perf_sample_data_init(&data, 0);
1218
1219	cpuc = &__get_cpu_var(cpu_hw_events);
1220
1221	/* If the PMU has the TOE IRQ enable bits, we need to do a
1222	 * dummy write to the %pcr to clear the overflow bits and thus
1223	 * the interrupt.
1224	 *
1225	 * Do this before we peek at the counters to determine
1226	 * overflow so we don't lose any events.
1227	 */
1228	if (sparc_pmu->irq_bit)
1229		pcr_ops->write(cpuc->pcr);
1230
1231	for (i = 0; i < cpuc->n_events; i++) {
1232		struct perf_event *event = cpuc->event[i];
1233		int idx = cpuc->current_idx[i];
1234		struct hw_perf_event *hwc;
1235		u64 val;
1236
1237		hwc = &event->hw;
1238		val = sparc_perf_event_update(event, hwc, idx);
1239		if (val & (1ULL << 31))
1240			continue;
1241
1242		data.period = event->hw.last_period;
1243		if (!sparc_perf_event_set_period(event, hwc, idx))
1244			continue;
1245
1246		if (perf_event_overflow(event, 1, &data, regs))
1247			sparc_pmu_disable_event(cpuc, hwc, idx);
1248	}
1249
1250	return NOTIFY_STOP;
1251}
1252
1253static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1254	.notifier_call		= perf_event_nmi_handler,
1255};
1256
1257static bool __init supported_pmu(void)
1258{
1259	if (!strcmp(sparc_pmu_type, "ultra3") ||
1260	    !strcmp(sparc_pmu_type, "ultra3+") ||
1261	    !strcmp(sparc_pmu_type, "ultra3i") ||
1262	    !strcmp(sparc_pmu_type, "ultra4+")) {
1263		sparc_pmu = &ultra3_pmu;
1264		return true;
1265	}
1266	if (!strcmp(sparc_pmu_type, "niagara")) {
1267		sparc_pmu = &niagara1_pmu;
1268		return true;
1269	}
1270	if (!strcmp(sparc_pmu_type, "niagara2")) {
1271		sparc_pmu = &niagara2_pmu;
1272		return true;
1273	}
1274	return false;
1275}
1276
1277void __init init_hw_perf_events(void)
1278{
1279	pr_info("Performance events: ");
1280
1281	if (!supported_pmu()) {
1282		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1283		return;
1284	}
1285
1286	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1287
1288	/* All sparc64 PMUs currently have 2 events.  */
1289	perf_max_events = 2;
1290
1291	register_die_notifier(&perf_event_nmi_notifier);
1292}
1293
1294static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1295{
1296	if (entry->nr < PERF_MAX_STACK_DEPTH)
1297		entry->ip[entry->nr++] = ip;
1298}
1299
1300static void perf_callchain_kernel(struct pt_regs *regs,
1301				  struct perf_callchain_entry *entry)
1302{
1303	unsigned long ksp, fp;
1304#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1305	int graph = 0;
1306#endif
1307
1308	callchain_store(entry, PERF_CONTEXT_KERNEL);
1309	callchain_store(entry, regs->tpc);
1310
1311	ksp = regs->u_regs[UREG_I6];
1312	fp = ksp + STACK_BIAS;
1313	do {
1314		struct sparc_stackf *sf;
1315		struct pt_regs *regs;
1316		unsigned long pc;
1317
1318		if (!kstack_valid(current_thread_info(), fp))
1319			break;
1320
1321		sf = (struct sparc_stackf *) fp;
1322		regs = (struct pt_regs *) (sf + 1);
1323
1324		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1325			if (user_mode(regs))
1326				break;
1327			pc = regs->tpc;
1328			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1329		} else {
1330			pc = sf->callers_pc;
1331			fp = (unsigned long)sf->fp + STACK_BIAS;
1332		}
1333		callchain_store(entry, pc);
1334#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1335		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1336			int index = current->curr_ret_stack;
1337			if (current->ret_stack && index >= graph) {
1338				pc = current->ret_stack[index - graph].ret;
1339				callchain_store(entry, pc);
1340				graph++;
1341			}
1342		}
1343#endif
1344	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1345}
1346
1347static void perf_callchain_user_64(struct pt_regs *regs,
1348				   struct perf_callchain_entry *entry)
1349{
1350	unsigned long ufp;
1351
1352	callchain_store(entry, PERF_CONTEXT_USER);
1353	callchain_store(entry, regs->tpc);
1354
1355	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1356	do {
1357		struct sparc_stackf *usf, sf;
1358		unsigned long pc;
1359
1360		usf = (struct sparc_stackf *) ufp;
1361		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1362			break;
1363
1364		pc = sf.callers_pc;
1365		ufp = (unsigned long)sf.fp + STACK_BIAS;
1366		callchain_store(entry, pc);
1367	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1368}
1369
1370static void perf_callchain_user_32(struct pt_regs *regs,
1371				   struct perf_callchain_entry *entry)
1372{
1373	unsigned long ufp;
1374
1375	callchain_store(entry, PERF_CONTEXT_USER);
1376	callchain_store(entry, regs->tpc);
1377
1378	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1379	do {
1380		struct sparc_stackf32 *usf, sf;
1381		unsigned long pc;
1382
1383		usf = (struct sparc_stackf32 *) ufp;
1384		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1385			break;
1386
1387		pc = sf.callers_pc;
1388		ufp = (unsigned long)sf.fp;
1389		callchain_store(entry, pc);
1390	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1391}
1392
1393/* Like powerpc we can't get PMU interrupts within the PMU handler,
1394 * so no need for separate NMI and IRQ chains as on x86.
1395 */
1396static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
1397
1398struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1399{
1400	struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
1401
1402	entry->nr = 0;
1403	if (!user_mode(regs)) {
1404		stack_trace_flush();
1405		perf_callchain_kernel(regs, entry);
1406		if (current->mm)
1407			regs = task_pt_regs(current);
1408		else
1409			regs = NULL;
1410	}
1411	if (regs) {
1412		flushw_user();
1413		if (test_thread_flag(TIF_32BIT))
1414			perf_callchain_user_32(regs, entry);
1415		else
1416			perf_callchain_user_64(regs, entry);
1417	}
1418	return entry;
1419}
1420