• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/sh/kernel/
1/*
2 * SuperH KGDB support
3 *
4 * Copyright (C) 2008 - 2009  Paul Mundt
5 *
6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
7 *
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License.  See the file "COPYING" in the main directory of this archive
10 * for more details.
11 */
12#include <linux/kgdb.h>
13#include <linux/kdebug.h>
14#include <linux/irq.h>
15#include <linux/io.h>
16#include <asm/cacheflush.h>
17
18/* Macros for single step instruction identification */
19#define OPCODE_BT(op)		(((op) & 0xff00) == 0x8900)
20#define OPCODE_BF(op)		(((op) & 0xff00) == 0x8b00)
21#define OPCODE_BTF_DISP(op)	(((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
22				 (((op) & 0x7f ) << 1))
23#define OPCODE_BFS(op)		(((op) & 0xff00) == 0x8f00)
24#define OPCODE_BTS(op)		(((op) & 0xff00) == 0x8d00)
25#define OPCODE_BRA(op)		(((op) & 0xf000) == 0xa000)
26#define OPCODE_BRA_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
27				 (((op) & 0x7ff) << 1))
28#define OPCODE_BRAF(op)		(((op) & 0xf0ff) == 0x0023)
29#define OPCODE_BRAF_REG(op)	(((op) & 0x0f00) >> 8)
30#define OPCODE_BSR(op)		(((op) & 0xf000) == 0xb000)
31#define OPCODE_BSR_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
32				 (((op) & 0x7ff) << 1))
33#define OPCODE_BSRF(op)		(((op) & 0xf0ff) == 0x0003)
34#define OPCODE_BSRF_REG(op)	(((op) >> 8) & 0xf)
35#define OPCODE_JMP(op)		(((op) & 0xf0ff) == 0x402b)
36#define OPCODE_JMP_REG(op)	(((op) >> 8) & 0xf)
37#define OPCODE_JSR(op)		(((op) & 0xf0ff) == 0x400b)
38#define OPCODE_JSR_REG(op)	(((op) >> 8) & 0xf)
39#define OPCODE_RTS(op)		((op) == 0xb)
40#define OPCODE_RTE(op)		((op) == 0x2b)
41
42#define SR_T_BIT_MASK           0x1
43#define STEP_OPCODE             0xc33d
44
45/* Calculate the new address for after a step */
46static short *get_step_address(struct pt_regs *linux_regs)
47{
48	insn_size_t op = __raw_readw(linux_regs->pc);
49	long addr;
50
51	/* BT */
52	if (OPCODE_BT(op)) {
53		if (linux_regs->sr & SR_T_BIT_MASK)
54			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
55		else
56			addr = linux_regs->pc + 2;
57	}
58
59	/* BTS */
60	else if (OPCODE_BTS(op)) {
61		if (linux_regs->sr & SR_T_BIT_MASK)
62			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
63		else
64			addr = linux_regs->pc + 4;	/* Not in delay slot */
65	}
66
67	/* BF */
68	else if (OPCODE_BF(op)) {
69		if (!(linux_regs->sr & SR_T_BIT_MASK))
70			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
71		else
72			addr = linux_regs->pc + 2;
73	}
74
75	/* BFS */
76	else if (OPCODE_BFS(op)) {
77		if (!(linux_regs->sr & SR_T_BIT_MASK))
78			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
79		else
80			addr = linux_regs->pc + 4;	/* Not in delay slot */
81	}
82
83	/* BRA */
84	else if (OPCODE_BRA(op))
85		addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
86
87	/* BRAF */
88	else if (OPCODE_BRAF(op))
89		addr = linux_regs->pc + 4
90		    + linux_regs->regs[OPCODE_BRAF_REG(op)];
91
92	/* BSR */
93	else if (OPCODE_BSR(op))
94		addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
95
96	/* BSRF */
97	else if (OPCODE_BSRF(op))
98		addr = linux_regs->pc + 4
99		    + linux_regs->regs[OPCODE_BSRF_REG(op)];
100
101	/* JMP */
102	else if (OPCODE_JMP(op))
103		addr = linux_regs->regs[OPCODE_JMP_REG(op)];
104
105	/* JSR */
106	else if (OPCODE_JSR(op))
107		addr = linux_regs->regs[OPCODE_JSR_REG(op)];
108
109	/* RTS */
110	else if (OPCODE_RTS(op))
111		addr = linux_regs->pr;
112
113	/* RTE */
114	else if (OPCODE_RTE(op))
115		addr = linux_regs->regs[15];
116
117	/* Other */
118	else
119		addr = linux_regs->pc + instruction_size(op);
120
121	flush_icache_range(addr, addr + instruction_size(op));
122	return (short *)addr;
123}
124
125/*
126 * Replace the instruction immediately after the current instruction
127 * (i.e. next in the expected flow of control) with a trap instruction,
128 * so that returning will cause only a single instruction to be executed.
129 * Note that this model is slightly broken for instructions with delay
130 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
131 * instruction in the delay slot will be executed.
132 */
133
134static unsigned long stepped_address;
135static insn_size_t stepped_opcode;
136
137static void do_single_step(struct pt_regs *linux_regs)
138{
139	/* Determine where the target instruction will send us to */
140	unsigned short *addr = get_step_address(linux_regs);
141
142	stepped_address = (int)addr;
143
144	/* Replace it */
145	stepped_opcode = __raw_readw((long)addr);
146	*addr = STEP_OPCODE;
147
148	/* Flush and return */
149	flush_icache_range((long)addr, (long)addr +
150			   instruction_size(stepped_opcode));
151}
152
153/* Undo a single step */
154static void undo_single_step(struct pt_regs *linux_regs)
155{
156	/* If we have stepped, put back the old instruction */
157	/* Use stepped_address in case we stopped elsewhere */
158	if (stepped_opcode != 0) {
159		__raw_writew(stepped_opcode, stepped_address);
160		flush_icache_range(stepped_address, stepped_address + 2);
161	}
162
163	stepped_opcode = 0;
164}
165
166void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
167{
168	int i;
169
170	for (i = 0; i < 16; i++)
171		gdb_regs[GDB_R0 + i] = regs->regs[i];
172
173	gdb_regs[GDB_PC] = regs->pc;
174	gdb_regs[GDB_PR] = regs->pr;
175	gdb_regs[GDB_SR] = regs->sr;
176	gdb_regs[GDB_GBR] = regs->gbr;
177	gdb_regs[GDB_MACH] = regs->mach;
178	gdb_regs[GDB_MACL] = regs->macl;
179
180	__asm__ __volatile__ ("stc vbr, %0" : "=r" (gdb_regs[GDB_VBR]));
181}
182
183void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
184{
185	int i;
186
187	for (i = 0; i < 16; i++)
188		regs->regs[GDB_R0 + i] = gdb_regs[GDB_R0 + i];
189
190	regs->pc = gdb_regs[GDB_PC];
191	regs->pr = gdb_regs[GDB_PR];
192	regs->sr = gdb_regs[GDB_SR];
193	regs->gbr = gdb_regs[GDB_GBR];
194	regs->mach = gdb_regs[GDB_MACH];
195	regs->macl = gdb_regs[GDB_MACL];
196}
197
198void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
199{
200	gdb_regs[GDB_R15] = p->thread.sp;
201	gdb_regs[GDB_PC] = p->thread.pc;
202}
203
204int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
205			       char *remcomInBuffer, char *remcomOutBuffer,
206			       struct pt_regs *linux_regs)
207{
208	unsigned long addr;
209	char *ptr;
210
211	/* Undo any stepping we may have done */
212	undo_single_step(linux_regs);
213
214	switch (remcomInBuffer[0]) {
215	case 'c':
216	case 's':
217		/* try to read optional parameter, pc unchanged if no parm */
218		ptr = &remcomInBuffer[1];
219		if (kgdb_hex2long(&ptr, &addr))
220			linux_regs->pc = addr;
221	case 'D':
222	case 'k':
223		atomic_set(&kgdb_cpu_doing_single_step, -1);
224
225		if (remcomInBuffer[0] == 's') {
226			do_single_step(linux_regs);
227			kgdb_single_step = 1;
228
229			atomic_set(&kgdb_cpu_doing_single_step,
230				   raw_smp_processor_id());
231		}
232
233		return 0;
234	}
235
236	/* this means that we do not want to exit from the handler: */
237	return -1;
238}
239
240unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
241{
242	if (exception == 60)
243		return instruction_pointer(regs) - 2;
244	return instruction_pointer(regs);
245}
246
247void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
248{
249	regs->pc = ip;
250}
251
252/*
253 * The primary entry points for the kgdb debug trap table entries.
254 */
255BUILD_TRAP_HANDLER(singlestep)
256{
257	unsigned long flags;
258	TRAP_HANDLER_DECL;
259
260	local_irq_save(flags);
261	regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
262	kgdb_handle_exception(0, SIGTRAP, 0, regs);
263	local_irq_restore(flags);
264}
265
266static int __kgdb_notify(struct die_args *args, unsigned long cmd)
267{
268	int ret;
269
270	switch (cmd) {
271	case DIE_BREAKPOINT:
272		/*
273		 * This means a user thread is single stepping
274		 * a system call which should be ignored
275		 */
276		if (test_thread_flag(TIF_SINGLESTEP))
277			return NOTIFY_DONE;
278
279		ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
280					    args->err, args->regs);
281		if (ret)
282			return NOTIFY_DONE;
283
284		break;
285	}
286
287	return NOTIFY_STOP;
288}
289
290static int
291kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
292{
293	unsigned long flags;
294	int ret;
295
296	local_irq_save(flags);
297	ret = __kgdb_notify(ptr, cmd);
298	local_irq_restore(flags);
299
300	return ret;
301}
302
303static struct notifier_block kgdb_notifier = {
304	.notifier_call	= kgdb_notify,
305
306	/*
307	 * Lowest-prio notifier priority, we want to be notified last:
308	 */
309	.priority	= -INT_MAX,
310};
311
312int kgdb_arch_init(void)
313{
314	return register_die_notifier(&kgdb_notifier);
315}
316
317void kgdb_arch_exit(void)
318{
319	unregister_die_notifier(&kgdb_notifier);
320}
321
322struct kgdb_arch arch_kgdb_ops = {
323	/* Breakpoint instruction: trapa #0x3c */
324#ifdef CONFIG_CPU_LITTLE_ENDIAN
325	.gdb_bpt_instr		= { 0x3c, 0xc3 },
326#else
327	.gdb_bpt_instr		= { 0xc3, 0x3c },
328#endif
329};
330